A Computational Fluid Dynamics Investigation of Thermoacoustic Instabilities in Premixed Laminar and Turbulent Combustion Systems

Prateep Chatterjee

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

Approved

Uri Vandsburger, Committee Chair
William T. Baumann
Andrew G. Godfrey
William R. Saunders
Danesh K. Tafti
Robert L. West

July 9, 2004
Blacksburg, Virginia

Keywords: flame dynamics, vortex-flame interaction, thermoacoustic instability, CFD, frequency response function

Copyright 2004, Prateep Chatterjee
A Computational Fluid Dynamics Investigation of Thermoacoustic Instabilities in Premixed Laminar and Turbulent Combustion Systems

Prateep Chatterjee

(ABSTRACT)

Lean premixed combustors have been designed to lower NOx and other pollutant levels in land based gas turbines. These combustors are often susceptible to thermo-acoustic instabilities, which manifest as pressure and heat release oscillations in the combustor. To be able to predict and control these instabilities, it is required that both the acoustics of the system, and a frequency-resolved response of the combustion process to incoming perturbations be understood.

Currently, a system-level approach is being used widely to predict the thermoacoustic instabilities. This approach requires simple, yet accurate models which would describe the behavior of each dynamic block within the loop. The present study is directed toward using computational fluid dynamics (CFD) as a tool in developing reduced order models for the dynamics of laminar flat flames and swirl stabilized turbulent flames. A finite-volume based approach is being used to simulate reacting flows in both laminar and turbulent combustors. The study has been divided into three parts – the first part involves the modeling of a self-excited combustor (the acoustics of the combustor are coupled with the unsteady heat release); the second part of the research aims to study the effect of velocity perturbations on the unsteady heat release rate from a burner stabilized laminar flat flame; the third and final part of work involves an extension of the laminar flat flame study to turbulent reacting flows in a swirl stabilized combustor, and study the effects on the turbulent heat release due to the velocity perturbations.

A Rijke tube combustor was selected to study self-excited combustion phenomenon. A laminar premixed methane-air flat flame was stabilized on a honeycomb flame-stabilizer. The flame stabilizer was placed at the center of the 5 ft vertical tube. The position of the
flame at the center of the tube leads to a thermoacoustic instability of the 2nd acoustic mode. The fundamental thermoacoustic frequency was predicted accurately by the CFD model and the amplitude was reasonably matched (for a flow rate of $Q = 120 \, cc/s$ and equivalence ratio $\phi = 1.0$). Other characteristics of the pressure power spectrum were captured to a good degree of accuracy. This included the amplitude modulation of the fundamental and the harmonics due to a subsonic pulsating instability.

The flat flame study has been being conducted for $Q = 200 \, cc/s$ and equivalence ratio $\phi = 0.75$. The objective has been to obtain a frequency response function (FRF) of the unsteady heat release rate (output) due to incoming velocity perturbations (input). A range of frequencies ($15 \, Hz$-$500 \, Hz$) have been selected for generating the FRF. The aim of this part of the study has been to validate the computational model against the experimental results and propose a physics based interpretation of the flame response. Detailed heat transfer modeling (including radiation heat transfer) and two-step chemistry models have been implemented in the model. The FRF generated has been able to reproduce the experimentally observed phenomena, like the low frequency pulsating instability occurring at $30 \, Hz$. A heat transfer study has been conducted to explain the pulsating instability and a fuel variability study has been performed. Both the heat transfer study and the fuel variability study proved the role of heat transfer in creating the pulsating instability.

The final part of the study involves simulation of reacting flow in a turbulent swirl stabilized combustor. The effect of velocity perturbations on the unsteady heat release has been studied by creating an FRF between the unsteady velocity and the unsteady heat release rate. A Large Eddy Simulation (LES) approach has been selected. A swirl number of $S = 1.19$ corresponding to a flow rate of $Q = 20 \, SCFM$ with an equivalence ratio of $\phi = 0.75$ have been implemented. Reduced reaction chemistry modeling, turbulence-chemistry interaction and heat transfer modeling have been incorporated in the model. The LES of reacting flow has shown vortex-flame interaction occurring inside the combustor. This interaction has been shown to occur at $255 \, Hz$. The FRF obtained between unsteady velocity and unsteady heat release rate shows good comparison with the experimentally obtained FRF.
To my parents, Mrs. Mala Chatterjee and Dr. P. K. Chatterjee
Acknowledgments

First and foremost, I would like to offer my deepest gratitude to my committee chair, Dr. Uri Vandsburger. Throughout the course of my graduate studies at Virginia Tech, he provided encouragement and valuable technical knowledge and helped me maintain my focus on the research. I appreciate the technical suggestions he has constantly offered and thank him for being patient with me during my stay at Virginia Tech. I have come to appreciate the emphasis he places on the understanding of fundamental aspects of combustion research while applying them to numerical simulations of complex combustion systems.

I would like to thank Dr. William R. Saunders for helping me understand the basics of thermoacoustics and for the numerous occasions he spent helping me decipher the intricacies of combustion control research. In particular, I would like to acknowledge his help in furthering my understanding of the Matlab code, especially the spectrum analysis portion. I am grateful to Dr. William T. Baumann, who made my life easier by frequently helping me analyze my data. Without his help I would not have been able to figure out several controls related fundamentals.

I would also like to thank Dr. Danesh K. Tafti for guiding me on the numerical issues encountered in the research. I would like to acknowledge his generosity in offering to let me work with his LES code. Dr. Robert L. West deserves my thanks for understanding the endless problems I encountered with accessing faster computers for my research. He was kind enough to provide me access to a fast computer for performing turbulent flow simulations.

I am also thankful to Dr. Andrew G. Godfrey for his valuable suggestions. I have enjoyed
interacting with him while working on an STTR project together.

There are several students in the department who have been extremely helpful to me during my stay at Virginia Tech. Stephen D. LePera deserves a generous thanks for always helping me sort out computer related issues. I would also like to thank him for sharing with me his vast knowledge of computers, experimental methods in fluid flows and his understanding of combustion. Thanks are due to Wajid A. Chishty for his help in conducting several combustion related experiments which produced valuable data for boundary conditions and validations for my simulations. Both Steve and Wajid are good friends of mine and have helped me outside the workplace on several occasions. I would like to thank Christopher J. Wieczorek for his friendship and for throwing those wonderful parties over the years. Vivek K. Khanna mentored me during the first part of my stay at Virginia Tech. I am thankful to him for sharing his knowledge of combustion and thermal radiation. Ludwig C. Haber, Adam Hendricks, Denzil John and Salahi Basaran have extended their help to me on numerous occasions and I am grateful to them.

I owe my thanks to several people in the Mechanical engineering department. In particular, thanks are due to Mike Harness, Cathy Hill, Eloise McCoy, Kathy Taszarek, Lisa Stables, Ben Poe and Jamie Archual.

My friends in Blacksburg have contributed considerably by supporting me and helping me survive graduate school. I would like to extend my thanks particularly to Dhaval Makhecha, Konda Reddy, Suhas Subramanya, Navin Verma, Ramya Ramanath, Nina Sengupta and Alok Mullick, Edwin and Valarie Robinson and Helen Castaneda amongst several others.

My parents have given me infinite support and have kept their faith in me during these grueling graduate school years. I thank them for always being there to listen, for all the advise they gave me from time to time and for praying for me constantly. Last but not the least, I am indebted to my wife Sucharita for her continuous support. She gets my gratitude for her never-ending patience and for believing in me.
Contents

List of Figures xiii

List of Tables xxii

Nomenclature xxiii

I Introduction 1

1 Background, Motivation and Objectives 2

1.1 Background ... 2

1.2 Motivation ... 3

1.3 Research Objectives 5

1.3.1 Research Approach 5

1.3.2 Specific Areas Studied 7

1.4 Organization of the Document 11

2 CFD Simulation of Reacting Flows 14
CONTENTS

2.1 Solution Techniques ... 14
 2.1.1 Finite Volume Method 16
 2.1.2 Commercial CFD Codes 17
2.2 Reacting Flow Simulation 19
 2.2.1 Combustion Chemistry Modeling 21
2.3 Turbulent Combustion Modeling 22
 2.3.1 Favre Averaged Balance Equations 25
 2.3.2 Filtering and Large Eddy Simulation 26
 2.3.3 Regimes of Turbulent Combustion 28
 2.3.4 Turbulence-Chemistry Interaction Modeling 31

3 Thermoacoustic Instabilities Research 34
 3.1 Thermoacoustic Instability Definition 34
 3.2 Thermoacoustic Instabilities in Gas Turbine Combustion 36
 3.3 Models for Flame Dynamics 39

II Laminar Flame Dynamics Studies 42

4 Self-Excited Combustion: Rijke Tube Combustor 43
 4.1 Rationale and Objectives 43
 4.2 Technical Approach .. 46
 4.3 Accompanying Experimental Studies 47
 4.3.1 Limit-Cycle and Harmonics 49
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2</td>
<td>Subharmonic Response</td>
<td>50</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Subsonic Instability</td>
<td>52</td>
</tr>
<tr>
<td>4.4</td>
<td>Computational Model</td>
<td>54</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Computational Geometry and Grid Generation</td>
<td>55</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Flow Modeling</td>
<td>57</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Chemistry and Heat Transfer Modeling</td>
<td>60</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Boundary and Initial Conditions</td>
<td>62</td>
</tr>
<tr>
<td>4.5</td>
<td>Results and Discussion</td>
<td>64</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Reacting Flowfield Structure</td>
<td>65</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Dynamic Characteristics of the Combustor</td>
<td>70</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Comparison with Experimental Results</td>
<td>76</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary</td>
<td>78</td>
</tr>
</tbody>
</table>

5 Forced Response: Laminar Flat Flame Burner

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Rationale and Objectives</td>
<td>79</td>
</tr>
<tr>
<td>5.2</td>
<td>Technical Approach</td>
<td>83</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Energy Flow Description</td>
<td>83</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Linear Stability Analysis</td>
<td>84</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Flow Forcing Techniques</td>
<td>88</td>
</tr>
<tr>
<td>5.3</td>
<td>Accompanying Experimental Studies</td>
<td>89</td>
</tr>
<tr>
<td>5.4</td>
<td>Computational Model</td>
<td>93</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Grid Generation</td>
<td>93</td>
</tr>
</tbody>
</table>
CONTENTS

5.4.2 Flow Modeling 94
5.4.3 Chemistry and Heat Transfer Modeling 95
5.4.4 Boundary and Initial Conditions 97
5.5 Results and Discussion 98
 5.5.1 Reacting Flowfield Structure 98
 5.5.2 Frequency Response Function 100
 5.5.3 Comparison with Experimental Results 102
 5.5.4 Observations and Recommendations 102

6 Single Channel Laminar Flat Flame Simulations 107
 6.1 Rational and Objectives 107
 6.2 Computational Model 108
 6.2.1 Computational Geometry and Grid Generation 108
 6.2.2 Boundary Conditions 110
 6.2.3 Flow, Chemistry and Heat Transfer Modeling 112
 6.3 Reacting Flow Results 113
 6.3.1 Reacting Flowfield Structure 114
 6.3.2 Frequency Response Function 116
 6.3.3 Dynamic Characteristics of the Flat Flame 121
 6.4 Investigation of the Low Frequency Resonance 124
 6.4.1 Effect of Constant Heat Source 127
 6.4.2 Effect of Time Varying Heat Source 129
CONTENTS

8.5 Summary .. 187

IV Conclusions .. 189

9 Conclusions and Future Work 190

9.1 Summary of Results and Conclusions 190

9.1.1 Laminar Flame Dynamics 191

9.1.2 Swirl Stabilized Turbulent Flame Dynamics 195

9.2 Suggestions for Future Work and Recommendations ... 198

Bibliography .. 200

Appendices .. 213

A A CFD Study of Air-fuel Mixing in a Lean Premixed Combustor 213

B A CFD Study of Bluff-body Stabilized Combustion in a Lean Premixed Combustor 217

C Matlab Code for Frequency Response Function Calculation 226

Vita .. 233
List of Figures

2.1 Steps and requirements to obtain a valid CFD solution 16
2.2 Turbulent combustion modeling steps .. 23
2.3 Regime diagram for premixed turbulent combustion: \(v'\) is the RMS velocity,
 \(S_L\) is the laminar flame speed, \(l\) is the integral length scale and \(l_F\) is the flame
 thickness ... 29
2.4 Premixed turbulent combustion regimes: (a) flamelet (thin wrinkled flame),
 (b) thick wrinkled flame, and (c) thickened flame 30
2.5 Three types of analyses for premixed turbulent flame modeling 33
4.1 The Rijke tube combustor .. 46
4.2 The Rijke tube combustor schematic showing the instrumentation 48
4.3 Ceramic honeycomb used as a flame holder in the Rijke tube combustor ... 49
4.4 Pressure power spectrum from Rijke tube experiment (\(\phi = 0.6, Q = 120\, cc/s\)) 50
4.5 Power spectrum of limit-cycle from Rijke tube experiment (\(\phi = 0.5, Q = 160\, cc/s\)) ... 51
4.6 The subharmonic response from Rijke tube experiment (\(\phi = 0.6, Q = 120\, cc/s\)) 52
LIST OF FIGURES

4.7 Pressure power spectrum from Rijke tube experiment, showing pulsating flame instability .. 53
4.8 Pressure power spectrum from Rijke tube experiment, showing amplitude modulation of the fundamental (AM) – φ = 0.65 54
4.9 Pressure power spectrum for φ = 0.65, Q = 120 cc/s and peak descriptions .. 55
4.10 Rijke tube computational geometry (not to scale) 56
4.11 Two-dimensional Rijke tube honeycomb channels approximation (not to scale) 57
4.12 Grid inside the Rijke tube honeycomb passages – flame region and downstream 58
4.13 Computed reaction rate contours downstream of the Rijke tube honeycomb . 66
4.14 Preheating of air-fuel mixture inside the Rijke tube honeycomb channels .. 67
4.15 Rijke tube simulation axial mole fraction distribution inside the honeycomb and at its immediate downstream 68
4.16 Rijke tube simulation axial temperature distribution along the centerline (x = 0 at combustor inlet) ... 69
4.17 Rijke tube simulation pressure mode shape for the second acoustical mode of the tube ... 71
4.18 Growth of unsteady pressure in the Rijke tube (computed results) 72
4.19 Time trace of the unsteady pressure oscillation in the Rijke tube combustor (computed results) ... 73
4.20 Pressure power spectrum from the Rijke tube simulation, showing limit-cycle 74
4.21 Amplitude modulation and the subsonic instability from Rijke tube simulation 76
4.22 Sidebands on the fundamental frequency peak from the Rijke tube simulation 77
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.23</td>
<td>Rijke tube combustor: comparison between computed results and experimental results</td>
<td>78</td>
</tr>
<tr>
<td>5.1</td>
<td>Bode plot for the transfer function $G(s) = \frac{50}{s^3 + 9s^2 + 30s + 40}$</td>
<td>85</td>
</tr>
<tr>
<td>5.2</td>
<td>Sketch of a control system represented in block diagram form</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Internal geometry of the flat flame burner showing the computational domain required for the flow forcing study</td>
<td>88</td>
</tr>
<tr>
<td>5.4</td>
<td>Flat flame burner experimental setup</td>
<td>90</td>
</tr>
<tr>
<td>5.5</td>
<td>Experimental FRF magnitude for the flat flame ($Q = 145 \text{ cc/s}$)</td>
<td>91</td>
</tr>
<tr>
<td>5.6</td>
<td>Experimental FRF phase for the flat flame ($Q = 145 \text{ cc/s}$)</td>
<td>92</td>
</tr>
<tr>
<td>5.7</td>
<td>Flat flame burner computational domain (not to scale)</td>
<td>93</td>
</tr>
<tr>
<td>5.8</td>
<td>Flat flame burner grid showing the honeycomb, flame and downstream regions</td>
<td>94</td>
</tr>
<tr>
<td>5.9</td>
<td>Flame anchored on top of the honeycomb seen in the form of reaction rate contours inside the flat flame burner</td>
<td>98</td>
</tr>
<tr>
<td>5.10</td>
<td>Axial variation of mass fractions of CH_4, O_2, CO_2 and H_2O inside the flat flame burner. Temperature (K) and reaction rate variations are also shown.</td>
<td>99</td>
</tr>
<tr>
<td>5.11</td>
<td>Temperature (K) contours inside the flat flame burner</td>
<td>100</td>
</tr>
<tr>
<td>5.12</td>
<td>Contours of absorption coefficient ($1/\text{m}$) inside the flat flame burner</td>
<td>101</td>
</tr>
<tr>
<td>5.13</td>
<td>Frequency response function magnitude and phase of heat release rate due to oscillations in velocity (Full 2-D simulation, $Q = 200 \text{ cc/s}$ and $\phi = 0.75$)</td>
<td>103</td>
</tr>
<tr>
<td>5.14</td>
<td>Closeup of reaction rate iso-contours at the immediate downstream of the honeycomb channels</td>
<td>105</td>
</tr>
<tr>
<td>6.1</td>
<td>Single channel flat flame burner geometry</td>
<td>109</td>
</tr>
</tbody>
</table>
6.2 Single channel grid: inlet, honeycomb, flame and outlet sections 110
6.3 Axial variation of mass fractions of CH$_4$, O$_2$, CO$_2$ and H$_2$O in the single channel for $Q = 200$ cc/s and $\phi = 0.75$. Temperature (K) and reaction rate variations are also shown. .. 114
6.4 Contours of RMS temperature shown relative to mean value of reaction rate contours inside the single channel for $Q = 200$ cc/s and $\phi = 0.75$ 115
6.5 Contours of RMS mass fractions of CH$_4$ and CO shown relative to mean value of reaction rate contours inside the single channel for $Q = 200$ cc/s and $\phi = 0.75$ 116
6.6 Single channel frequency response function magnitude and phase (CH$_4$-air, $Q = 200$ cc/s and $\phi = 0.75$) .. 118
6.7 Single channel frequency response function pole-zero plot ($Q = 200$ cc/s and $\phi = 0.75$) ... 119
6.8 Comparison of frequency response function between full two-dimensional CFD study and the single channel CFD study. Experimental data [1] has been included for comparison with the CFD results 120
6.9 Peak reaction rate variation at 35 Hz inside the single channel flat flame. Snapshots of reaction rate iso-contours are shown in Figure 6.10 corresponding to the circles marked on the peak reaction rate curve. The mean peak reaction rate is 0.2815 (kgmol/m3-s) which corresponds to $RR' = 0$ 121
6.10 Snapshots of reaction rate iso-contours showing flame movement at 35 Hz for the single channel simulation. The numbers on each snapshot corresponds to the circles shown in Figure 6.9 .. 123
6.11 Change in flame position, flame thickness and peak reaction rate with time (35 Hz excitation) for the single channel simulation. The flame position is calculated from the solid red circle locations in Figure 6.10 and corresponds to the peak reaction rate location. The reaction rate shown corresponds to the peak reaction rate plus 0.75 kgmol/m³·s 124

6.12 Honeycomb top temperature power spectrum for 100 Hz excitation case (single channel simulation). The 30 Hz resonant frequency is visible in the spectrum 125

6.13 Reaction rate power spectrum for 100 Hz excitation case (single channel simulation). The 30 Hz resonant frequency is visible in the spectrum 126

6.14 Mean temperature variation in the single channel for the constant heat source case and the reacting flow 0 Hz excitation case .. 128

6.15 Thermal conductivity variation inside the honeycomb for the constant heat source case and the reacting flow 0 Hz excitation case (single channel simulation) 129

6.16 FRF magnitude between the normalized honeycomb top solid temperature and normalized velocity \(T'_{\text{solid}}/T_{\text{solid}} \) and \(u'/u \) for the constant heat source case 130

6.17 FRF magnitude between the normalized honeycomb exit fluid temperature and normalized velocity \(T'_{\text{fluid}}/T_{\text{fluid}} \) and \(u'/u \) for the constant heat source case 131

6.18 Temporal variation of the honeycomb top solid temperature for the time varying heat source case (35 Hz excitation, single channel simulation) 133

6.19 FRF magnitude between the normalized honeycomb top solid temperature and normalized velocity \(T'_{\text{fluid}}/T_{\text{fluid}} \) and \(u'/u \) for the time varying heat source case .. 134

6.20 FRF magnitude between the normalized honeycomb exit fluid temperature and normalized velocity \(T'_{\text{solid}}/T_{\text{solid}} \) and \(u'/u \) for the time varying heat source case .. 135
LIST OF FIGURES

6.21 Single channel frequency response function magnitude and phase (Propane-air mixture, \(Q = 200 \, cc/s \) and \(\phi = 0.75 \)) .. 137

6.22 Comparison of frequency response function magnitude and phase between methane-air combustion and propane-air combustion (\(Q = 200 \, cc/s \) and \(\phi = 0.75 \)). The CFD data from the two single channel simulations are shown by solid symbols. .. 139

7.1 The turbulent swirl combustor .. 146

7.2 Swirl combustor internal geometry created for numerical modeling (not to scale) 147

7.3 Velocity (\(m/s \)) contours inside the combustor (3D steady cold flow simulation \(S_g = 1.19, Q = 20 \, SCFM \)) ... 148

7.4 Turbulence intensity contours inside the combustor (3D steady cold flow simulation \(S_g = 1.19, Q = 20 \, SCFM \)) 149

7.5 Two point Probability Density Function (PDF) generated by prePDF: (a) Beta PDF, (b) Chemical equilibrium instantaneous species composition, Chemical equilibrium instantaneous temperature (\(K \)), (d) Chemical equilibrium instantaneous density (\(kg/m^3 \)) 151

7.6 Contours of reaction progress variable from RANS simulation of the turbulent combustor (\(\phi = 0.75, S_g = 1.19 \) and \(Q = 20 \, SCFM \)) showing unburnt (\(c = 0 \)) and burnt (\(c = 1 \)) regions in the combustor. The flame shape corresponds to the region between \(c = 0 \) and \(c = 1 \) ... 152

7.7 Damkohler number distribution inside the combustor – URANS simulation of the turbulent combustor (\(\phi = 0.75, S = 1.19 \) and \(Q = 20 \, SCFM \)) 152

7.8 FRF magnitude and phase from URANS simulation of the turbulent combustor (\(\phi = 0.75, S = 1.19 \) and \(Q = 20 \, SCFM \)) ... 154
LIST OF FIGURES

8.1 System level description of the thermoacoustic combustion process 157
8.2 Schematic of the turbulent combustor experimental setup 159
8.3 Recirculation zones in the combustion chamber of the turbulent combustor . 161
8.4 Actual internal geometry of the turbulent combustor experimental rig (the centerbody is shown with the dashed line) 164
8.5 LES computational domain used for the reacting flow simulation of swirl stabilized flame .. 165
8.6 \(u \) (axial) velocity profile at the LES computational inlet 167
8.7 \(v \) (radial) velocity profile at the LES computational inlet 167
8.8 \(w \) (tangential) velocity profile at the LES computational inlet 168
8.9 \(k_{sgs} \) profile at the LES computational inlet computed using \(u \), \(v \) and \(w \) values 168
8.10 Contours of time averaged \(u \), \(v \), \(w \) (m/s) and temperature (K) from the LES of swirl stabilized combustor .. 173
8.11 Contours of time averaged mass fractions of \(CH_4 \), \(O_2 \), \(CO_2 \) and \(H_2O \) from the LES of swirl stabilized combustor 174
8.12 Flapping motion of the turbulent flame captured by a phase-locked CCD camera [1] ... 175
8.13 \(u \) velocity contours for one cycle of vortex shedding (255 Hz) from the LES of swirl stabilized combustor. Each contour plot corresponds to \(\pi/5 \) radians increment ... 177
8.14 \(v \) velocity contours for one cycle of vortex shedding (255 Hz) from the LES of swirl stabilized combustor. Each contour plot corresponds to \(\pi/5 \) radians increment ... 178
8.15 w velocity contours for one cycle of vortex shedding ($255\,Hz$) from the LES of swirl stabilized combustor. Each contour plot corresponds to $\pi/5$ radians increment .. 179

8.16 Temperature contours for one cycle of vortex shedding ($255\,Hz$) from the LES of swirl stabilized combustor. Each contour plot corresponds to $\pi/5$ radians increment .. 180

8.17 Time trace of inlet normalized mass flow fluctuations from the LES of swirl stabilized combustor ... 181

8.18 Power spectral density of fluctuating component of inlet mass flow rate from the LES of swirl stabilized combustor .. 181

8.19 Power spectral density of fluctuating component of temperature at different locations inside the computational domain. The mid-combustor location (1/2 diameter) is 9.525 cm downstream of the inlet plane of the combustor and lies on the centerline, whereas the corresponding mid-combustor (1/4 diameter) location is radially at a distance of 3.1242 cm from the centerline 182

8.20 FRF magnitude and phase between unsteady velocity and unsteady heat release rate from the LES of turbulent flame. The heat release rate is calculated by integrating the term $Y_{OH} \times Y_{CH_2O}$ over the combustor domain 185

8.21 Power spectrum of temperature measured at six locations – inner recirculation zone, quarl, combustor inlet plane, outer recirculation zone, combustor mid-plane (1/2 radius) and combustor mid-plane (centerline) – for the unexcited flame case ... 186

A.1 The DOE NETL Combustor air-fuel mixing nozzle. The range of positions for the swirling vanes are shown ... 214
A.2 Mass fraction profile of CH$_4$ at the exit of the fuel nozzle for different locations of the swirler relative to the fuel injection location .. 215

A.3 Mass fraction profile of O$_2$ at the exit of the fuel nozzle for different locations of the swirler relative to the fuel injection location .. 216

A.4 Axial velocity profile at the exit of the fuel nozzle. The swirler location progresses upstream in each of the four cases. ... 216

B.1 Coaxial bluff-body combustor geometry used in the CFD simulation. The dimensions of the bluff body are – D = 7.62 cm, d = $\frac{1}{2}D = 3.81$ cm 218

B.2 Vorticity magnitude contours (U_{inlet} = 15 m/s) .. 221

B.3 Locations where vorticity magnitudes were recorded ... 222

B.4 Power spectrum plots of vorticity magnitude (U_{inlet} = 15 m/s) 223

B.5 Power spectrum plots of vorticity magnitude (U_{inlet} = 30 m/s) 224

B.6 Power spectrum plot of vorticity magnitude (Pt11; U_{inlet} = 15 m/s and 30 m/s) 225
List of Tables

4.1 Chemistry model for the Rijke tube combustor simulation 60
4.2 Material properties used in the Rijke tube simulation 61
4.3 Mixture properties modeling formulation and transport properties used in the Rijke tube combustor simulation ... 63
4.4 Boundary conditions for the Rijke tube combustor simulation 64
5.1 Constants for two-step global mechanism for CH_4 oxidation 96
5.2 Boundary conditions for the flat flame burner simulation 97
6.1 Boundary conditions for the single channel flat flame simulation 112
B.1 Combustor domain dimensions, Boundary conditions and Numerical settings 219
Nomenclature

\(\dot{\omega} \) chemical reaction rate

\(j^h_j \) laminar diffusion flux

\(\mu_t \) turbulent viscosity

\(\omega \) frequency \((rad/s)\)

\(\overline{\text{var}} \) average value of variable \(\text{var} \)

\(\Phi \) wave energy dissipation

\(\phi \) equivalence ratio

\(\rho \) density

\(\sigma \) Stephan-Boltzmann constant

\(\tau \) period of oscillation

\(\tau_c \) chemical time scale

\(\tau_t \) turbulent time scale

\(\tilde{\text{var}} \) filtered variable \(\text{var} \)

\(a \) radiation absorption coefficient
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>reaction progress variable</td>
</tr>
<tr>
<td>G</td>
<td>irradiation</td>
</tr>
<tr>
<td>$G(s)$</td>
<td>open loop transfer function of a system</td>
</tr>
<tr>
<td>h_t</td>
<td>total enthalpy</td>
</tr>
<tr>
<td>Ka</td>
<td>Karlovitz number</td>
</tr>
<tr>
<td>l</td>
<td>integral length scale</td>
</tr>
<tr>
<td>l_F</td>
<td>flame thickness</td>
</tr>
<tr>
<td>Ma</td>
<td>Mach number</td>
</tr>
<tr>
<td>P</td>
<td>probability density function</td>
</tr>
<tr>
<td>p</td>
<td>pressure</td>
</tr>
<tr>
<td>Q</td>
<td>flow rate</td>
</tr>
<tr>
<td>q</td>
<td>heat release</td>
</tr>
<tr>
<td>R</td>
<td>universal gas constant</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>RR</td>
<td>reaction rate</td>
</tr>
<tr>
<td>S</td>
<td>Swirl number</td>
</tr>
<tr>
<td>S_g</td>
<td>geometrical Swirl number</td>
</tr>
<tr>
<td>S_L</td>
<td>laminar flame speed</td>
</tr>
<tr>
<td>S_{ckt}</td>
<td>turbulent Schmidt number</td>
</tr>
<tr>
<td>T</td>
<td>temperature</td>
</tr>
</tbody>
</table>
Nomenclature

\(t \) time

\(t_d \) time delay

\(u_i \) \(i \)th component of velocity

\(V \) combustor volume

\(\text{var}' \) fluctuating component of variable \(\text{var} \)

\(Y_k \) \(k \)th specie mass fraction

\(\text{Da} \) Damkohler number