Table of Contents

Abstract .. ii
Acknowledgements ... iii
Table of Contents ... iv
List of Figures .. vii
List of Tables ... ix

Chapter 1

Introduction ... 1
 1.1 Background .. 1
 1.2 Research Objectives ... 3
 1.3 Research Contributions ... 3
 1.4 Literature Review and Technology Introduction ... 4
 1.4.1 Vibration Based Non-Destructive Evaluation Techniques 4
 1.4.2 Impedance-based Health Monitoring Technique 7
 1.4.3 Self-Repairing Structures ... 11
 1.4.4 Shape Memory Alloy Technology ... 14
 1.5 Outline of Thesis .. 18

Chapter 2

Low Cost Impedance Measurements ... 20
 2.1 Introduction .. 20
 2.2 Conventional Impedance Measurements ... 20
 2.3 Alternative Impedance Measuring Circuits ... 23
 2.4 Proof-of-Concept Experiments .. 26
 2.4.1 Bolted Joint Experiment .. 26
 2.4.2 Pipeline Experiment .. 29
 2.4.3 Detecting Damage in a Composite Beam ... 32
 2.5 Conclusions .. 34
Appendix A
Mathematica Code for SMA Ring Heating Model ... 91

Vita .. 94
List of Figures

Figure 1.1 1-D model representing a PZT-driven dynamic structural system 9
Figure 1.2 Atomic arrangements of alloys exhibiting the shape memory effect 15
Figure 1.3 Temperature hysteresis (from Raychem, Actuator Design) 16
Figure 1.4 Schematic showing superelasticity of SMA 17
Figure 1.5 The Frangibolt separation system ... 18
Figure 2.1 Self-sensing actuator circuit (rate of strain sensor)............................. 22
Figure 2.2 Circuit for approximating PZT impedance 23
Figure 2.3 Impedance approximating circuit with amplification 24
Figure 2.4 FFT Analyzer and current measuring circuit 25
Figure 2.5 Bolted beam schematic ... 27
Figure 2.6 Impedance method measurement comparison 27
Figure 2.7 Low cost response to simulated damage .. 28
Figure 2.8 Traditional response to simulated damage 29
Figure 2.9 Portion of pipeline structure ... 30
Figure 2.10 Close up of joint showing location of PZT’s 30
Figure 2.11 Comparison of low cost to traditional method on pipeline structure 31
Figure 2.12 Damage metric for traditional and low cost impedance 32
Figure 2.13 Undamaged composite beam with PZT attached 33
Figure 2.14 Low-cost impedance box, SigLab Analyzer and PC 33
Figure 2.15 Damage at far end of beam ... 33
Figure 2.16 Damage at end near PZT ... 33
Figure 2.17 Impedance measurements with accumulating damage 34
Figure 3.1 Magnitude of FRF for varying torques .. 38
Figure 3.2 Example of impedance measurements and resulting transfer impedance .. 39
Figure 3.3 Impedance based and modal based response of joint at 40 ft-lbs 41
Figure 3.4 Natural frequency variation of modal data with torque level 42
Figure 3.5 Natural frequency variation of transfer impedance data with torque level .. 42
Figure 3.6 Schematics of beam specimens .. 43
Figure 3.7 Jointed beam schematic ... 43
Figure 3.8 Segmented beam geometry .. 44
Figure 3.9 Solid beam geometry ... 44
Figure 3.10 Beam instrumentation .. 45
Figure 3.11 Sample frequency response functions of jointed and solid beams 46
Figure 3.12 Nonlinear finite element model schematic 50
Figure 3.13 Typical response time history and its envelope for the jointed beam 51
Figure 3.14 Typical response time history and its envelope for the monolithic beam .. 52
Figure 3.15. Estimates of local linear damping factor for the monolithic beam 52
Figure 3.16 Estimates of local linear damping factor for the jointed beam 53
Figure 3.17 Computed velocity response of linear system, and its envelope 55
Figure 3.18 Computed velocity response of nonlinear system, and its envelope 55
Figure 3.19 Estimates of local linear damping factor for the linear beam model 56
Figure 3.20 Estimates of local linear damping factor for the nonlinear beam model ... 56
Figure 4.1 Schematic of SMA ring .. 62
Figure 4.2 Heating model of ring with no insulation 62
Figure 4.3 Heating model of ring with ceramic washers 64
Figure 4.4 Schematic of beam used in heating experiments 66
Figure 4.5 Self-healing by resistive heating configuration 66
Figure 4.6 Resistive heating experiment impedance from 2.8 kHz to 3.2 kHz 67
Figure 4.7 Resistive heating experiment impedance from 5 kHz to 7 kHz 68
Figure 4.8 Resistive heating experiment impedance from 10 kHz to 12 kHz 68
Figure 4.9 Resistive heating experiment impedance from 12.5 kHz to 15 kHz 70
Figure 4.10 Resistive heating experiment impedance from 15 kHz to 18 kHz 70
Figure 4.11 Resistive heating experiment impedance from 30 kHz to 35 kHz 71
Figure 4.12 Bolted joint with heater .. 73
Figure 4.13 External heater experiment impedance from 2.8 kHz to 3.2 kHz 74
Figure 4.14 External heater experiment impedance from 7 kHz to 12 kHz 75
Figure 4.15 External heater experiment impedance from 15 kHz to 18 kHz 76
Figure 4.16 Ring showing uneven actuation .. 76
List of Tables

Table 3.1 Natural frequencies and damping ratio from analysis of modal data 40
Table 3.2 Natural frequencies and damping ratio from analysis of impedance data 40
Table 4.1 SMA ring properties ... 61
Table 4.2 Ceramic ring properties .. 63