Exterior Penalty Approaches for Solving
Linear Programming Problems

by

Burak Özdaryal

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Industrial and Systems Engineering

APPROVED:

Dr. Hanif D. Sherali, Chairman

Dr. Subhash C. Sarin Dr. John E. Kobza

May, 1999
Blacksburg, Virginia

Keywords: linear programming, exterior penalty function approaches, l_2 penalty approach, augmented Lagrangian approach.
Exterior Penalty Approaches for Solving Linear Programming Problems

by

Burak Özdaryal
Dr. Hanif D. Sherali, Chairman
Industrial and Systems Engineering

ABSTRACT

In this research effort, we study three exterior penalty function approaches for solving linear programming problems. These methods are an active set l_2 penalty approach (ASL2), an inequality-equality based l_2 penalty approach (IEL2), and an augmented Lagrangian approach (ALAG). Particular effective variants are presented for each method, along with comments and experience on alternative algorithmic strategies that were empirically investigated. Our motivation is to examine the relative performance of these different approaches based on the basic l_2 penalty function in order to provide insights into the viability of these methods for solving linear programs. To test the performance of these algorithms, a set of randomly generated problems as well as a set of NETLIB test problems from the public domain are used. By way of providing a benchmark for comparisons, we also solve the test problems using CPLEX 6.0, an advanced simplex implementation. While a particular variant (ALAG2) of ALAG performed the best for randomly generated test problems, ASL2 performed the best for the NETLIB test problems. Moreover, for test problems having only equality constraints, IEL2, and ASL2 (which is a finer-tuned version of IEL2 in this case) were comparable and yielded a second-best performance in comparison with ALAG2. Furthermore, a set of problems with relatively higher density parameter values, as well as a set of low-density problems were used to determine the effect of density on the relative performances of these methods. This experiment revealed that for linear programs with a high density parameter, ASL2 is the best alternative among the tested algorithms; whereas, for low-density problems ALAG2 is the fastest method. Moreover, although our implementation was rudimentary in comparison with CPLEX, all of the tested methods attained a final solution faster than CPLEX for the set of large-scale low-density problems, sometimes as fast as requiring only 16-23% of the effort consumed by CPLEX. Average rank tests based on the computational results obtained are performed using two different statistics, that assess the speed of convergence and the quality or accuracy of the solution, in order to determine the relative effectiveness of the algorithms and to validate our conclusions. Overall, the results provide insights into selecting algorithmic strategies based on problem structure and indicate that while this class of methods is viable for computing near optimal solutions, more research is needed to design robust and competitive exterior point methods for solving linear programming problems. However, the use of the proposed variant of the augmented Lagrangian method to solve large-scale low-density linear programs is promising and should be explored more extensively.
to saniye, gündüz, and burçin özdaryal…
ACKNOWLEDGEMENTS

First, I wish to acknowledge my family, especially my parents Saniye and Gündüz Özdaryal and my brother Burçin Özdaryal, for their unconditional love and faith in me throughout my life. Without their support and encouragement, this would not have been possible.

Next, I wish to express my utmost gratitude and appreciation to my advisor, the Chairman of my committee, Dr. Hanif D. Sherali for his valuable assistance, guidance, support and patience throughout my graduate studies at Virginia Tech. I consider myself fortunate to have known such a kind and considerate person. He has and will continue to affect me not only in academic matters, but also in life.

I would also like to thank Dr. Subhash C. Sarin and Dr. John E. Kobza for serving on my advisory committee.

In addition, I would like to thank Dr. Subhash C. Sarin and Dr. Janis Terpenny for their guidance throughout my Graduate Teaching Assistant assignments.

Finally, I thank all my friends who have helped me either directly or indirectly in this endeavor – Barbara and Tom Fraticelli, Esra Coşkuntuna, Cem and Enes Yıldırım – to name a few.
Table of Contents

Abstract .. ii
Acknowledgements .. iii
Table of Contents ... v
List of Tables ... vii
List of Figures .. xi

1. INTRODUCTION .. 1
 1.1. Motivation ... 1
 1.2. Overview of the Thesis ... 5

2. LITERATURE REVIEW .. 6

3. PROBLEM GENERATION & ALGORITHMS ... 11
 3.1. Problem Definition .. 11
 3.2. Active Set l_2 Penalty Approach .. 11
 3.3. Inequality-Equality Based l_2 Penalty Approach ... 16
 3.4. Augmented Lagrangian Approach .. 19

4. COMPUTATIONAL EXPERIENCE ... 27
 4.1. Problem Generation Algorithm and NETLIB Problems ... 27
4.2. Results for Randomly Generated Problems having Inequality and Equality Constraints .. 28

4.3. Results for Randomly Generated Problems having Only Equality Constraints 29

4.4. NETLIB Test Problems .. 31

4.5. Effect of Density ... 32

4.6. List of Problems and Results .. 34

4.7. Statistical Analysis of Results... 55

5. SUMMARY AND CONCLUSIONS .. 67

6. BIBLIOGRAPHY .. 69

VITA
LIST OF TABLES

Table 4.1: List of problems with their properties ... 34
Table 4.2: Results for randomly generated problems ... 36
Table 4.3: Results for randomly generated problems having only equality constraints 39
Table 4.4: Results for NETLIB test problems ... 42
Table 4.5: Results for randomly generated problems with known Lagrange multipliers 45
Table 4.6: Results for randomly generated problems having only equality constraints with known Lagrange multipliers ... 46
Table 4.7: Results for NETLIB test problems with known Lagrange multipliers 48
Table 4.8: Averages of the results for generally structured randomly generated problems 49
Table 4.9: Averages of the results for randomly generated problems having only equality constraints .. 49
Table 4.10: Averages of the results for standard NETLIB test problems 49
Table 4.11: Averages of the results for generally structured randomly generated problems with known Lagrange multipliers ... 50
Table 4.12: Averages of the results for randomly generated problems having only equality constraints problems with known Lagrange multipliers .. 50
Table 4.13: Averages of the results for standard NETLIB test problems with known Lagrange multipliers .. 50
Table 4.14: Averages of the Tables 8-10 (all problems in Sets 1-3) 50
Table 4.15: Averages of the Tables 11-13 (all problems with known Lagrange multipliers) ... 50
Table 4.16: Results for randomly generated problems used in the experiment on effect of density .. 51
Table 4.17: Results for randomly generated problems used in the experiment on effect of low density..53
Table 4.18: Averages of the results for high-density test problems..54
Table 4.19: Averages of the results for low-density test problems.....................................54
Table 4.20: Averages of the Tables 18-19 (all problems in Sets 4-5)..................................54
Table 4.21: β statistics for the ASL2 and ALAG2 runs..56
Table 4.22: Average rank test calculations...57
Table 4.23: Results of the average rank test performed on ASL2 and ALAG2.................57
Table 4.24: Statistical analysis results of β for problems in Set 1..................................60
Table 4.25: Statistical analysis results of β for problems in Set 2.................................60
Table 4.26: Statistical analysis results of β for problems in Set 3.................................60
Table 4.27: Statistical analysis results of β for the collection of test problems in Sets 1-3...60
Table 4.28: Statistical analysis results of β for problems in Set 4..................................60
Table 4.29: Statistical analysis results of β for problems in Set 5..................................60
Table 4.30: Statistical analysis results of β for the collection of test problems in Sets 4-5....60
Table 4.31: Statistical analysis results of F_ε for problems in Set 1 ($\varepsilon = 10^{-3}$).........61
Table 4.32: Statistical analysis results of F_ε for problems in Set 2 ($\varepsilon = 10^{-3}$).........61
Table 4.33: Statistical analysis results of F_ε for problems in Set 3 ($\varepsilon = 10^{-3}$).........61
Table 4.34: Statistical analysis results of F_ε for the collection of test problems in Sets 1-3
\quad ($\varepsilon = 10^{-3}$)..61
Table 4.35: Statistical analysis results of β for problems in Set 4 ($\varepsilon = 10^{-3}$)...............61
Table 4.36: Statistical analysis results of β for problems in Set 5 ($\varepsilon = 10^{-3}$)...............61
Table 4.37: Statistical analysis results of β for the collection of test problems in Sets 4-5 ($\varepsilon = 10^{-3}$) ... 61

Table 4.38: Statistical analysis results of F_ε for problems in Set 1 ($\varepsilon = 10^{-4}$) .. 62

Table 4.39: Statistical analysis results of F_ε for problems in Set 2 ($\varepsilon = 10^{-4}$) .. 62

Table 4.40: Statistical analysis results of F_ε for problems in Set 3 ($\varepsilon = 10^{-4}$) .. 62

Table 4.41: Statistical analysis results of F_ε for the collection of test problems in Sets 1-3 ($\varepsilon = 10^{-4}$) ... 62

Table 4.42: Statistical analysis results of F_ε for problems in Set 4 ($\varepsilon = 10^{-4}$) .. 62

Table 4.43: Statistical analysis results of F_ε for problems in Set 5 ($\varepsilon = 10^{-4}$) .. 62

Table 4.44: Statistical analysis results of F_ε for the collection of test problems in Sets 4-5 ($\varepsilon = 10^{-4}$) ... 62

Table 4.45: Statistical analysis results of F_ε for problems in Set 1 ($\varepsilon = 10^{-5}$) .. 63

Table 4.46: Statistical analysis results of F_ε for problems in Set 2 ($\varepsilon = 10^{-5}$) .. 63

Table 4.47: Statistical analysis results of F_ε for problems in Set 3 ($\varepsilon = 10^{-5}$) .. 63

Table 4.48: Statistical analysis results of F_ε for the collection of test problems in Sets 1-3 ($\varepsilon = 10^{-5}$) ... 63

Table 4.49: Statistical analysis results of F_ε for problems in Set 4 ($\varepsilon = 10^{-5}$) .. 63

Table 4.50: Statistical analysis results of F_ε for problems in Set 5 ($\varepsilon = 10^{-5}$) .. 63

Table 4.51: Statistical analysis results of F_ε for the collection of test problems in Sets 4-5 ($\varepsilon = 10^{-5}$) ... 63

Table 4.52: Statistical analysis results of F_ε for problems in Set 1 ($\varepsilon = 10^{-6}$) .. 64

Table 4.53: Statistical analysis results of F_ε for problems in Set 2 ($\varepsilon = 10^{-6}$) .. 64

Table 4.54: Statistical analysis results of F_ε for problems in Set 3 ($\varepsilon = 10^{-6}$) .. 64
Table 4.55: Statistical analysis results of F_ε for the collection of test problems in Sets 1-3
($\varepsilon = 10^{-6}$) ... 64

Table 4.56: Statistical analysis results of F_ε for problems in Set 4 ($\varepsilon = 10^{-6}$) 64

Table 4.57: Statistical analysis results of F_ε for problems in Set 5 ($\varepsilon = 10^{-6}$) 64

Table 4.58: Statistical analysis results of F_ε for the collection of test problems in Sets 4-5
($\varepsilon = 10^{-6}$) ... 64

Table 4.59: Results of the average rank test performed on $\beta(x^*,x^0)$... 65

Table 4.60: Results of the average rank test performed on $F_\varepsilon(x)$ ($\varepsilon = 10^{-3}$) 65

Table 4.61: Results of the average rank test performed on $F_\varepsilon(x)$ ($\varepsilon = 10^{-4}$) 65

Table 4.62: Results of the average rank test performed on $F_\varepsilon(x)$ ($\varepsilon = 10^{-5}$) 65

Table 4.63: Results of the average rank test performed on $F_\varepsilon(x)$ ($\varepsilon = 10^{-6}$) 65

Table 4.64: Results of the average rank test performed on $\beta(x^*,x^0)$... 65

Table 4.65: Results of the average rank test performed on $F_\varepsilon(x)$ ($\varepsilon = 10^{-3}$) 65

Table 4.66: Results of the average rank test performed on $F_\varepsilon(x)$ ($\varepsilon = 10^{-4}$) 66

Table 4.67: Results of the average rank test performed on $F_\varepsilon(x)$ ($\varepsilon = 10^{-5}$) 66

Table 4.68: Results of the average rank test performed on $F_\varepsilon(x)$ ($\varepsilon = 10^{-6}$) 66
LIST OF FIGURES

Figure 3.1: Flowchart of Active Set l_2 Penalty Approach... 15
Figure 3.2: Flowchart of Inequality-Equality Based l_2 Penalty Approach................................. 19
Figure 3.3: Flowchart of Augmented Lagrangian Approach (ALAG1) .. 24
Figure 3.4: Flowchart of Augmented Lagrangian Approach (ALAG2) .. 25
Figure 3.5: Flowchart of Augmented Lagrangian Approach (ALAG3) .. 26