Dedication

To my parents, Lata Devi and Maya Kant Jha, and to my wife, Anjali Jha
Acknowledgements

First of all, I would like to express my deepest gratitude to my advisor, Dr. Daniel J. Inman, for his technical guidance and financial support throughout my research. I found my research and work place so enjoyable because of his invaluable supervision and constant encouragement. He has been and will be always a source of inspiration for me. His contributions in my professional life are beyond any measure and description.

I wish to convey sincere appreciation to all committee members. I am very thankful to Dr. Raymond Plaut for helping me in understanding the shell theory. Whenever I felt a dead-end in the structural analysis part of my research, he was there to show me a new path. I am grateful to Dr. Donald Leo for teaching me the control theory and giving me suggestions whenever I needed them most. I am thankful Dr. Gyuhae Park for providing me the experimental results regarding the inflated torus. I will remember him for not only his contributions in my research, but also for being such a nice friend. I am indebted to Dr. Harry Robertshaw and Dr. Mahendra Singh, who motivated me to do a good job.

I am obliged to Dr. Eric Johnson, who helped me in solving the free vibration problem and discussing several issues regarding the rigid-body motions. I am very thankful to Dr. Liviu Librescu for teaching me the shell theory, Dr. Myung-Hyun Kim (New York Power Authority, NY) for the discussions on sliding mode controller/observer and actuator modeling, Dr. Kazuhiro Adachi (Kobe University, Japan) for the discussions regarding optimal actuators and sensors, and Dr. Hong Hee Yoo (Hanyang University, Korea) for pointing out the errors between the results of finite element analysis and the shell theory.
I would like to thank Beth Howell for keeping me out of any financial troubles and Cathy Hill for helping me in satisfying the technical subtleties of the graduate school. I also appreciate the financial support of the Air Force Office of Scientific Research (grant number F49620-99-1).

I owe special gratitude to Rodrigo, Vijay, and Vinay for being such nice friends and for helping in my research. They were of immense help and support to me. I would like to thank Brett, Pramod, Rachel, Sriratna, Vijay, and Piyush for their friendship. They made my stay in Blacksburg very pleasant and rich. I feel very privileged to have worked with so many nice people at CIMSS. My heartiest thanks go to Dan, David, Eric, Gregg, Jake, John, Kevin, Kiran, Leonard, Luciano, Matt, Nikola, and Tan for sharing so many enjoyable moments with me at CIMSS.

I feel most indebted to my mother, Lata Devi, who taught me the importance of education in life and to my father, Maya Kant Jha, who gave me the courage to face and overcome new challenges. I would have never thought of pursuing a Ph.D. without the love and support of my wife, Anjali Jha. In the last two years, she faced so much of hardship all by her own and without ever expressing it. This dissertation is dedicated to these three most important people in my life.

Akhilesh Kumar Jha
Blackburg, Virginia
Contents

1. Introduction .. 1
 1.1 Motivation. ... 1
 1.2 History of Inflatable Space Structures. 3
 1.3 Objectives. ... 6
 1.4 Literature Survey. .. 7
 1.4.1 Vibration Analysis of an Inflatable Toroidal Shell. 7
 1.4.2 Actuator/Sensor Models and Vibration Control of a Shell. . 10
 1.4.3 Optimal Placement of Piezoelectric Actuators/Sensors. .. 16
 1.4.4 Vibration Control of Inflatable Structures. 19
 1.5 Contribution of This Research. 19
 1.6 Outline of Dissertation. 21

2. Shell Equations .. 24
 2.1 Introduction ... 24
 2.2 Gauss-Codazzi Conditions 25
 2.3 Assumptions ... 26
 2.4 Constitutive Laws .. 27
 2.5 Stress Resultants and Stress Couples. 29
 2.6 Nonlinear Strain-Displacement Relations 31
 2.7 Hamilton’s Principle 38
 2.7.1 Variation of the Strain Energy. 39
 2.7.2 Variation of the Kinetic Energy. 51
2.7.3 Variation of the Work Done by Pressure 52
2.7.4 Variations of the Work Done by External and Edge Forces 53
2.7.5 Combining All the Energy Variations 54
2.7.6 Shell Equations .. 56
 2.7.6.1 Static Equations 58
 2.7.6.2 Dynamic Equations 59
2.7.7 Boundary Conditions .. 61
2.8 Other Shell Theories as Special Cases 64
 2.8.1 Shell Equations Presented by Sanders (1963) and Plaut et al. (2000) . . . 64
 2.8.2 Shell Equations Presented by Soedel (1986) 66
2.9 Conclusions .. 68

3. Actuator and Sensor Models ... 69
 3.1 Introduction ... 69
 3.2 Piezoelectric Constitutive Relations 71
 3.3 Changes in Energy Terms due to Piezoelectric Patches 76
 3.3.1 Strain Energy 77
 3.3.2 Kinetic Energy 78
 3.4 Stress Resultants and Stress Couples 80
 3.4.1 General Forms 80
 3.4.2 Bare Shell ... 83
 3.4.3 Unimorph Configuration 83
 3.4.4 Bimorph Configuration 85
 3.5 Equations of Motion and Actuator Forces 87
 3.6 Distributed Sensing ... 89
 3.7 State-Space Model ... 90
 3.8 Conclusions .. 93

4. Free Vibration Analysis of an Inflated Torus 94
 4.1 Introduction ... 94
 4.2 Geometry of a Toroidal Shell 96
4.3 Initial Stress Resultants .. 97
4.4 Solution Procedure ... 97
4.5 Vibration of a Cylindrical Shell ... 103
4.6 Vibration of an Inflated Toroidal Shell 104
 4.6.1 Rigid-Body Modes .. 104
 4.6.2 Non-Rigid-Body Modes ... 106
 4.6.3 Parametric Study .. 111
 4.6.3.1 Aspect Ratio ... 111
 4.6.3.2 Pressure .. 116
 4.6.3.3 Wall-Thickness .. 117
4.7 Comparison of Different Shell theories 120
 4.7.1 Effects of Approximations in Geometric Nonlinearity 120
 4.7.2 Effect of Pressure Force .. 124
4.8 Experimental Verifications .. 128
4.9 Conclusions .. 132

5. Optimal Size and Placement of Actuators and Sensors 134
 5.1 Introduction ... 134
 5.2 Modal Forces and Modal Sensing Constants 136
 5.3 Performance Indices ... 138
 5.4 Parametric Studies .. 142
 5.5 Genetic Algorithm ... 154
 5.6 Optimal Size and Placement .. 156
 5.6.1 One Actuator and One Sensor 156
 5.6.2 Five Actuators and Five Sensors 160
 5.7 Passive Effects of the Piezoelectric Actuators and Sensors 162
 5.8 Conclusions .. 164

6. Vibration Control of an Inflated Torus 165
 6.1 Introduction ... 165
 6.2 Control Strategy .. 167
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Inflatable antenna experiment conducted by NASA in 1996.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>An artist’s concept of a landing device made of inflatables.</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>NASA’s Inflatable Antenna Experiment (IAE) fully deployed in orbit.</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>A timeline showing the years of research contributing to the growth of gossamer technology.</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Shell reference surface with the coordinate system.</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>In-plane stress resultants and external loadings.</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Bending and twisting moment resultants.</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Initial in-plane stress resultants and the pressure loading.</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Initial and vibratory stress as a function of strain.</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>A monolithic piezoelectric wafer with coordinate system.</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Components of Macro-Fiber Composite™ (Wilkie et al. 2000).</td>
<td>72</td>
</tr>
<tr>
<td>3.3</td>
<td>Shell with unimorph and bimorph patches.</td>
<td>81</td>
</tr>
<tr>
<td>4.1</td>
<td>Geometry of the torus: (a) side view; (b) section A-A.</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>An orthogonal pair of non-axisymmetric modes.</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Symmetrically and antisymmetrically deformed cross-sections of the torus.</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>Solid lines are the deformed cross-sections and dotted lines are the undeformed cross-sections and axes.</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Directions of displacements and rotations of the rigid-body-modes.</td>
<td>106</td>
</tr>
<tr>
<td>4.5</td>
<td>Mode shapes of the inflated torus.</td>
<td>110</td>
</tr>
</tbody>
</table>
4.6 The first five natural frequencies vs. the aspect ratio of (a) symmetric modes and (b) antisymmetric modes corresponding to \(n = 0 \). .. 112
4.7 The first five natural frequencies vs. the aspect ratio of (a) symmetric modes and (b) antisymmetric modes corresponding to \(n = 4 \). .. 113
4.8 Effect of the internal pressure on the first the natural frequencies. 116
4.9 Effect of the internal pressure on a mode shape 117
4.10 Effect of the thickness on the natural frequencies of the inflated torus. 118
4.11 Effect of the wall-thickness on the mode shapes. 119
4.12 Comparison of natural frequencies evaluated using different shell theories. 122
4.13 Effect of prestress parameter on the natural frequencies as calculated using different geometric nonlinearities.. 124
4.14 Effect of the pressure force on the natural frequencies. 126
4.15 Effect of the pressure force on the rigid-body frequencies.......................... 126
4.16 The inflated torus used in experiment (Park, Ruggiero, and Inman, 2002) 129
4.17 Two flaps and a joining region. ... 129
4.18 Comparison of results from FEA (ANSYS), shell theory, and experiments. 130
4.19 Mode shapes obtained from experiment (Park, Ruggiero, and Inman, 2002) 131
5.1 Modal forces due to an MFCTM actuator. 137
5.2 Modal sensing constants of a PVDF sensor. ... 138
5.3 Modal forces at unit voltage and controllability index as the location of an actuator is changed from \(\phi = 0^\circ \) to \(360^\circ \) along the tube of the torus. 145
5.4 Modal forces at unit voltage and controllability index for an actuator as its angular width \(\phi_2 \) varies from \(0^\circ \) to \(360^\circ \) along the tube of the torus. 146
5.5 Modal forces at unit voltage and controllability index as the location of an actuator is changed from \(\theta = 0^\circ \) to \(360^\circ \) along the torus. 147
5.6 Modal forces at unit voltage and controllability index for an actuator as the angular width \(\theta_2 \) varies from \(0^\circ \) to \(180^\circ \) along the torus................................. 148
5.7 Modal sensing constants and observability index for a sensor as its location is changed from \(\phi = 0^\circ \) to \(360^\circ \) along the tube of the torus. 150
5.8 Modal sensing constants and observability index for a sensor as its angular width ϕ_2
varies from 0^o to 360^o along the tube of the torus. 151
5.9 Modal sensing constants and observability index for a sensor index as the location of a
sensor is changed from $\theta = 0^o$ to 360^o along the torus. 152
5.10 Modal sensing constants and observability index for a sensor as its angular width θ_2
varies from 0^o to 360^o along the torus. .. 153
5.11 Optimal size and placement of an actuator considering the first ten modes with no
repeated frequencies. ... 158
5.12 Optimal size and placement of a sensor considering the first ten modes with no repeated
frequencies. .. 159
5.13 Finding five optimal actuators using a GA .. 161
5.14 Finding five optimal sensors using a GA .. 162
6.1 Effect of controller on states without considering the residual modes. 179
6.2 Effect of controller on deflections without considering the residual modes. 180
6.3 State errors and control voltages without considering the residual modes. 180
6.4 Control and observation spillover effects on states. 181
6.5 Control and observation spillover effects on deflections. 182
6.6 Control and observation spillover effects on state errors and control voltages. . . 182
6.7 Effect of controller on states after reducing the observation spillover. 183
6.8 Effect of controller on deflections after reducing the observation spillover. 184
6.9 State errors and control voltages after reducing the observation spillover. 184
6.10 Effect of controller on states at an internal pressure of 0.25 psi. 186
6.11 Effect of controller on deflection at an internal pressure of 0.25 psi. 187
6.12 Effect of controller on deflections at an internal pressure of 0.75 psi. 187
6.13 Effect of controller on deflections subjected to external disturbances. 188
List of Tables

4.1 Data for the geometry and material of the cylinder. ... 103
4.2 Comparison of natural frequencies for the cylinder. ... 104
4.3 Comparison of natural frequencies of the inflated torus ($\eta = 0.3$, $\zeta = 0.002$). .. 107
4.4 Data for the geometry and material of the torus.. 107
4.5 Mode shapes of the inflated torus at low and high aspect ratio. 114
4.6 Mode order of the first ten modes given by different theories. 123
4.7 Comparison of mode orders with and without considering direct pressure................. 127
4.8 Effect of pressure force on the deformation of modes. 127
4.9 Data for the torus used in experiment. .. 129
5.1 Data for MFC$^{\text{TM}}$ actuator... 136
5.2 Data for the PVDF sensor... 137
5.3 Values of different parameters used in GA for one actuator and one sensor.......... 157
5.4 Values of different parameters used in GA for five actuators and five sensors........ 161
5.5 Comparison of natural frequencies with and without the passive effects............... 163
6.1 Natural frequencies at different pressures including the passive effects................. 185