TABLE OF CONTENTS

Chapter 1. Introduction

1.1 The Acoustic Disturbance and Some Solutions
1.2 Motivation and Requirements for Active Control of Payload Fairings
1.3 Active Structural/Acoustic Control
1.4 Active Control Research Related to Payload Fairings
1.5 Is the Piezoelectric (PZT) Actuator a Feasible Choice to Control PFs?
1.6 Approach and its Significance
1.7 Structural Modeling Performed on the PZT Actuation of Cylinders
1.8 Internal Acoustic Response of Cylinders
1.9 Overview of Dissertation

Chapter 2. Simply-Supported Cylinder Structural Response

2.1 PZT Actuator Model and Structural Response for a SS Cylinder
2.2 Creation of the Cylinder Simply-Supported Boundary Condition
 2.2.1 Various Boundary Conditions Tested
 2.2.2 Synopsis of Boundary Conditions Tested
2.3 Modal Evaluation of the Cylinder
2.4 Comparison with Finite Element Analysis
2.5 Response to Various Actuator Locations
2.6 Analytical and Experimental Response
2.7 Concluding Remarks on the Structural Model

Chapter 3. Simply-Supported Cylinder Acoustic Response

3.1 Kirchoff-Helmholtz Integral Applied to a Cylinder
3.2 Internal Acoustic Response of a Cylinder Having a Single
 Mode Structural Vibration
3.3 Internal Acoustic Response of a Cylinder Using Boundary
 Element Analysis
3.4 Analytical and Boundary Element Model Comparison for
 the Internal Acoustic Response of a Cylinder
3.5 Variation of the Internal SPL with Applied Voltage

Chapter 4. Experiment: Verification of the Acoustic Model and
Determination of the Acoustic Loss Factor

4.1 Experimental Determination of the Cylinder Structural Operating Shape
4.2 Results of the Cylinder Operating Shape
4.3 Some Experimental Issues and Additional Tests
4.4 Description of the Acoustic Experimental Setup
4.5 Description of the Acoustic Measurements
Chapter 5. Simulation of a Payload Fairing ...69

5.1 Properties of the Payload Fairing ...69
5.2 Choice of Parameters for a Large Scale SS Cylinder69
 5.2.1 Cylinder Size ..69
 5.2.2 Cylinder Mass and Stiffness ...71
 5.2.3 Cylinder Damping ...71
 5.2.4 Baseline PZT Actuator: Material and Physical Properties72
 5.2.5 PZT Actuator Location ..73
 5.2.6 Acoustic Field Point Location ...73
 5.2.7 Summary of the Simulation Test Cases ..73

5.3 Results of the Simulations ...73
 5.3.1 Effect of Cylinder Stiffness and Mass Changes74
 5.3.2 Effect of Actuator Applied Voltage ..74
 5.3.3 Effect of Cylinder Damping Changes on the Acoustic Response77
 5.3.4 Implications to Active Structural Acoustic Control of Payload Fairings ..77
 5.3.5 Baseline Actuator Acoustic Authority ...78
 5.3.6 The Importance of Actuator Current Consumption78
 5.3.7 Baseline Actuator Current Consumption ..79
 5.3.8 Payload Fairing Acoustic Authority and Current Consumption79

5.4 Conclusions of the Simulations ...80

Chapter 6. Practical Considerations and Limitations ..90

6.1 Mode Shape Orientation ...90
6.2 Applications to Larger Fairings ...90
6.3 Control Issues ...90
6.4 PZT Actuator Non-linearity ...91
6.5 PZT Actuator Tensile Properties ..91
6.6 Single or Co-located Actuators ...92
6.7 Fairing and Cylinder Modal Density ..92
6.8 Potential Sources of Error ..92
6.9 Convergence Test ...93

Chapter 7. Conclusions ..94

7.1 Structural Model ..94
7.2 Acoustic Model ..94
7.3 Simulations ..95
7.4 Future Work ...96
References ...98
Appendix A MATLAB Code to Compute Structural Response106
Appendix B MATLAB Code to Compute the Acoustic Response114
Appendix C Miscellaneous Cylinder Operating Shapes121
Appendix D Calibration of the Microphones ...127
Appendix E Miscellaneous Cylinder Acoustic Fields131
Appendix F Cylinder Natural Frequencies for Cases 1-7175
Appendix G Summary of Simulations Performed ..186
Appendix H Miscellaneous Phase Plots for the Cylinder188
Appendix I Modal Assurance Criterion for the Cylinder191
Vita..193
LIST OF FIGURES

1.1 Contour of equal overall SPL (Eldred, 1971). ...3
1.2 Titan IV rocket fairing SPLs (Elliot, 1990). ...4
1.3 Typical absorption coefficients for a fairing (Weissman, et al., 1994)4
1.4 Effect of blankets on internal SPL (Lee, 1992). ...5
1.5 Huygen’s Surface: Secondary Sources Produce a Region of Silence (Stevens and Ahuja, 1991). ...6

2.1 Cylinder with mounted actuators. ...14
2.2 Transfer of actuator forces to equivalent mid-plane loading.15
2.3 Interaction between the PZT and the cylinder via the structural impedance.16
2.4 Instrumented cylinder. ...20
2.5 Tested boundary conditions: (a) test 1, 2, & 3: (b) test 4: (c) test 5.21
2.6 Response of the cylinder for different boundary conditions (tests 1-5).22
2.7 Response of the cylinder at different axial locations. ..23
2.8 FRF of accelerance with respect to force ...24
2.9 Spatial FRF magnitude at 950 Hz (2,1): (a) circumferential at $x = 237$ mm: (b) circumferential at $x = 67.8$ mm: (c) axial at $\theta = 0^\circ$: (d) circumferential phase at $x = 67.8$ mm ...24
2.10 Spatial FRF at 1838 Hz (3,2): (a) circumferential at $x = 237$ mm: (b) circumferential at $x = 67.8$ mm: (c) axial at $\theta = 0^\circ$: (d) circumferential phase at $x = 67.8$ mm25
2.11 Comparison of analytical, FEA, and experimental natural frequencies.28
2.12 Analytical displacement magnitude driven by actuator A, B, and C28
2.13 Experimental displacement magnitude driven by actuator A, B, and C29
2.14 Analytical/experimental displacement magnitude for PZT A at 25 Vrms.29
2.15 Analytical/experimental displacement magnitude for PZT B at 25 Vrms30
2.16 Analytical response at 1533 Hz (4,1) ...30
2.17 Analytical response at 2021 Hz (3,2) ...31

3.1 Example of the location of nodal accelerance points on the cylinder surface38
3.2 Corresponding example of the partitioned surface elements.38
3.3 Magnitude of the cylinder accelerance (phase adjusted) for case 140
3.4 Radial acoustic response at $x = 0.3l$ for case 1 (SPL dB).41
3.5 Horizontal acoustic response for case 1, except $t_x = 0^\circ$ (SPL dB).41
3.6 Magnitude of the cylinder accelerance (phase adjusted) for case 242
3.7 Radial acoustic response at $x = 0.3l$ for case 2 (SPL dB).42
3.8 Vertical acoustic response for case 2 (SPL dB). ..43
3.9 Normalized internal SPL for varying voltage, linear scale44
3.10 Normalized internal SPL for varying voltage, semi-log scale44

4.1 Schematic representation of the structural experiment46
4.2 Cylinder displacement magnitude at various axial locations, $\theta = 0^\circ$.47
4.3 Cylinder operating shape at 948 Hz (2,1) ...48
4.4 Cylinder operating shape at 948 Hz, (displacement magnitude, m)48
4.5 Cylinder operating shape at 976 Hz (3,1) ..49
4.6 Cylinder operating shape at 976 Hz, (displacement magnitude, m)49
4.7 Cross section of the acoustic test set up ..51
4.8 Schematic of the microphone and actuator signal conditioning51
4.9 Vertical plane of acoustic field measurements ...53
4.10 Radial planes of acoustic field measurements ...53
4.11 Acoustic response of the cylinder at \(\theta = 0^\circ \) for microphones A, B, & C; near the endplate, at \(L/2 \), and \(L/3 \) (S=structural mode, A=acoustic mode, B=Bessel mode, \(\epsilon \)=unknown). ..54
4.12 Comparison of analytical and experimental acoustic natural frequencies55
4.13 Error between the analytical and experimental acoustic natural frequencies56
4.14 Axial internal acoustic field (SPL in dB) at 948 Hz ...57
4.15 Radial internal acoustic field near endplate (SPL in dB) at 948 Hz57
4.16 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 948 Hz...............58
4.17 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 948 Hz58
4.18 Axial internal acoustic field (SPL in dB) at 1552 Hz ...59
4.19 Radial internal acoustic field near endplate (SPL in dB) at 1552 Hz59
4.20 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1552 Hz60
4.21 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1552 Hz60
4.22 Model acoustic response for various acoustic loss factors (1, 0.5 and 0.1%)62
4.23 Comparison of the acoustic simulation with experiment \(\{ x_a = 19.05 \text{ mm (0.75 in.)}\} \)63
4.24 Comparison of the acoustic simulation with experiment \(\{ x_a = 130.56 \text{ mm (5.14 in.)}\} \) ..63
4.25 Comparison of the acoustic simulation with experiment \(\{ x_a = 195.83 \text{ mm (7.71 in.)}\} \) ..64
4.26 Axial internal acoustic simulation (SPL in dB) at 948 Hz ...64
4.27 Radial internal acoustic simulation near endplate (SPL in dB) at 948 Hz65
4.28 Radial internal acoustic simulation at 1/3 cylinder length (SPL in dB) at 948 Hz65
4.29 Radial internal acoustic simulation at 1/2 cylinder length (SPL in dB) at 948 Hz66
4.30 Axial internal acoustic simulation (SPL in dB) at 1552 Hz ..66
4.31 Radial internal acoustic simulation near endplate (SPL in dB) at 1552 Hz67
4.32 Radial internal acoustic simulation at 1/3 cylinder length (SPL in dB) at 1552 Hz67
4.33 Radial internal acoustic simulation at 1/2 cylinder length (SPL in dB) at 1552 Hz68
5.1 Minotaur fairing approximate dimensions and modeled cylinder section70
5.2 Cylinder displacement response actuated at \(x = l/2, \eta = 0.007 \), cases 1a-7a75
5.3 Cylinder displacement response actuated at \(x = l/4, \eta = 0.007 \), cases 1d-7d75
5.4 Pressure within the cylinder actuated at \(x = l/2, \eta = 0.007 \), cases 1a-7a76
5.5 Pressure within the cylinder actuated at \(x = l/2, \eta = 0.007 \), cases 1d-7d76
5.6 Cylinder displacement response actuated at \(x = l/2 \), \(\eta = 0.007 \); case 1a, \(\eta = 0.007 \) ; \(\eta = 0.0206 \); case 1c, \(\eta = 0.052 \) ...82
5.7 Cylinder SPL actuated at \(x = l/2 \), \(\eta = 0.007 \); case 1b, \(\eta = 0.0206 \); case 1c, \(\eta = 0.052 \) ...82
5.8 Cylinder displacement response actuated at \(x = l/4 \), \(\eta = 0.007 \); case 1e, \(\eta = 0.0206 \); case 1f, \(\eta = 0.052 \) ...83
5.9 Cylinder SPL actuated at \(x = l/4 \),
case 1d, $\eta = 0.007$; case 1e, $\eta = 0.0206$; case 1f, $\eta = 0.052$.

5.10 Cylinder displacement response actuated at $x = \frac{1}{2}$.

5.11 Cylinder SPL actuated at $x = \frac{1}{2}$.

5.12 Cylinder displacement response actuated at $x = \frac{1}{4}$.

5.13 Cylinder SPL actuated at $x = \frac{1}{4}$.

5.14 Baseline PZT actuator current draw for harmonic excitation.

5.15 Baseline PZT actuator current at the 1/3 octave-band center frequencies.

5.16 Cylinder internal acoustic levels and 1/3 octave-band representation for case1.

5.17 Cylinder internal acoustic levels and 1/3 octave-band representation for case7.

5.18 Additional SPL required to achieve 130 dB, case1.

5.19 Additional SPL required to achieve 130 dB, case7.

5.20 Required number of baseline PZT actuators to achieve 130 dB.

5.21 Required current amplitude to achieve 130 dB.

C.1 Cylinder operating shape at 1528 Hz (4,1).

C.2 Cylinder operating shape at 1528 Hz, (displacement magnitude, m).

C.3 Cylinder operating shape at 1836 Hz (3,2).

C.4 Cylinder operating shape at 1836 Hz, (displacement magnitude, m).

C.5 Cylinder operating shape at 2044 Hz (4,2).

C.6 Cylinder operating shape at 2044 Hz, (displacement magnitude, m).

C.7 Cylinder operating shape at 2116 Hz (2,2).

C.8 Cylinder operating shape at 2116 Hz, (displacement magnitude, m).

C.9 Cylinder operating shape at 2208 Hz (1,1).

C.10 Cylinder operating shape at 2208 Hz, (displacement magnitude, m).

C.11 Cylinder operating shape at 2388 Hz (5,1).

C.12 Cylinder operating shape at 2388 Hz, (displacement magnitude, m).

D.1 Comparison of B&K and RSO microphone “A” at four different acoustic levels.

D.2 Absolute error between the B&K and RSO microphone “A” at four different acoustic levels.

D.3 Comparison of B&K and RSO microphone “B” at four different acoustic levels.

D.4 Absolute error between the B&K and RSO microphone “B” at four different acoustic levels.

D.5 Comparison of B&K and RSO microphone “C” at four different acoustic levels.

D.6 Absolute error between the B&K and RSO microphone “C” at four different acoustic levels.

E.1 Axial internal acoustic field (SPL in dB) at 832 Hz.

E.2 Radial internal acoustic field near endplate (SPL in dB) at 832 Hz.

E.3 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 832 Hz.

E.4 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 832 Hz.

E.5 Axial internal acoustic field (SPL in dB) at 876 Hz.

E.6 Radial internal acoustic field near endplate (SPL in dB) at 876 Hz.
E.7	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 876 Hz	134
E.8	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 876 Hz	134
E.9	Axial internal acoustic field (SPL in dB) at 972 Hz	135
E.10	Radial internal acoustic field near endplate (SPL in dB) at 972 Hz	135
E.11	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 972 Hz	136
E.12	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 972 Hz	136
E.13	Axial internal acoustic field (SPL in dB) at 1208 Hz	137
E.14	Radial internal acoustic field near endplate (SPL in dB) at 1208 Hz	137
E.15	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1208 Hz	138
E.16	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1208 Hz	138
E.17	Axial internal acoustic field (SPL in dB) at 1316 Hz	139
E.18	Radial internal acoustic field near endplate (SPL in dB) at 1316 Hz	139
E.19	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1316 Hz	140
E.20	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1316 Hz	140
E.21	Axial internal acoustic field (SPL in dB) at 1388 Hz	141
E.22	Radial internal acoustic field near endplate (SPL in dB) at 1388 Hz	141
E.23	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1388 Hz	142
E.24	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1388 Hz	142
E.25	Axial internal acoustic field (SPL in dB) at 1452 Hz	143
E.26	Radial internal acoustic field near endplate (SPL in dB) at 1452 Hz	143
E.27	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1452 Hz	144
E.28	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1452 Hz	144
E.29	Axial internal acoustic field (SPL in dB) at 1532 Hz	145
E.30	Radial internal acoustic field near endplate (SPL in dB) at 1532 Hz	145
E.31	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1532 Hz	146
E.32	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1532 Hz	146
E.33	Axial internal acoustic field (SPL in dB) at 1636 Hz	147
E.34	Radial internal acoustic field near endplate (SPL in dB) at 1636 Hz	147
E.35	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1636 Hz	148
E.36	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1636 Hz	148
E.37	Axial internal acoustic field (SPL in dB) at 1760 Hz	149
E.38	Radial internal acoustic field near endplate (SPL in dB) at 1760 Hz	149
E.39	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1760 Hz	150
E.40	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1760 Hz	150
E.41	Axial internal acoustic field (SPL in dB) at 1800 Hz	151
E.42	Radial internal acoustic field near endplate (SPL in dB) at 1800 Hz	151
E.43	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1800 Hz	152
E.44	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1800 Hz	152
E.45	Axial internal acoustic field (SPL in dB) at 1840 Hz	153
E.46	Radial internal acoustic field near endplate (SPL in dB) at 1840 Hz	153
E.47	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1840 Hz	154
E.48	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1840 Hz	154
E.49	Axial internal acoustic field (SPL in dB) at 1900 Hz	155
E.50	Radial internal acoustic field near endplate (SPL in dB) at 1900 Hz	155
E.51	Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1900 Hz	156
E.52	Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1900 Hz	156
E.53 Axial internal acoustic field (SPL in dB) at 1908 Hz...157
E.54 Radial internal acoustic field near endplate (SPL in dB) at 1908 Hz.............................157
E.55 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1908 Hz.........158
E.56 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1908 Hz........158
E.57 Axial internal acoustic field (SPL in dB) at 1964 Hz...159
E.58 Radial internal acoustic field near endplate (SPL in dB) at 1964 Hz.............................159
E.59 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 1964 Hz.........160
E.60 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 1964 Hz........160
E.61 Axial internal acoustic field (SPL in dB) at 2048 Hz...161
E.62 Radial internal acoustic field near endplate (SPL in dB) at 2048 Hz.............................161
E.63 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 2048 Hz........162
E.64 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 2048 Hz........162
E.65 Axial internal acoustic field (SPL in dB) at 2088 Hz...163
E.66 Radial internal acoustic field near endplate (SPL in dB) at 2088 Hz.............................163
E.67 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 2088 Hz.........164
E.68 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 2088 Hz........164
E.69 Axial internal acoustic field (SPL in dB) at 2124 Hz...165
E.70 Radial internal acoustic field near endplate (SPL in dB) at 2124 Hz.............................165
E.71 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 2124 Hz.........166
E.72 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 2124 Hz........166
E.73 Axial internal acoustic field (SPL in dB) at 2172 Hz...167
E.74 Radial internal acoustic field near endplate (SPL in dB) at 2172 Hz.............................167
E.75 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 2172 Hz.........168
E.76 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 2172 Hz........168
E.77 Axial internal acoustic field (SPL in dB) at 2208 Hz...169
E.78 Radial internal acoustic field near endplate (SPL in dB) at 2208 Hz.............................169
E.79 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 2208 Hz.........170
E.80 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 2208 Hz.........170
E.81 Axial internal acoustic field (SPL in dB) at 2304 Hz...171
E.82 Radial internal acoustic field near endplate (SPL in dB) at 2304 Hz.............................171
E.83 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 2304 Hz.........172
E.84 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 2304 Hz.........172
E.85 Axial internal acoustic field (SPL in dB) at 2328 Hz...173
E.86 Radial internal acoustic field near endplate (SPL in dB) at 2328 Hz.............................173
E.87 Radial internal acoustic field at 1/3 cylinder length, (SPL in dB) at 2328 Hz.........174
E.88 Radial internal acoustic field at 1/2 cylinder length, (SPL in dB) at 2328 Hz.........174

H.1 Phase of displacement wrt. force for hammer strike at $x = 4''$, $\theta = 0^\circ$188
H.2 Phase of displacement wrt. force for hammer strike at $x = 8''$, $\theta = 0^\circ$189
H.3 Comparison of the acoustic simulation with experiment { $x_a = 19.05$ mm (0.75 in.)}189
H.4 Comparison of the acoustic simulation with experiment { $x_a = 130.56$ mm (5.14 in.)} ...190
H.5 Comparison of the acoustic simulation with experiment { $x_a = 195.83$ mm (7.71 in.)} ...190

I.1 Comparison of the MAC of the cylinder operating shape for the different modes192
LIST OF TABLES

2.1 Cylinder and actuator properties ... 20
2.2 Cylinder analytical, FEA, and experimental natural frequencies 27
3.1 Case properties comparing analytical and BEA ... 40
4.1 Radio Shack Optimus microphone properties ... 50
4.2 Comparison of analytical and experimental natural frequencies 55
5.1 Mechanical properties of AGS composite material 70
5.2 Physical properties of an equivalent cylinder .. 72
5.3 Properties of the PSI-5H-S2 PZT actuator .. 72
5.4 Increase in sound for a given actuation .. 81

F.1 Structural natural frequencies and modal indices for Case 1 175
F.2 Cylinder acoustic natural frequencies and modal indices for Case 1 176
F.3 Structural natural frequencies and modal indices for Case 2 178
F.4 Structural natural frequencies and modal indices for Case 3 179
F.5 Structural natural frequencies and modal indices for Case 4 180
F.6 Structural natural frequencies and modal indices for Case 5 181
F.7 Structural natural frequencies and modal indices for Case 6 182
F.8 Structural natural frequencies and modal indices for Case 7 183
F.9 Cylinder acoustic natural frequencies and modal indices for Case 7 184
G.1 Test cases for the cylinder actuated at 1/2 ... 186
G.2 Test cases for the cylinder actuated at 1/4 ... 187
I.1 Comparison of modal properties for the cylinder 191