APPENDIX E
MISCELLANEOUS CYLINDER ACOUSTIC FIELDS

The purpose of this appendix is to display the slices of the acoustic field as described by section 4.5 and Figs. 4.9 and 4.10. In this experiment the acoustic field within the cylinder is mapped from 800 to 2400 Hz while using PZT actuator “B” at 20 Vrms.

Figure E.1 Axial internal acoustic field (SPL in dB) at 832 Hz.

Figure E.2 Radial internal acoustic field near endplate (SPL in dB) at 832 Hz.
Figure E.3 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 832 Hz.

Figure E.4 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 832 Hz.
Figure E.5 Axial internal acoustic field (SPL in dB) at 876 Hz.

Figure E.6 Radial internal acoustic field near endplate (SPL in dB) at 876 Hz.
Figure E.7 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 876 Hz.

Figure E.8 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 876 Hz.
Figure E.9 Axial internal acoustic field (SPL in dB) at 972 Hz.

Figure E.10 Radial internal acoustic field near endplate (SPL in dB) at 972 Hz.
Figure E.11 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 972 Hz.

Figure E.12 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 972 Hz.
Figure E.13 Axial internal acoustic field (SPL in dB) at 1208 Hz.

Figure E.14 Radial internal acoustic field near endplate (SPL in dB) at 1208 Hz.
Figure E.15 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1208 Hz.

Figure E.16 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1208 Hz.
Figure E.17 Axial internal acoustic field (SPL in dB) at 1316 Hz.

Figure E.18 Radial internal acoustic field near endplate (SPL in dB) at 1316 Hz.
Figure E.19 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1316 Hz.

Figure E.20 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1316 Hz.
Figure E.21 Axial internal acoustic field (SPL in dB) at 1388 Hz.

Figure E.22 Radial internal acoustic field near endplate (SPL in dB) at 1388 Hz.
Figure E.23 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1388 Hz.

Figure E.24 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1388 Hz.
Figure E.25 Axial internal acoustic field (SPL in dB) at 1452 Hz.

Figure E.26 Radial internal acoustic field near endplate (SPL in dB) at 1452 Hz.
Figure E.27 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1452 Hz.

Figure E.28 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1452 Hz.
Figure E.29 Axial internal acoustic field (SPL in dB) at 1532 Hz.

Figure E.30 Radial internal acoustic field near endplate (SPL in dB) at 1532 Hz.
Figure E.31 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1532 Hz.

Figure E.32 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1532 Hz.