Mosquito Odorant Receptors: C-terminal Motifs, Subfamily Expansion, and Function

By
Raymond R. Miller

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In
Biochemistry

Committee Members:
Dr. Zhijian (Jake) Tu
Dr. Glenda E. Gillaspy
Dr. Tim J. Larson
Dr. Igor V. Sharakhov
Dr. Liqing Zhang

July 9th, 2008
Blacksburg, VA

Keywords: mosquito, odorant receptor, chemosensory, olfaction, Or83b, Anopheles, Aedes

Copyright 2008, Raymond R Miller
Mosquito Odorant Receptors: C-terminal Motifs, Subfamily Expansion, and Function

By
Raymond R. Miller

Abstract:

Many insects rely on olfaction as their primary method of interaction with their environment. One of the best examples of this is the olfactory driven host-seeking behavior displayed by female mosquitoes. Although mosquitoes are capable of extracting blood from a variety of hosts many mosquito species show marked preferences for particular host species. Mosquitoes displaying preference for humans above bovines are more likely to be disease vectors. Therefore understanding the molecular basis of this preference is important for public health. These differences may be the result of genetic variations in olfactory signaling components such as mosquito odorant receptors. This hypothesis is supported by several lines of evidence including the highly divergent and lineage-specific nature of this receptor family. Likely these differences are subtle and will be identified in highly focused studies. Even closely related sibling species of mosquitoes can display large behavioral differences. In our current study I have studied several aspects of both Anopheles and Aedes genus odorant receptors with emphasis on comparing receptors in species that are part of the Anopheles genus.
The first goal of this project was to study the insect odorant receptor family for potential sites of heterodimer formation. Numerous studies have shown that insect odorant receptors are involved in detection of odorants. More recent studies have demonstrated that odorant receptors are also involved in protein trafficking and in forming cation channels. Both of these activities involve heterodimer formation between odorant receptors that bind odorants and those that are part of the Or83b subfamily. There is little information on how heterodimers are formed and where within the protein heterodimer sites exist. The C-terminal region has been implicated as sites for such heterodimer formation. A hidden markov model based program, Multiple em for motif elicitation (MEME), was used to uncover three motifs in the C-terminus of the odorant receptor peptides from Anopheles gambiae, D. melanogaster, and Apis mellifera. Previous studies have shown that insect odorant receptors are highly divergent between different insect lineages suggesting conservation of these motifs is functionally important. I propose that these motifs are involved in receptor-receptor protein interactions, contributing to the heterodimer formation between Or83b subfamily members and other odorant receptors.

The next goal was to identify odorant receptors in closely related mosquito species and compare and contrast them. This was accomplished by using public sequence data of An. gambiae and BAC library screening to identify orthologous gene clusters in An. stephensi and An. quadriannulatus. Although I have identified many
different odorant receptor genes the chapter in this dissertation discusses my work
with the Or2 gene cluster. Multi-species comparison of these orthologous regions in
An. gambiae, An. quadriannulatus, and An. stephensi revealed highly conserved gene
structure among the OR genes and the discovery of the An. stephensi Or10x gene
(AsOr10x), which is present only in An. stephensi. AsOr10x showed a different
expression pattern than AsOr2 and AsOr10, the other members of this gene subfamily
in An. stephensi. Therefore AsOr10x might be adapting or has adapted a new function.
Analysis of the phylogeny and physical location of all known members of the Or2/Or10
gene subfamily in Anopheles, Aedes, and Culex mosquitoes suggest that a few events
of gene duplication and loss resulted in the current gene distribution.

The final focus of this project was to develop a method to study the function of
mosquito odorant receptors. There is currently no in vivo system to study mosquito
odorant receptors, and experimental systems pioneered in D. melanogaster are not
transferable to mosquitoes. I decided to employ a reverse genetics strategy involving
the silencing of three Aedes aegypti odorant and gustatory receptors of known or
suspected function. These gustatory receptors are members of a small subfamily that
encode olfactory and not taste receptors. As a preliminary step the expression profiles
of these three genes and an additional gustatory receptor were determined using non-
quantitative and quantitative RT-PCR. We found that the putative CO₂-detecting
gustatory receptors are expressed in *Ae. aegypti* larvae, and hence these larvae may respond to CO$_2$, an observation that has not been reported previously.

The purpose of silencing these receptors is to generate a loss-of-function behavior phenotype that will allow for inference of receptor function. Recombinant Sindbis viruses were used to knockdown mRNA levels of these receptors. GFP-expressing recombinant Sindbis viruses were shown to infect chemosensory tissue. Additional viruses containing fragments of receptor genes were found capable of lowering odorant and gustatory receptor mRNA levels. Infected mosquitoes displayed varying levels of gene knockdown with one virus generating suppression of mRNA levels to 15.0% of normal. These mRNA levels may not be low enough to generate an unambiguous phenotype. Future experimentation is focused on developing more effective recombinant viruses and identifying characteristics of viruses more effective in receptor gene knockdown. A safe and effective behavior assay setup is needed to test the behavioral responses of these infected mosquitoes. In this study I outline a preliminary behavior assay that is being developed and optimized. When established it will provide a powerful tool in the study of both basic mosquito behavior and phenotype screening of recombinant Sindbis virus-infected mosquitoes.
Acknowledgements:

There are many people I want to thank for their help and guidance in working on this project. First I'd like to thank my advisor Dr. Zhijian (Jake) Tu. He's encouraged and supported me through the entire project. I'm truly grateful for all his help (especially) during times when everything didn't go as well as I'd like. I'd like to thank all the other members of my committee: Dr. Glenda Gillaspy, Dr. Tim Larson, Dr. Igor Sharakhov, and Dr. Liqing Zhang for all the input and time they've contributed by serving on my committee and in their contributing to my professional development. I want to thank all of my lab mates Monica Alvarez, Jim Biedler, Monique Coy, Chevon Dunnings, Song Li, Andy Mead, Yumin Qi, Randy Saunders, and Senay Sengul for all their help, encouragement, ideas, and just good cheer. I want to thank Jim, Monique, and Song for their help in getting me started in the lab, teaching me many of the techniques, and serving as sounding boards for many discussions. I'm grateful to Qi for his help in developing several of the SINVs. Randy has been extremely helpful with providing ALL the mosquitoes I've used for my experiments, his help developing the behavior assays, and last but not least ordering many of the reagents we've used. Dr. Zach Adelman and Dr. Kevin Myles have been immensely helpful in work related to the Sindbis virus for which I'm very grateful.

I also want to thank my family and friends for their long support during this time. I especially want to thank my mom and dad for all the help they've given me, for
pushing me to learn as much as I can, and supporting my drive to seek a PhD. My brother Scott who has always supported me and has always been both a brother and friend. My close friends Jim Hutchinson, Paul Weinwurm, and Phil Sharp for all the support they've given and all the fun we've had. I want to thank anybody who has impacted me that I might have not have mentioned specifically by name.
Table of Contents:

Chapter 1. Introduction ..1
 1.1: Mosquitoes - General Information ...1
 1.1.1: Mosquito Host-seeking Behavior ..2
 1.1.2: Mosquito Species Complexes ...4
 1.1.3: Mosquito-borne Diseases ...8
 1.2: Insect Olfaction ...9
 1.2.1: Importance of Insect Olfaction ..9
 (1) Olfactory Tissue: Surface and Sensilla ..11
 (2) Below the Surface of Olfactory Tissue ..12
 1.2.2: Insect Olfactory Signaling ...14
 (1) Insect Odorant Receptors: Discovery ..16
 (a) Nomenclature of Insect Odorant Receptors ..17
 (b) Insect Odorant Receptor Family ...18
 (c) Insect Odorant Receptor Expression and Gene Regulation19
 (d) Or83b: The Conserved Insect Odorant Receptor ...22
 (e) Determining the Function of Insect Odorant Receptors24
 (2) Non-Odorant Receptor Driven Olfaction: Gr21a and Gr63a Sub-family26
 1.3: Project Goals ...29
 1.4: Bibliography ..31

Chapter 2. Odorant receptor C-terminal motifs in divergent insect species38
 2.1: Abstract ...38
 2.2: Introduction ..39
 2.3: Materials and Methods ...41
 2.4: Results ...44
 2.4.1: ClustalW alignments of An. gambiae odourant receptors ...44
 2.4.2: MEME identifies c-terminal motifs in An. gambiae odourant receptors44
 2.4.3: Odorant receptor c-terminal motifs are not found in gustatory receptors46
 2.4.4: Odorant receptor c-terminal motifs are found in D. melanogaster and Ap. mellifera odorant receptors ...47
 2.5: Discussion ...49
 2.6: Figures ..54
 2.7: Table ...64
 2.8: References ...66

Chapter 3. Duplication and differential expression of genes in an odorant receptor gene cluster in mosquitoes ..69
List of Figures:

- Figure 2.1: Multiple sequence alignment of the C-terminal region of all 79 *Anopheles gambiae* odorant receptors .. 54
- Figure 2.2: C-terminal motifs found in *Anopheles gambiae* odorant receptors .. 56
- Figure 2.3: Weblogo presentation of motifs A, B, C in *Anopheles gambiae, Drosophila melanogaster, and Apis mellifera* odorant receptor peptides .. 58
- Figure 2.4: Conservation at the C-terminal regions of *DmOr83b* and its orthologs .. 62
- Figure 3.1: VISTA alignment of *An. gambiae Or2* gene cluster with *An. stephensi* and *An. quadriannulatus* Or2 gene clusters .. 92
- Figure 3.2: *Or2* and *Or10* gene structure diagrams .. 94
- Figure 3.3: ClustalX alignment of *Or2* subfamily genes from *An. gambiae, An. quadriannulatus, An. stephensi, Ae. aegypti, C.p. quinquefasciatus, and D. melanogaster* .. 96
- Figure 3.4: Phylogenetic tree of *Or2* and *Or10* gene subfamily in four mosquito species .. 98
- Figure 3.5: *AsOr2, AsOr10, and AsOr10x* mRNA expression in 4-day-old adult *An. stephensi* mosquitoes .. 100
- Figure 3.6: Expression profile of *AsOr2, AsOr10, and AsOr10x* in *An. stephensi* larvae and pupae .. 102
- Figure 4.1: *AaOr7* and *AaGr1-3* non-quantitative and quantitative RT-PCR results in young mosquitoes .. 129
- Figure 4.2: *AaOr7* and *AaGr1-3* non-quantitative and quantitative RT-PCR results in adult chemosensory tissues .. 133
- Figure 4.3: Uninfected and GFP-SINV infected *Ae. aegypti* females .. 136
- Figure 4.4: Development of Recombinant Sindbis Viruses .. 138
- Figure 4.5: Real-time PCR results for infected mosquitoes .. 140
- Figure 4.6: Behavior Assay Setup and Preliminary Results .. 142
List of Tables:

Table 2.1: Three conserved C-terminal motifs in mosquito, fruit fly, and honeybee OR peptides. ..64
Table 3.1: Percent identity between Anopheles Or2/Or10 amino acid sequences104
Table 3.2: RT-PCR primers and size of predicted products ...105
Table 3.3: Summary of the expression profile of genes in the Or2/Or10 subfamily106
Table 4.1: Relative quantities of AaGr1 mRNA in Ae. aegypti larvae and pupae..........144
Table 4.2: Relative quantities of AaGr1 mRNA in Ae. aegypti adult chemosensory tissue ..145
Table 4.3: Relative quantities of AaGr2 mRNA in Ae. aegypti larvae and pupae.........146
Table 4.4: Relative quantities of AaGr2 mRNA in Ae. aegypti adult chemosensory tissue ..147
Table 4.5: Relative quantities of AaGr3 mRNA in Ae. aegypti larvae and pupae.........148
Table 4.6: Relative quantities of AaGr3 mRNA in Ae. aegypti adult chemosensory tissue ..149
Table 4.7: Relative quantities of AaOr7 mRNA in Ae. aegypti larvae and pupae..........150
Table 4.8: Relative quantities of AaOr7 mRNA in Ae. aegypti adult chemosensory tissue ..151
Table 4.9: Primers used to synthesize SINV inserts ...152
Table 4.10: Relative quantities of AaOr7, AaGr1, and AaGr2 in infected samples153
Chapter 1. Introduction

1.1: Mosquitoes - General Information

Mosquitoes are part of the family Culicidae, which is part of the order Diptera along with other two wing or "true flies." Mosquitoes have a large impact on global health due to the ability of some mosquito species to spread diseases such as malaria, dengue, yellow fever, and West Nile encephalitis. Mosquitoes eggs are laid near or on a body of water, and then hatch into first instar larvae. Mosquito larvae are multi-segmented aquatic insects covered by pairs of palmate hairs that allow the larvae to orient themselves in water. They occasionally surface in order to breath through an air tube placed on their posterior. Larvae spend all their time searching for food, and as the larvae grow they go through several molting stages or instars. Mosquitoes undergo metamorphosis after the fourth and final instar, pupate, and emerge as adults.

Adult mosquitoes have a physiology and life style that involves searching for food, mating, raising eggs, and then depositing them to pass on their genetic heritage. Adults are multi-segmented insects with an abdomen, thorax, and head. Three pairs of legs and a pair of wings are connected to the thorax. The head has a pair of multifaceted eyes, a pair of antenna, a pair of maxillary palp, and a proboscis. The proboscis is an elongated mouthpiece that is used in extracting nectar from plants. Only females have a highly serrated proboscis that allows them to pierce the skin of
vertebrate hosts to extract blood. After emerging from their pupae, adults begin to search for food, mates, and blood sources. They do so in response to internal and external cues that stimulate preprogramed behavioral responses. Internal cues include age, circadian rhythms, genetic factors, etc; while external cues are environmental, heat, visual, and olfactory. The most important external cues are olfactory cues that are important in mating [2, 3], feeding [4], and host-seeking [5]. The purpose of blood-feeding is to obtain a source of nutrition for the development of oocytes. After breaking down the blood, the females seek out a site for oviposition. It is the process of blood-feeding that makes mosquitoes such a dangerous disease vector. As female mosquitoes extract blood from a host, they also inject a mixture of proteins into the host, including anti-coagulants. If a female mosquito is infected, they also inject disease causative agents into the host. In the following sections, I will outline the current knowledge of mosquito host-seeking, mosquito species complexes, and mosquito diseases.

1.1.1: Mosquito Host-seeking Behavior

There are many different genetic, environmental, and behavioral factors that lead to a mosquito species being considered a human disease vector. Vector species tend to be located near population centers while non-vectors reside in more rural areas. Significant factors contributing to vector capacity are behavioral factors such as a
preference for close association with humans. The African malaria mosquito
Anopheles gambiae prefers to live near, and sometimes in the same dwelling as it's human hosts [6]. The most significant behavioral factor for a vector is the attraction of mosquitoes to human olfactory cues.

It has been established for some time that mosquitoes seek out a host for a blood-meal based on their response to host olfactory cues [5, 7]. Mosquito species are attracted primarily to mammals and birds [5], but they also take blood from reptiles [8]. Mosquito species are able to take blood-meals from a wide range of vertebrate hosts, but many mosquitoes species can show a particular preference for a particular host species. Specialist-feeders seek out one host species as in the case of *An. gambiae*, which feeds almost exclusively on humans [9]. *An. gambiae*'s closely related sibling species *An. quadriannulatus* is also a specialist feeder, but is preferentially zoophilic (animal-loving) [10]. In contrast there are many more opportunistic-feeders that show little or no preference for a host species [5, 11]. *An. stephensi*, an Asian malaria vector and a close relative of the above mentioned *Anopheles* mosquitoes bites humans, but also responds to bovine olfactory cues [12]. *Aedes aegypti* is another opportunistic feeder although it is a major vector of dengue and yellow fever. Several species of *Culex* prefer birds, but are able to transmit West Nile virus and *Wuchereria bancrofti* to humans perhaps through bridge vectors. A wide range of literature covers the host-preference of these and many more vector and non-vector
species of mosquitoes (see [5] for review). These and future studies on behavior will help determine the basis of mosquito species preferential attraction to humans. With this information new strategies of disease control can be pursued. The most promising is to use such information to develop more effective repellents than the current generation of DEET-based repellents [13].

1.1.2: Mosquito Species Complexes

The resurgence of malaria has shown the pitfalls of traditional methods of disease control. This has driven interest in a new strategy of releasing genetically modified mosquitoes into the wild. These modified mosquitoes would contain transgenes making them refractory to some aspect of disease transmission. By mating with local populations of mosquitoes the transgene will spread through the population. There are many practical and social pitfalls with this strategy [14, 15]. One of the most pressing problems is our lack of knowledge about the population structure of the mosquito species transmitting these diseases. If a vector species is composed of several populations that have limited gene flow then transgenes will have to be driven through multiple populations. This scenario is also relevant where mosquito vector species are in so called species complexes. What follows is a brief introduction into mosquito taxonomy and species complexes in Anopheles mosquitoes.
There are at least 3,500 mosquito species distributed throughout the world. Mosquitoes are part of the family of Culicidae and are subdivided into three subfamilies Anophelinae, Toxorhynchitinae, and Culicinae [16, 17]. The Culicinae subfamily has the largest number of species. Toxorhynchitinae mosquitoes do not blood-feed, and hence are not disease vectors. Both Anophelinae and Culicinae subfamilies contain many significant disease vector species. All major malaria vectors are members of the Anophelinae subfamily making studies of these species (both vector and non-vector) of significant impact in combating the global malaria epidemic.

The Anophelinae subfamily is the most basal subfamily of the Culicidae, and is currently subdivided into the *Anopheles* and *Chagasia* genera. The exact details of phylogenetic relationships between mosquitoes within this subfamily remains controversial. For example originally Anophelinae was subdivided into three genera *Anopheles*, *Bironella*, and *Chagasia* with both *Anopheles* and *Bironella* being sister genera [18]. Now it is theorized that *Anopheles* and *Bironella* are both part of the same clade [17], but are paraphyletic [18, 19]. Not surprisingly within each genus the resolution of phylogenetic relationships is even more confusing. Many Anophelinae mosquito species including most of the significant disease vectors have been found to be part of species complexes of several sibling and incipient species [20]. Species within these complexes are morphologically indistinguishable, confusing field identification. To add even more confusion, sibling species are not necessarily
completely reproductively isolated, and have some potential to crossbreed as only male hybrids are sterile. Incipient mosquito species are populations that may be diverging from the main species population and forming genetic barriers against crossbreeding. This population structure may lead to scenarios where either mosquito population control or transgenic efforts are frustrated due to a lack of information.

The *An. gambiae* species complex is the most well studied mosquito species complex (for reviews see [9, 21, 22]). It is composed of at least seven species: *An. gambiae sensu stricto*, *An. quadriannulatus* (A), *An. quadriannulatus* (B), *An. arabiensis*, *An. bwambae*, *An. merus*, and *An. melas* [9]. *An. quadriannulatus* (A) is a specialist feeder displaying a zoophilic host preference. Recently it has been shown there exists a reproductively isolated *An. quadriannulatus* population in Ethiopia named *An. quadriannulatus* B [23]. The most prominent member of the species complex *Anopheles gambiae sensu stricto* (abbreviated henceforth as *An. gambiae*) is the major vector of human malaria in sub-Sahara Africa. Highly anthropophilic it associates near and within human settlements. *An. gambiae* is composed of two molecular forms, which are believed to be undergoing incipient speciation. Field studies have shown strong non-random mating [24, 25], and only a small number of hybrids [26] suggesting that these two populations have or are becoming two new species. Chromosomal [27, 28] and molecular studies support this theory [29]. Of the four species remaining species, *An. arabiensis* is the most significant malaria vector. *An. arabiensis* shows
preference for outdoors host-seeking (exophilicity) in contrast to An. gambiae’s endophilicity [30]. In other studies An. arabiensis is found to respond as well as An. gambiae to human odors but unlike An. gambiae also responds to CO₂ [6, 11].

From the above section several themes about mosquito species complexes are apparent. 1) Species complexes are composed of several morphologically indistinguishable species that have the potential to cross-breed. 2) A species within this complex may be two incipient species that have limited gene flow. 3) Even though species complex members are all closely related they display behavioral differences. There are three major reasons to study mosquito species complexes. These complexes have recently formed and there are possibly several new species arising from genetically isolated populations. This provides an excellent case study of evolution where we see adaptations of closely related mosquito species (changes in host-seeking) in response to recent environmental changes (the rise of human population centers). The many disease vectors which are part of these complexes supply the second reason to study species complexes. The last reason is disease vectors display genetic and behavioral traits that allow them to excel as vectors. In comparing them with sibling species that don't display the same vectoral capacity we might identify the molecular basis of these disease vector traits. New methods of disease control may be developed from this information.
1.1.3: Mosquito-borne Diseases

Throughout history mosquito-borne diseases have had a large effect on human civilization. Each year mosquito-borne diseases such as malaria and dengue are responsible for countless deaths and unfathomable misery. Malaria is the worst of these diseases infecting 300-500 million people a year and killing at least a million [31]. There is a rough correlation between poverty and incidence of malaria. Most cases of malaria occur in the poorest countries of sub-Saharan Africa, while malaria has been eliminated from first-world countries in the past century [32]. These diseases are caused by pathogens transmitted by mosquitoes. Whenever infected female mosquitoes bite humans to extract a blood-meal they inject saliva that contains anticoagulants and disease causative agents. Transmission of a pathogenic protist of the *Plasmodium* family results in malaria [32], while viruses of the *Flavivirus* genus cause dengue fever [33].

Long thought to be third-world diseases, an increasing number of cases of mosquito-borne diseases are being reported in places they were formally eradicated from. This may be due to many factors such as the increase of travel/trade between epidemic and non-epidemic areas, global warming increasing the habitable range of mosquitoes, the increased resistance of mosquitoes to insecticides allowing a resurgence of native populations. Dengue fever statistics show a startling increase in the number of cases of clinical infection worldwide with no end in sight [34]. Many
traditional methods of disease control have revolved around control mosquito populations, reduced human-mosquito contact (ex: bed-nets and repellents), and treating diseases with a variety of drugs. These methods have sadly proved inadequate in the current world. Many insecticides such as DDT have become less effective or ineffective due to the increasing resistance of mosquito populations. Newer insecticides are being developed but all current candidates are more expensive to produce and not as effective as DDT once was. A similar situation is present as many disease causative agents are becoming resistant to drugs. Chloroquine resistance is present in most mosquito populations leading to a dramatic increase in malaria mortality [35]. The next generation of drugs has numerous disadvantages similar to those of insecticides. There is little doubt that adaptation of both mosquitoes and parasites will render these solutions transitory. Newer strategies must be developed and one of the first steps will be to continue basic research of mosquitoes to understand more about their biology as it relates to disease transmission.

1.2: Insect Olfaction

1.2.1: Importance of Insect Olfaction

To humans the sense of smell seems a disposable or ethereal sense. We are more likely to interact with our environment at range through sight and sound. Recent studies suggest that we have lost much of our ancestral sense of smell when
compared with mice and even other primates [36, 37]. In contrast olfaction is the most important sense that insects have to interact with their environment. Responses to olfactory cues allow insects to find food sources [38], find mates [39, 40], avoid danger [41], and in the case of blood-feeding mosquitoes find hosts [5]. Olfaction is important in the learning and foraging behavior of honeybees [42, 43]. Insect olfaction may also be involved in speciation. The fly species *Rhagoletis pomonella* feeds, mates, and ovipositions on the native hawthorne or the more recently introduced domesticated apple fruit [44]. It has been found that this fly species is now composed of two races, one that is attracted to hawthorne and one to apples. These two races are estimated to have very limited gene flow [45], and are accumulating fixed differences at several loci [46]. It has been shown that there are significant differences in the olfactory preference of these races to hawthorne or apple odors [47]. Olfaction might be responsible for or contribute to incipient speciation in *R. pomonella*.

The study of insect olfaction has lagged behind that of vertebrate olfaction [48], but recent advances are closing this gap [49, 50]. In subsequent sections I will outline the current knowledge about the organization and signaling in the olfactory system of insects. I will first describe the overall organization of the tissues involved in olfaction. Then I will focus on the molecular components and signaling occurring in the peripheral olfactory system. One of these signaling protein families is the large and diverse family of insect odorant receptors (ORs). In the post-genomics era a great deal
is being discovered about the distribution, regulation, and function of these fascinating receptors.

(1) Olfactory Tissue: Surface and Sensilla

Most insects have two olfactory tissues: a pair of antenna and a pair of maxillary palp (or palpus). In at least one species [51] the proboscis also has a role in olfactory perception in addition to serving as a gustatory organ [52]. The morphology of both olfactory tissues varies between species, and is also sexually dimorphic within species. For example female *Anopheles* mosquitoes have very long antennas with a sparse amount of hairs, while males have shorter and more ornate antennas. Arrays of hair-like structures, known as sensilla, cover the surfaces of these organs. Sensilla house the chemosensory, thermosensory, and mechanosensory systems of insects [52]. *Drosophila melanogaster* sensilla can be broadly classified based on their morphology and wall structure as trichodea, basiconica, and coeloconica [53]. Some sensilla are classified as intermedia sensilla having characteristics of both trichodea and basiconica [53, 54]. These groupings can be further divided based on differences in length and thickness. Not all insect species have the exact same sensilla distribution, and even closely related species have variability in the number of each sensilla type present [55]. In subsequent discussion I will briefly mention these differences for the sake of clarity of presentation and discusses about “typical” sensilla.
(2) Below the Surface of Olfactory Tissue

Based on moth [56] and D. melanogaster [52, 57] structural studies we know a great deal about the organization of typical insect olfactory (and non-olfactory) sensilla. Sensilla are composed of a protective outer coat covering several olfactory specific cells. Between the coat and the cells is the sensilla lymph, a hydrophilic environment. The coat is an extension of the antenna (or palp or proboscis) cuticle, and along this coat are series of holes or pores that allow odorants to pass through the cuticle and enter the lymph. Beneath the cuticle are support (or auxiliary) cells and olfactory sensory neurons (OSNs). The three types of support cells are the tormogen, trichogen, thecogen, and a typical sensilla can have a total of three to four support cells. The thecogen forms a protective sheath around the OSN(s) cell body. All of these cells have very well developed golgi apparatus and rough endoplasmic reticulum along with many coated pits and vesicles indicating significant function in protein synthesis and trafficking. It is hypothesized that these cells excrete odorant-binding proteins (OBPs) [56, 58], and odorant degrading enzymes (ODEs) into the lymph in addition to maintaining the composition of the lymph [59]. The OSNs are the cells where actual olfactory signaling occurs, and each sensilla can have anywhere from one to four neurons depending on the sensilla type [57]. OSNs are known to express two olfactory protein families odorant receptors (ORs) [60-63], and sensory neuron membrane proteins (SNMPs) [64-66]. OSNs are elongated cells with dendrites extending into the
lymph and axons that project to the antennal lobe (AL). Odorants interact with ORs on the surface of a dendrite, and the subsequent signal is passed through the neuron axon to the AL.

The AL is an organ composed of spherical units of neuropil called glomeruli, and it is to these units that that OSN axons form synapses. The AL seems to be structurally and possibly functionally equivalent to the vertebrate olfactory bulb. The exact purpose of both organs remains unknown. In fruit flies the axons of all neurons expressing one (or coexpressing two) particular receptor(s) synapse to the same glomerulus [54, 67]. There is one case where this may not be true, and axons from different neurons synapse to the same glomerulus [67]. The axons of sensilla classes segregate to distinct regions in the AL. For example the *D. melanogaster* antennal basiconica sensilla neurons synapse to the medial region of the AL [54]. There is also some functional subdivision of the AL with neurons that are broadly tuned to many different odors synapsing to the dorsal and medial regions, while more fine tuned neurons synapse to the ventral and lateral regions [67]. There is a complex network of local neurons and projection neurons connecting the different glomeruli and the AL to the higher centers of insect brain including the mushroom bodies and the lateral horn. It is beyond the focus of this introduction to discuss these topics.
1.2.2: Insect Olfactory Signaling

The detection of odorants and the transmission of the subsequent signal to the higher brain centers is a process known as olfactory signaling [49]. The pathway can be broadly subdivided based on location into peripheral or central olfactory signaling. The sensilla make up the peripheral, while the AL and higher brain centers make up the central system. The purpose of this section is to review the current information about the signaling taking place on the surface of and in OSN(s). Much of what is hypothesized to take place in insects is based on the well studied mammalian olfactory signaling pathway [48].

When an insect encounters odorants these odorants first enter through cuticle pores that lead to the sensillum lymph. This a very hydrophilic environment which may hinder the ability of some odorants to traverse it. The diverse family of soluble proteins called odorant binding proteins (OBPs) are known to bind odorants [68]. It is hypothesized that these proteins transport odorants through the lymph, protect odorants from chemical or enzymatic damage, and add specificity to olfactory signaling [69]. Most odorants may not require OBPs. To date only one OBP has been shown to be required for detection of a specific group of chemicals [58].

Regardless of mechanism of delivery, these odorants arrive near the OSN membrane surface where they can be bound by cognant ORs. This binding is theorized to cause a conformational shift in the receptor structure leading to activation
of a hypothetical G-protein signaling cascade similar to that occurring in mammalian
olfaction [48]. \(\text{G} \alpha \) subunits expressed in the head [70], along with arrestins [71], and
other G-protein signaling related components have been identified in insects [49].
Additionally the second messenger created in these downstream events is unknown,
but evidence strongly suggests inositol 1,4,5-triphosphate (IP3) [72, 73]. The second
messenger should open up ion channels leading to depolarization of the OSN, and this
signal is transmitted to AL and then the higher brain centers where a response is
coordinated. The G-protein complex reassembles leading to a release of the odorant,
which is removed by an ODE leaving the system back at rest. This possible signaling
cascade is compelling and supported indirectly by many studies to date, but two
studies have recently cast doubt on this model [74, 75]. In both studies \(D. \)
\textit{melanogaster} ORs were shown to form odor activated cation channels, and generate
changes in action potential independent of other ion channel proteins. One of the
studies goes further and suggests that ORs do not require G-proteins [74], while the
other claims they can utilize them [75]. Further studies may resolve previous data with
this newer information. In the following sections I will discus the work being done on
insect ORs.
Insect odorant receptors (ORs) were first discovered in *D. melanogaster* through bioinformatic approaches [60, 61]. In both investigations computer algorithms were used on existing *D. melanogaster* genome sequence to identify putative open reading frames encoding proteins ~200-900 amino acids long with seven-transmembrane domains. A group of these genes were found expressed specifically in the antenna and maxillary palp, but not in other parts of the head or body. A third group identified similar genes by screening an antenna/maxillary palp cDNA library [62]. The completion of the *D. melanogaster* genome has lead to the identification of a total of 60 OR genes encoding 62 OR proteins [76]. These ORs have been given a unified naming system [76, 77]. Subsequent studies have succeeded in determining the expression pattern of most of these genes in adult and young fruit flies through *in situ* hybridization [54, 63, 78, 79]. There has also been a concerted effort to determine the function of these proteins using electroantennograms (EAGs) [80] in conjunction with the "empty neuron" system [81] and heterologous cell expression systems [82-84]. The identification of all *D. melanogaster* ORs coupled with the burst of whole genome sequencing of insects has lead to the identification and preliminary characterization of non-*Drosophila* ORs.
(a) Nomenclature of Insect Odorant Receptors

As in many different fields there is an overabundance of confusion when comparing similar things (be they proteins, pathways, or genes) in different species due to the different nomenclature systems used by different groups. Insect OR naming systems are consistent within one species but not between species. For example members of the Or83b family are named Or83b, Or2, or Or7 depending on the insect lineage or species. Within species the numbering system tends to reflect what order ORs were annotated, and not a common physical or phylogenetic relationship [85-87]. For example An. gambiae Or3, Or4, and Or5 are closely related and physically clustered, while Or1 and Or2 are neither closely related or reside in the same physical location. In subsequent discussion we will use the “SpOrX” nomenclature in describing specific OR genes (protein product will not be italicized). This format is a two letter genus and species name abbreviation “Sp” followed by “Or” to designate an odorant receptor, and “X” which will stand for the specific number of the OR in that species as reported by the discoverer. This nomenclature system is the one used by several other groups describing insect ORs [86, 88, 89].
(b) Insect Odorant Receptor Family

Insect ORs are a large and diverse family of seven-transmembrane proteins with 300-450 amino acid residues. In the past they have been thought to be GPCRs given they have seven-transmembrane structures, and they serve the same role that GPCRs do in vertebrate species [85]. Subsequent work has identified some of the "usual suspects" of G-protein signaling expressed in olfactory tissues lending weight to this assertion [49, 70]. Recently this view has been disputed [90] as insect ORs lack homology to any other non-insect GPCR family [91], their membrane topography is inverted when compared to other GPCRs [92, 93], and with some exceptions [94, 95] GPCRs do not form heterodimers while insect ORs do and may require it for protein trafficking and olfactory signaling [82, 92, 93]. Heterodimers of ORs form cation channels that are opened upon stimulus with specific odors implying ORs may be both receptors and signaling components [74, 75]. Given these data insect ORs might be a remarkable case of convergent evolution with vertebrate ORs.

The members of this insect protein family are highly divergent both within [76, 96] and between species [85, 87]. There is very little sequence conservation between members of this family. The only conservation seems to be several amino acid residues in the extreme C-terminal end of these receptors [60-63, 76], and a highly conserved tryptophan residue [96] (see Chapter 2). As more non-Drosophila ORs have been identified it has become increasingly clear that there are very few OR genes
conserved between different species with the notable exception of members of the Or83b family. Five additional insect species Anopheles gambiae, Aedes aegypti, Apis mellifera, Bombyx mori, and Tribolium castaneum have had their genome sequenced leading to the identification of many (if not all) of their respective OR genes [85-87, 97, 98]. Currently there are 79 An. gambiae, 131 Ae. aegypti, 120 Ap. mellifera, 48 B. mori, and 341 Tr. castaneum OR genes annotated. In comparing and contrasting ORs it is apparent that there has been a significant independent expansion of certain OR gene subfamilies within all of these species. For example B. mori and the moth Heliothis virescens share a subfamily of pheromone receptors not present in other non-moth species [97]. Even comparing the two mosquito species An. gambiae and Ae. aegypti has revealed a great deal of differences in overall OR gene content [87]. A handful of receptors from other insects have also been identified and confirm the trends mentioned above [89, 99]. ORs are highly divergent both within a species and between species, and that ORs have undergone lineage specific gene expansion.

(c) Insect Odorant Receptor Expression and Gene Regulation

Insect ORs are expressed in the chemosensory tissue of adult insect antenna, maxillary palp, and in one species, the proboscis [51]. Some of these receptors are also expressed in the much simpler larvae olfactory tissue [79]. D. melanogaster in situ hybridization studies have shown that most ORs are expressed in a small subset of
OSNs in a pattern conserved between individual animals [60-63]. The exception is one D. melanogaster receptor: DmOr83b, which is expressed in about 70-80% of antennal and all maxillary palp OSNs [63, 100]. Presumably all OR protein is localized to the dendrites of OSNs [100]. D. melanogaster ORs seem to have no function in neuron development [100], and as shown by the use of the "empty neuron" system ORs can be placed into non-native OSNs with no observed ill effects on the neurons [81]. Each OSN subset synapses to only one specific glomerulus in the AL [54] although in one case two separate neuron populations expressing DmOr67d and DmOr82a converge on a single glomerulus (VA6) [54, 67]. Taken together these data suggest that insects follow (with the exception of Or83b) "the one receptor one neuron" principle hypothesized to exist in the mammalian olfactory system. This principle in insects could be further expanded to the "one receptor one glomerulus" rule [101]. There are some notable exceptions to this rule as some OSNs co-express two or more ORs in addition to Or83b [102]. It is important to note that all of the above data comes exclusively from D. melanogaster studies.

An increasing body of work has begun to illuminate mRNA expression patterns of ORs in moths, mosquitoes, and beetle [88, 89, 98, 99, 103, 104]. In these species ORs are also expressed in the antenna and maxillary palp in small subsets of OSNs. A recent study has shown expression of a few An. gambiae ORs in the proboscis, but it is not yet known if other species exhibit this phenomena [51]. It is established that at
least some ORs are expressed in larvae and pupae but most ORs are expressed in adults. [87, 98]. ORs can be up-regulated or down-regulated in response to major life cycle events such as blood-feeding in mosquitoes [88]. There are several sexually dimorphic expressed ORs [88, 89, 104]. What is also important to point out is the expression of insect ORs is highly stereotyped in a way not seen in mammals. One individual has the same OR distribution as another individual. This perhaps reflects a difference in the way vertebrate and invertebrate ORs are regulated.

Until recently there was little known as to how ORs are regulated in insects. For a long time the only information available was that the transcription factor Acj6 was necessary for expression of a group of D. melanogaster ORs [60]. In the most comprehensive study to date Ray et al. has identified several regulatory elements of some D. melanogaster maxillary palp ORs [105]. They found via deletion reporter constructs that there are several trans-regulatory elements upstream of these genes involved in tissue and neuron specificity. For example motif Oligo-1 represses expression of maxillary palp ORs in the antenna, while Dyad-1 promotes expression of OR genes in the maxillary palp. One neuron-specific regulatory factor the pb2A-2 element was found to be necessary for expression of receptors in the pb2A neurons. These regulatory elements lie within <450 bp of the transcriptional sites of the genes studied. ORs in general may have very small and compact regulatory regions and this might explain the success of OR gene duplication by non-homologous recombination.
In mosquitoes, honeybees, and beetles there are large numbers of OR gene clusters and tandem arrays [85, 87].

(d) Or83b: The Conserved Insect Odorant Receptor

One of the most striking things about insect ORs is the high level of diversity found in the family between distantly related [85, 86, 99], and even closely related insect lineages [87]. This suggests each lineage if not each species may have a finely tuned sense of smell specifically adapted for their specific ecological niche. Therefore it is surprising that one OR gene is conserved among a wide group of insects including *D. melanogaster* [100], several species of mosquitoes [106-108], *Apis mellifera* [86], *Bombyx mori* [89], *Heliothis virescens* [99], and *Tribolium castereum* [98]. The Or83b gene family was first discovered in *D. melanogaster* (*DmOr83b*), and members of this family have been found to have characteristics that are not present in other *D. melanogaster* receptors. *DmOr83b* is significantly larger than the other receptors at 486 amino acids, has very low sequence identity to other receptors except in one region [62], and *in situ* hybridization experiments show expression in ~70-80% of antennal and 100% of palp OSNs [63, 100]. Or83b orthologs also have a similar ubiquitous expression profile in the chemosensory tissue of other insects according to both RT-PCR and *in situ* hybridization studies [99, 106-108]. These data suggest the Or83b family is critical to insect olfaction.
Two models have been proposed for the function of Or83b. One involves Or83b acting as a generalized receptor responding to many different olfactory cues. The second theory suggests Or83b being a generalized cofactor for some aspect of olfactory signaling. This later theory has been supported by several recent studies. The first study by Larsson and co-authors showed that D. melanogaster knockouts of DmOr83b were not able to respond to olfactory cues [100]. In these knockouts at least three non-DmOr83b ORs are localized to the OSN cell body, but not the dendrites where they are found in wild type flies. Both of these phenotypes could be rescued with a copy of DmOr83b. Taken together these data suggest a role for the Or83b family in properly localizing some if not all ORs to the dendrites of OSNs allowing them to interact with odors. Subsequent studies have focused on what interaction DmOr83b has with non-DmOr83b ORs. In two studies it has been established that DmOr83b is capable of forming heterodimers with other non-DmOr83b ORs both in vitro [82] and in vivo [92]. The exact site of this heterodimer formation is unknown although it is probably in the C-terminal domain of insect ORs [92] (see Chapter 2). Presumably this heterodimer formation is required for transportation of other ORs to the dendrites of OSNs although this theory has yet to be tested explicitly, and the pathway involved in trafficking ORs has yet to be uncovered.

Although these studies do indicate a function of Or83b specifically in membrane trafficking of other OR proteins there may be other functions. Two possible additional
functions are assisting ORs in binding of their ligands, and recruiting/binding G-proteins. Beyond the conserved amino acids located in the C-terminal region of ORs there are no other motifs that non-Or83b receptors might use to recruit G-proteins. These receptors may need another protein to bind the G-proteins. It is worth noting the unusually long length of DmOr83b (and other Or83b proteins) is due to a predicted extended second intracellular loop [76]. This loop may in fact have motifs involved in binding G-proteins.

(e) Determining the Function of Insect Odorant Receptors

Initial studies of insect ORs focused on identification of new receptors and on the expression profile of these receptors [60-63]. These results have driven further studies that identify OR gene regulatory elements [105], and determine the function of OR genes [80]. The most successful approach in determining OR function has utilized a single-unit electrophysiology method known as electroantennograms [109-111]. With this technique an electrode is inserted into the base of a sensilla, and then the organism is exposed to an odor. If the odor is detected the neuron(s) in the sensilla this leads to an excitatory response. Based on the amplitude of the response each neuron in the sensilla can be distinguished from it’s neighbor. Electroantennograms allow us to determine the odor(s) that a OSN responds to. Coupled with this technique are three approaches for deducing OR function. The first is to knockout the receptor of
interest, and see what effect this has on the neuron action potential when exposed to odorants. The second technique is to express an OR gene in heterologous expression systems such as Xenopus oocytes. The third and more elegant approach is to use the empty neuron system [81]. Both techniques require knowledge of which neuron expresses which receptor, a criteria met in D. melanogaster where these techniques have been well-established.

In their study of DmOr22a/b, Dobritsa and co-authors developed a knockout fruit fly strain lacking both ORs [81]. Electroantennograms targeted to the ab3A neurons, where these receptors are expressed, found that these neurons were unresponsive to normal olfactory cues. They also found that by using the DmOr22a promoter they could drive expression of DmOr47a to ab3A neurons. Expression of DmOr47a in ab3A neurons leads ab3A neurons to be sensitive to the exact same odorants as the ab5B neurons where DmOr47a is normally expressed [54]. The major significance of this work is that some ORs can be expressed in non-native neurons and still function. This suggests ORs can function independent of other chemosensory proteins, but this is directly contradicted by one study showing the requirement of an OBP for proper odorant detection [58]. Since this report many different D. melanogaster ORs and some non-Drosophila ORs have been expressed in this system. Coupled with electroantennograms, and some knowledge as to which neuron expresses which receptor allows each receptor’s ligand(s) to be identified. One
particularly elegant study used these techniques to deorphanize virtually all *D. melanogaster* ORs [80]. Subsequent studies focusing on knockout and behavioral assays will in time validate the results of these ground-breaking studies in determining the function of odorant receptors.

(2) Non-Odorant Receptor Driven Olfaction: Gr21a and Gr63a Sub-family

ORs are just one of several families of possible GPCRs found in insects. The most closely related family to the ORs are insect taste or gustatory receptors (GRs) [76]. *Drosophila* GRs are similar to ORs in both overall size, some very limited sequence similarity at the C-terminal end, and in their lack of sequence similarity with other known GPCR families [112]. *D. melanogaster* GRs were discovered through the same methods as ORs, but phylogenetic analysis has placed GRs and ORs as separate groups with Or83b being a possible ancestral copy linking the two families [14, 76]. Initial RT-PCR and *in situ* hybridization experiments have demonstrated that the majority of genes in this family are expressed in neurons located in the proboscis, legs, and wings supporting a role for this family in gustatory (taste) perception [14, 112, 113]. GR-expressing neurons are found to synapse to the subesophageal ganglion (SOG), a insect taste center, further supporting this hypothesis [113]. Since then the *D. melanogaster* GRs that detect caffeine [114], trehalose [115], and several other sugars [116-118] have been identified. Not all of these GRs are involved in taste perception.
Three *D. melanogaster* GRs were found expressed in antennal neurons [14]. These particular antennal neurons synapse to the AL, not the SOG, suggesting a role for some or all of these receptors in olfactory, not gustatory perception [63, 100].

One of these antennal-expressed GRs: *DmGr21a* is localized on ab1c neurons, and these neurons synapse to a specific glomerulus in the ventral region of the AL. The ab1c neurons have electrophysiologic response to CO$_2$ [119], and are required for CO$_2$ avoidance behavior [41]. Two subsequent studies established that *DmGr21a* and the closely related *DmGr63a* are coexpressed in ab1c neurons, and that expressing both GRs in the empty neuron system [81] confers CO$_2$ responsiveness [120, 121]. If either GR is not present there is an abolition of this response. These two GRs are not found localized with or require *DmOr83b* to function suggesting they are in fact true GRs and not ORs. Lu and co-authors have carried this work further in the mosquito species *An. gambiae* [122]. They found that the *Gr21a* subfamily in mosquitoes and other non-*Drosophila* insect species is composed of three genes. The three *An. gambiae* GRs *AgGr22-24* were found co-expressed in the same neuron in the CO$_2$ sensing organ of mosquitoes the maxillary palp. Electroantennograms coupled with the empty neuron system support a role in CO$_2$ detection for all three receptors, but *AgGr23* may not be as necessary as the other two receptors. Taken together these studies have identified a subfamily of GRs that are involved in odor detection. There has yet to be any report of any OR protein responding to a non-olfactory cue or
involved in a non-olfactory process. GRs not only have been found to respond to olfactory cues, but are also found expressed in non-chemosensory neurons [123]. These data suggest the GR family may be a more generalized receptor family in comparison with ORs.
1.3: Project Goals

Female mosquitoes seek out vertebrate host species to extract blood for oocyte development. Host-seeking behavior is a complex process in part involving attraction of female mosquitoes to host olfactory cues. Those mosquitoes attracted preferentially to human host odors tend to be more effective disease vectors. The exact molecular basis of preference for human or non-human odors remains unknown. Closely related mosquito species such as members of the *An. gambiae* species complex display different host-seeking preferences. This suggests that subtle genetic differences are involved in host preference. I hypothesize that differences in distribution, sequence, and regulation of mosquito odorant receptors leads to observed differences in host preference. One objective of this project is to study odorant receptors among different mosquito species to uncover the genetic variations that may affect their behavioral differences. In addition to molecular cloning, comparative genomics, and expression analysis, we are interested in establishing a systematic approach to study the function of mosquito chemosensory receptors.

The specific aims of this project have been:

1) Identify the potential site(s) of heterodimer formation (see Chapter 2). This chapter stemmed from a comparative analysis of all odorant receptor protein sequences from
An. gambiae and two other divergent insect species which revealed conserved sequence features of potential functional importance.

2) Compare the genomic and evolutionary features of An. gambiae OR gene clusters in the mosquito species An. stephensi and An. quadriannulatus via bacterial artificial chromosome (BAC) library screening and sequencing (see Chapter 3).

3) Establish an in vivo method for determining the function of mosquito odorant and gustatory (olfactory) receptors (see Chapter 4).
Abbreviations

antennal lobe, AL; electroantennograms, EAG; G-protein coupled receptor, GPCR;
gustatory receptor, GR; inositol 1,4,5-trisphosphate, IP3; odorant binding protein, OBP;
odorant degrading enzyme, ODE; odorant receptor, OR; olfactory sensory neuron, OSN;
sensory neuron membrane protein, SNMP; subesophageal ganglion, SOG

1.4: Bibliography

106. Melo ACA, Rutzler M, Pitts RJ, Zwiebel LJ: Identification of a chemosensory receptor
from the yellow fever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem Senses 2004, 29:403-410.

Chapter 2. Odorant receptor C-terminal motifs in divergent insect species

2.1: Abstract

Insect odorant receptors are a large family of seven transmembrane proteins believed to be G-protein coupled receptors. The peptide sequences of two odorant receptors within a given species may share as little as 17% identity, and there is limited similarity between receptors of divergent species. One exception is \textit{DmOr83b}, which is found in \textit{Drosophila melanogaster} and is highly conserved in at least ten other insect species. \textit{DmOr83b} is broadly expressed in most of the olfactory sensory neurons of \textit{D. melanogaster} at most developmental stages, while other odorant receptors tend to have more restricted and specific expression patterns. \textit{DmOr83b} is critical for \textit{D. melanogaster} olfaction, and it is involved in properly localizing other odorant receptors possibly by forming heterodimers with these receptors. The C-terminal region has been implicated as sites for such heterodimer formation. Multiple em for motif elicitation (MIME), a hidden markov model based program, was used to uncover three conserved motifs in the C-termini of a vast majority of the odorant receptor peptides from \textit{Anopheles gambiae}, \textit{D. melanogaster}, and \textit{Apis mellifera}. These motifs are also found in \textit{DmOr83b} and its orthologs and the order of these motifs is conserved as well. The conservation of these motifs among divergent odorant receptors in divergent species suggests functional importance. We propose that these motifs are involved in
receptor-receptor protein interactions, contributing to the heterodimer formation between \textit{DmOr83b} (or its orthologs) and other odorant receptors.

\textbf{2.2: Introduction}

Insect olfaction and olfactory signaling is a rapidly growing area of research [1]. Several protein families are being studied that include odorant binding proteins, sensory neuron membrane proteins, odorant degrading enzymes, and odorant receptors. A large body of recent literature has been written on insect odorant receptors [2-6]. Most of the papers addressing insect odorant receptors report either the discovery of receptor genes in an insect species [4, 7], and/or the expression of selected odorant receptor genes at various points of the organism’s life cycle [8]. Odorant receptor gene expression is usually localized to the insect sensory organs such as antenna and maxillary palp [9, 10], and more recently have been found to be expressed in the proboscis [11]. There are also a growing number of papers addressing the specific functions of several odorant receptor proteins [5, 12-14].

Insect odorant receptors have been reported to be putative G-protein coupled receptors [2, 4, 15], but recently this status has been questioned [16, 17]. The most extensively researched insect odorant receptor is \textit{DmOr83b} in \textit{Drosophila melanogaster}. A highly conserved ortholog of \textit{DmOr83b} has been found in all insect species with sufficient genomic sequence information. This list includes \textit{D}. 39
melanogaster [9], Anopheles gambiae [18], An. stephensi (R. Miller and Z. Tu, unpublished data), An. quadriannulatus (R. Miller and Z. Tu, unpublished data), Aedes aegypti [8], Culex quinquefasciatus [19], Bombyx mori [5], Heliothis virescens [20], Apis mellifera [6], and Tribolium castaneum (GenBank Accession XP_973196). Note that the GenBank name for OR is GPROR. This is in contrast to the vast majority of the other insect odorant receptors, which are not conserved between species of different genera. DmOr83b is broadly expressed in most of the olfactory sensory neurons of D. melanogaster at most stages of development [9, 14]. This again is in contrast to other odorant receptors, which have been reported to have a restrictive expression pattern [9, 10]. D. melanogaster lacking a copy of DmOr83b are not able to respond to olfactory cues, and other odorant receptors are not properly localized to the membrane of olfactory sensory neurons [14]. DmOr83b is capable of forming a heterodimer with at least one D. melanogaster odorant receptor: DmOr43a [21]. The requirement of a heterodimer of two G-protein coupled receptors has only been previously observed in the GABA complex where heterodimer formation is required for the function of potassium/calcium channels [17, 22]. Benton and co-authors provides further evidence of heterodimer formation involving DmOr83b with DmOr22a/b, and additionally point to the C-terminal domain of odorant receptor peptides as being the site of heterodimer formation [23]. The specific location(s) of the protein-protein interaction(s) were not explored. However, previous reports have indicated limited amino acid conservation
occurring in the C-terminal end of *D. melanogaster* odorant receptor (DmOr) peptides, including a nearly invariable tryptophan residue [2, 24, 25].

Using a hidden markov model based program called multiple em for motif elicitation (MEME) [26], we have discovered three C-terminal motifs in 76 of the 79 previously annotated *An. gambiae* odorant receptor peptides [4]. Subsequent analysis indicates that these motifs are conserved within the odorant receptor peptides of *D. melanogaster* and *Ap. mellifera* [6]. This is significant given that it has been reported that insect odorant receptor peptides are highly divergent within and between species [2-4]. For example, the amino acid identity between insect odorant receptors of the same species is only 17% in some cases [25]. We hypothesize that these motifs are protein-protein interaction sites involved in odorant receptor-odorant receptor interactions or potentially heterodimer formation between *DmOr83b* and other odorant receptors.

2.3: Materials and Methods

Alignment of *An. gambiae* odorant receptor peptides with ClustalW. All 79 *An. gambiae* odorant receptor peptides [4] were aligned using ClustalW v1.83.1 [27]. Default parameters were used (multiple alignment gap opening penalty = 10, gap extension penalty = 0.2). Alignments were illustrated using the Jalview java alignment editor [28].
Motif discovery in odorant receptors peptides using MEME. *An. gambiae* and *Ap. mellifera* odorant receptor peptide sequences were obtained from the supplementary material of two separate studies [4, 6]. Fifty-nine *D. melanogaster* odorant receptor peptides were obtained from the Ensembl database (http://www.ensembl.org) and were used in the analysis. The program multiple em for motif elicitation (MEME) [26](http://meme.sdsc.edu/meme/) version 3.5.1 was compiled on a Macintosh computer running Mac OS 10.4.8. Each MEME analysis was run with peptide data set from each species as input. For all three data sets MEME was run using the following command line: meme dataset_name -protein -mod zoops -minw 15 -maxw 45 -wg 8 -ws 0.2 -evt .00001 -nmotifs 8. The program command call is meme, while dataset_name identifies the input dataset, -protein indicates the dataset contained peptide sequences, and -mod defines the search model. The remaining parameters were -minw, which sets the minimum possible motif width at 15 residues, -maxw, which sets the maximum possible motif width at 45 residues, -wg, which is the gap opening penalty, -ws, which is the gap extension penalty, -evt, which is the maximum e-value for a motif to be reported, and -nmotifs, which indicated the number of motifs that are searched for in the input dataset. Gap opening and extension penalties were reduced from the default values of wg=11 and ws=1 to wg=8 and ws=0.2 to reduce artificial breakup of the motifs due to small insertions or deletions. In addition to
searching for the top 3 motifs as set by default, -nmotifs 8 was used to determine whether more than three motifs existed in each dataset.

MAST searching of *An. gambiae* gustatory receptor peptides for odorant receptor motifs. The motif alignment and search tool (MAST) [29], another program in the MEME package, was used to search for AgOr motifs in all 76 *An. gambiae* GRs [4]. MAST version 3.5.1 was installed as part of the MEME package (see above). Command line used for MAST was: mast motif_matrices_found_by_meme –d database_of_AgGrs. The motif_matrices_found_by_meme are the profile matrices of the motifs found in a previous MEME analysis and they effectively define the motifs. These matrices were used to search the database_of_AgGrs, where AgGrs stands for *An. gambiae* gustatory receptors. No other parameters were used.

Weblogo diagrams. All weblogo diagrams were constructed using the weblogo program [30] (http://weblogo.berkeley.edu/). MEME output includes BLOCKS of the motifs. If an odorant receptor peptide sequence was found to have a motif, the part of the peptide sequence that contains that motif was used in an alignment, which produced an aligned BLOCK. The aligned BLOCK was used to construct weblogos.
2.4: Results

2.4.1: ClustalW alignments of *An. gambiae* odorant receptors

An alignment of all 79 *An. gambiae* odorant receptor (AgOr) peptides using the multiple sequence alignment program ClustalW [27] revealed very little strict sequence conservation (Figure 2.1). There were a small number of conserved or highly prevalent residues located in the C-terminal region (Figure 2.1, blue-colored residues). One of these highly conserved residues is a tryptophan residue found in all but four AgORs. The lack of strict sequence conservation in AgORs, and the prevalence of the conserved tryptophan residue is consistent with what has been previously reported for DmOr peptides [25].

2.4.2: MEME identifies c-terminal motifs in *An. gambiae* odorant receptors

To locate conserved patterns a hidden markov model based program named multiple em for motif elicitation (MEME) was used [26]. MEME has been used to locate potential regulatory sites in sequences upstream of genes [31], potential protein-protein interaction domains [32], and homologous genes missed by homology search [33]. One key advantage of MEME over common alignment programs is its ability to find motifs that are not absolutely conserved in consensus sequence. Other advantages of MEME are its speed, no need for prior knowledge about a dataset, and
its ability to locate motifs that may not be in the same order through all members of a dataset.

All 79 AgOr peptides were used as input for MEME run using a gap opening penalty of eight and a gap extension parameter of 0.2. Three motifs were identified within the dataset all with highly significant e-values (4.2e^{-401}, 4.5e^{-367}, and 1.1e^{-332}) (Figure 2.2, Table 2.1). All three motifs were present within the last 70 or 90 amino acid residues of the C-terminal end of AgOr peptides, and 76 out of 79 (96%) AgOr peptides had all three motifs. The order of the motifs from N-terminal to C-terminal is motif 3, motif 2, and motif 1. MEME numbers the motifs according to their relative e-values with motif 1 having the best e-value. In subsequent discussions, the three motifs are referred to as motif A, motif B, and motif C, with motif A being furthest of the three from the C-terminus and motif C being the closest to the C-terminus. This naming system is used to allow meaningful comparison between results from different species where these motifs have different ranks of e-values relative to each other. The combined p-value of finding all of the identified motifs in a given odorant receptor peptide in the dataset ranged from 2.49e^{-12} to 2.62e^{-38}. The combined p-value was the probability of finding a match of a sequence in the dataset to a group of motifs by random chance (Figure 2.2). Significantly, AgOr7, the mosquito ortholog of DmOr83b, has all three motifs at the C-terminal end (Figure 2.2, asterisk). When the number of motifs for MEME was increased to search for from three to eight motifs, only one
additional motif was found with a significant distribution (2.9e-295, present in 63 of 79 AgOr peptides). This motif had limited sequence conservation with the notable exception of a histidine residue located approximately 70 residues to the N-terminal of An. gambiae motif A.

Weblogo diagrams of motif A (Figure 2.3A), motif B (Figure 2.3B) and motif C (Figure 2.3C) illustrate the level of amino acid conservation within each motif at each position [30]. It is apparent from the weblogo diagrams that only a small portion of each motif consists of highly prevalent residues although there are additional areas where the chemical properties of the residues such as hydrophobicity, charge, and side chain structure are conserved. For example, in motif B of An. gambiae (Figure 2.3B) residue 1 and 2 are predominately positively charged residues while residues 4, 6, 7, and 8 are hydrophobic. The most highly conserved residues in the AgOr motifs are the tryptophan residue in motif A (Figure 2.3A), and a tyrosine/serine dyad in motif C (Figure 2.3C) mentioned above.

2.4.3: Odorant receptor c-terminal motifs are not found in gustatory receptors

Insect gustatory receptors are another family of putative G-protein coupled receptors. Insect gustatory receptors and odorant receptors are the closest relatives to each other in evolutionary terms [24, 34]. DmGr21a in D. melanogaster is able to confer response to carbon dioxide [35] in conjunction with DmGr63a [36, 37]. The motif
alignment and search tool (MAST) [29] was used to search for the previously identified AgOr motifs in all 76 An. gambiae GRs [4]. The best hit showed an e-value of 0.033 for a motif in the C-terminal region of one gustatory receptor. The poor e-value of the hit as well as further manual inspection suggests that it is not a true match. Thus this analysis indicates that the AgOr motifs are specific to odorant receptors and not a feature of G-protein coupled receptors.

2.4.4: Odorant receptor c-terminal motifs are found in D. melanogaster and Ap. mellifera odorant receptors

A DmOr peptide database of 59 DmOrs was used as input into MEME to determine if any similar motifs existed in these odorant receptors. This analysis revealed three motifs found in the C-terminal end of a vast majority of these peptides (Table 2.1). All three motifs were found in 54 of 59 (92%) DmOrs. As was the case in AgOr peptides these three motifs are in the same order in all DmOr peptides. A side-by-side comparison of the weblogo diagrams from motifs A and B in both species reveals obvious similarities in sequence (Figure 2.3A and Figure 2.3B). Most significant is the highly conserved tryptophan residue in motif A of both species. Part of motif A in DmOr peptides has been previously identified as the sequence of Phe-Pro-X-Cys-Tyr-(X)20-Trp [25]. The analysis showed several additionally conserved residues such as a glycine (residue 9) and a tyrosine/phenylalanine (residue 24). Motif C is very similar in both species in terms of their sequences and boundaries (Figure 2.3C).
Eight motifs were found in _Ap. mellifera_ odorant receptor peptides (AmOr). Three of the motifs are apparent orthologs to the dipteran motifs A, B, and C (Table 2.1 and Figure 2.3) both in terms of their sequence and relative location. Among the eight AgOr motifs, motifs A, B, and C ranked as number 1, 4, and 2 in terms of the significance of their respective e-values. The motif that had the third best e-value was near the middle of the receptor peptide, and is not shared with the dipteran receptors. Motifs ranked number 5 to 8 appear to have limited distribution in subgroups of AmOr peptides, and thus are not universal motifs in all AmOrs. These motifs are not further discussed in this paper. All three motifs are present in 147 of 170 (86%) AmOr peptides (Table 2.1 and Figure 2.3). Motifs A, B, and C in AmOrs share similar sequence with dipteran Motifs A, B, and C respectively (Figure 2.3). For example there is a highly prevalent glycine residue followed by two variable residues, and then a highly prevalent leucine residue in motif A of all three species in addition to the conserved tryptophan residue. AmOr motif C is again very similar to the dipteran motifs (Figure 2.3C). However, instead of a tyrosine/serine dyad there is a phenylalanine/serine dyad in AmOr. The MEME analysis has therefore found three C-terminal motifs that are located in _An. gambiae_, _D. melanogaster_ and _Ap. mellifera_ odorant receptor peptides. Most of the residues in these motifs are not highly conserved, but several are highly prevalent across these diverse insect species.
2.5: Discussion

Three motifs were located in the C-terminal ends of the odorant receptor peptides of three divergent insect species *An. gambiae*, *D. melanogaster*, and *Ap. mellifera* using a hidden markov model program. Table 2.1 lists the number of odorant receptors containing these motifs in each species, the e-value of the motifs, and the prevalent amino acid sequences of these motifs. The vast majority of insect odorant receptor peptides analyzed contain these C-terminal motifs. This is interesting considering that insect odorant receptor proteins are a very diverse family having very little conservation between species or within one species [2, 3, 7, 25]. These motifs were not found in *An. gambiae* GRs despite the close evolutionary relationship between the odorant receptor and GR families [24, 34].

Although all of the motifs described above had wide distribution in odorant receptors of the three species, motif B was not present in a small, but significant number of odorant receptors, especially in *Ap. mellifera* (Table 2.1). The absence of motif B may be explained by either technical or biological reasons, or both, as described below. Eleven of the 18 AmOrs lacking motif B had incomplete C-termini in current annotation, and two of the peptides were clearly pseudogenes [6]. Motif B was also not found in *AmOr2*, which is the honeybee ortholog of *DmOr83b*. However, a close inspection of the *AmOr2* sequence revealed no amino acid substitution in the motif B region in comparison with *DmOr83b* and one substitution in comparison with
AgOr7 (Figure 2.4). Therefore, sequence variation between motif B of the three species may explain why nearly identical sequences were recognized as motif B in DmOr83b and AgOr7 but not in AmOr2. Motif B was also lacking in two AgOrs and four DmOrs. Motif B was not as well conserved as the other two motifs (Figure 2.3). It is possible that the specific sequence of motif B is not as important as the chemical or structural properties of the residues in this motif. In comparing motif B in all three insect species (Figure 2.3B), some amino acid residues are present that are highly variable, but most of the residues in this region are hydrophobic in character. This conservation of hydrophobicity in these five residues may be functionally significant, while at the same time are difficult to be recognized by computer programs. It is also possible that motif B serves a role in enhancing a biological process, but is not absolutely required. For example, based on the working hypothesis that these C-terminal motifs are involved in protein-protein interactions, odorant receptor proteins lacking motif B might have a lower binding efficiency.

Having identified these motifs it is appropriate to ask why these motifs are present in the highly diverse insect odorant receptor family? As mentioned above, one possibility is that these motifs are involved in protein-protein interactions. There have been many efforts to identify protein-protein interaction sites through in silico methods, which resulted in the identification of several key characteristics. Protein-protein interaction sites are exposed on the surface of proteins and are hydrophobic, circular,
and protruding [38-41]. Within these interaction areas are small “hot-spots” of a few residues contributing greatly to the overall binding energy of protein-protein interactions [42]. In one survey it was found that tryptophan, tyrosine, and arginine are highly prevalent in these “hot-spots” [43]. Another study reported that tryptophan, phenylalanine, and methionine residues are significantly conserved in binding sites, but not on other exposed surfaces of proteins [44]. Highly conserved and prevalent tryptophan, tyrosine, phenylalanine, and arginine residues were located in the C-terminal motifs of odorant receptors (Figure 2,3). We hypothesize that these motifs are protein-protein interaction sites, which would explain the conservation of only a few residues across the highly diverse insect odorant receptor protein family.

Unfortunately, at present there is no X-ray crystal structure of any insect odorant receptor or gustatory receptor that may illuminate the exact positioning of the newly discovered motifs and their potential role in protein-protein interaction. Hydrophobicity analysis can be useful at least in determining where residues are in relation to transmembrane helices. In this study the TMHMM server (http://www.cbs.dtu.dk/services/TMHMM/) was used to predict the transmembrane helices of five odorant receptors each from An. gambiae, D. melanogaster, and Ap. mellifera along with DmOr83b (data not shown). Motif A in all three species was found within helix 6, and perhaps part of the helix 6-7 loop. The difficulty of pinning down the exact positioning of helix 7 in particular makes this conclusion hard to draw unequivocally. It also makes
further analysis of the positions of motif B and C uninformative except the supposition that these motifs lie near or in helix 7.

The vast majority of these insect odorant receptors maintained these motifs across hundreds of millions of years of evolution. This is impressive considering that the identity between insect odorant receptor peptides of the same species in some cases is as low as 17% [25]. These motifs have several highly conserved amino acids that were identified as being important in protein-protein interactions in other models. It is possible that these motifs allow odorant receptor-odorant receptor interactions as has been reported in vitro [21]. A more tantalizing prospect is that all or some of these motifs are involved in the formation of a heterodimer complex between *DmOr83b* or its ortholog and other odorant receptors [21, 23], a hypothesis that may be tested experimentally.

Acknowledgements

We thank the anonymous reviewers for their comments. This work was supported by a NIH grant AI063252 to Z. Tu.
Abbreviations

multiple em for motif elicitation, MEME; motif alignment and search tool, MAST;

Drosophila melanogaster odorant receptor, DmOr; *Anopheles gambiae* odorant receptor, AgOr; *Apis mellifera* odorant receptor, AmOr
2.6: Figures

Figure 2.1: Multiple sequence alignment of the C-terminal region of all 79 *Anopheles gambiae* odorant receptors. AgOr peptides were aligned using ClustalW, and the subsequent alignment visualized using Jalview. A residue present at a given site in 50% or more of the AgOr peptides is boxed in blue. The more intense the blue the more often the residue is found at that site. Only the C-terminal region of the alignment is shown. The positions of motifs A, B, and C are shown. These motifs were not identified using alignment shown here. Instead they were identified using MEME. See Table 2.1 and Figure 2.3 for details.
Figure 2.2: C-terminal motifs found in *Anopheles gambiae* odorant receptors. The image was taken directly from the MEME output and shows the position of three C-terminal motifs located in the first 20 AgOr peptides. Only the first 20 AgOrs were shown to save space. The asterisk points to AgOr7, which is the *An. gambiae* ortholog of *DmOr83b*. The combined p-value is the probability of finding a match of a sequence in this dataset to a group of motifs by random chance.
<table>
<thead>
<tr>
<th>Name</th>
<th>Combined p-value</th>
<th>Motifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgOr1</td>
<td>2.49e-12</td>
<td>A</td>
</tr>
<tr>
<td>AgOr2</td>
<td>1.89e-26</td>
<td>B</td>
</tr>
<tr>
<td>AgOr3</td>
<td>9.97e-34</td>
<td>C</td>
</tr>
<tr>
<td>AgOr4</td>
<td>2.73e-22</td>
<td>A</td>
</tr>
<tr>
<td>AgOr5</td>
<td>3.52e-33</td>
<td>B</td>
</tr>
<tr>
<td>AgOr6</td>
<td>3.95e-21</td>
<td>C</td>
</tr>
<tr>
<td>AgOr7</td>
<td>1.84e-18</td>
<td>A</td>
</tr>
<tr>
<td>AgOr8</td>
<td>1.50e-17</td>
<td>B</td>
</tr>
<tr>
<td>AgOr9</td>
<td>3.63e-14</td>
<td>C</td>
</tr>
<tr>
<td>AgOr10</td>
<td>1.44e-25</td>
<td>A</td>
</tr>
<tr>
<td>AgOr11</td>
<td>7.29e-21</td>
<td>B</td>
</tr>
<tr>
<td>AgOr12</td>
<td>5.58e-26</td>
<td>C</td>
</tr>
<tr>
<td>AgOr13</td>
<td>1.85e-37</td>
<td>A</td>
</tr>
<tr>
<td>AgOr14</td>
<td>8.17e-29</td>
<td>B</td>
</tr>
<tr>
<td>AgOr15</td>
<td>5.02e-37</td>
<td>C</td>
</tr>
<tr>
<td>AgOr16</td>
<td>2.62e-38</td>
<td>A</td>
</tr>
<tr>
<td>AgOr17</td>
<td>1.30e-31</td>
<td>B</td>
</tr>
<tr>
<td>AgOr18</td>
<td>4.78e-34</td>
<td>C</td>
</tr>
<tr>
<td>AgOr19</td>
<td>5.58e-26</td>
<td>A</td>
</tr>
<tr>
<td>AgOr20</td>
<td>1.35e-25</td>
<td>B</td>
</tr>
</tbody>
</table>

SCALE

| | 1 | 25 | 50 | 75 | 100 | 125 | 150 | 175 | 200 | 225 | 250 | 275 | 300 | 325 | 350 | 375 | 400 | 425 | 450 |
|--------|
Figure 2.3: Weblogo presentation of motifs A, B, C in *Anopheles gambiae*, *Drosophila melanogaster*, and *Apis mellifera* odorant receptor peptides. Each line contains weblogo diagrams for motifs A, B, or C in one species. Weblogo diagrams indicate the prevalence of amino acids at specific positions. A). Weblogo presentation of motif A in all three species. B). Weblogo presentation of motif B in all three species. C) Weblogo presentation of motif C in all three species. Shown are weblogo diagrams indicating the prevalence of amino acids at specific positions in each motif.
Motif B

An. gambiae

D. melanogaster

Ap. mellifera
Motif C

An. gambiae

D. melanogaster

Ap. mellifera
Figure 2.4: Conservation at the C-terminal regions of \(DmOr83b \) and its orthologs. Shown here is a ClustalW alignment of the last ~90 amino acid residues of the \(Or83b \) family members in \(Drosophila melanogaster \) (\(DmOr83b \)), \(Anopheles gambiae \) (\(AgOr7 \)), and \(Apis mellifera \) (\(AmOr2 \)). The relative position of motifs A, B, and C are shown.
2.7: Table

Table 2.1: Three conserved C-terminal motifs in mosquito, fruit fly, and honeybee OR peptides.
<table>
<thead>
<tr>
<th></th>
<th>Motif 1</th>
<th>No. of ORs Containing Motif 2</th>
<th>Motif E-value 3</th>
<th>Prevalent Amino Acid Sequence 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>An. gambiae</td>
<td>Motif A</td>
<td>78/79</td>
<td>1.1e-18</td>
<td>GTINLETX[K][I][S][N][E][V][I][A][D][A][L][V][S][]</td>
</tr>
<tr>
<td></td>
<td>Motif B</td>
<td>77/79</td>
<td>4.5e-20</td>
<td>[Q][R][K][L][R][F][R][I][M][I][I][H][M][A][S][K][P][L][V][G][]</td>
</tr>
<tr>
<td></td>
<td>Motif C</td>
<td>79/79</td>
<td>4.2e-40</td>
<td>[V][M][S][I][L][E][T][L][F][A][X][I][V][L][V][T][K][S][Y][F][F][I][M][L][H][S]</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>Motif A</td>
<td>59/59</td>
<td>6.0e-36</td>
<td>[Q][E][L][T][F][P][L][Y][C][Y][Y][A][N][T][L][I][I][V][X][E][S][E][X][I][V][A][X][A][A][L][Y][F][S][S][N][W][Y]</td>
</tr>
<tr>
<td></td>
<td>Motif B</td>
<td>54/59</td>
<td>1.1e-27</td>
<td>[Y][R][K][R][K][X][L][L][F][F][F][I][M][M][R][A][S][Q][R][K][O][V][X][L][I][I][K][R][T][A][G]</td>
</tr>
<tr>
<td></td>
<td>Motif C</td>
<td>59/59</td>
<td>1.7e-24</td>
<td>[S][N][L][M][X][T][F][X][A][S][I][V][L][H][I][A][S][Y][F][I][T][A][L][L][R][K][S][M]</td>
</tr>
<tr>
<td>Ap. mellifera</td>
<td>Motif A</td>
<td>164/170</td>
<td>6.8e-107</td>
<td>[G][Q][E][D][I][L][E][D][E][G][S][C][X][N][E][I][V][O][A][N][V][Y][M][S][N][W][Y]</td>
</tr>
<tr>
<td></td>
<td>Motif B</td>
<td>152/170</td>
<td>3.7e-105</td>
<td>[K][L][D][L][I][V][I][M][R][S][N][X][P][C][K][L][T][A][G][K][G][L][I][F]</td>
</tr>
<tr>
<td></td>
<td>Motif C</td>
<td>160/170</td>
<td>4.8e-106</td>
<td>[D][L][M][V][S][L][T][F][T][G][S][L][I][I][K][S][T][S][A][F][S][Y][L][F][N][T][L][V][L][R]</td>
</tr>
</tbody>
</table>

Notes:
1. The naming of motifs A, B, and C is described in the Results section. They are from N- to C- terminus.
2. The number of ORs containing a given motif is given as a fraction of the total number of ORs in a species.
3. An estimate of the likelihood of each motif being found in the dataset by random chance.
4. The sequences are from MEME output and they reflect the amino acid residues that are most frequent at these positions. For example, having a G in the output sequence does not mean that all ORs of that species will have a G residue at that position. A [] indicates more than one amino acid residue is frequent at this position.
2.8: References

34. Clyne PJ, Warr CG, Carlson JR: Candidate taste receptors in *Drosophila*. *Science* 2000,
287:1830-1834.
Chapter 3. Duplication and differential expression of genes in an odorant receptor gene cluster in mosquitoes

3.1: Abstract

Introduction

The current model of insect olfactory signaling, derived mostly from work on *Drosophila melanogaster*, suggests that a critical step is the recognition of odors by cognate odorant receptors (ORs). In addition to *D. melanogaster*, a number of ORs have been identified in several insect genomes including those of the Africa malaria mosquito *Anopheles gambiae*. With a few exceptions, insect ORs are highly divergent within and between species, suggesting that these genes may be rapidly evolving. Most comparative work involving insect ORs has been done between highly divergent species with sequenced genomes. Comparative genomics analysis targeted at OR gene clusters from closely related *Anopheles* species provides an opportunity to evaluate evolution and function of these genes in mosquitoes.

Results

Here we report the isolation and characterization of genes in the genomic regions that contain the Or2/Or10 gene cluster in *An. stephensi* and *An. quadriannulatus*. Multi-species comparison of these orthologous regions in *An. gambiae*, *An. quadriannulatus*, and *An. stephensi* revealed highly conserved gene structure among the OR genes and a novel OR gene AsOr10x, which is only present in *An. stephensi*. AsOr10x showed a different expression pattern than AsOr2 and
AsOr10, the other members of this gene subfamily in An. stephensi. Therefore AsOr10x might be adapting or has adapted a new function. Analysis of the phylogeny and physical location of all known members of the Or2/Or10 gene subfamily in Anopheles, Aedes, and Culex mosquitoes suggest that a few events of gene duplication and loss resulted in the current gene distribution.

Conclusion

We have identified and characterized five OR genes from An. stephensi and An. quadriannulatus, which are all members of the Or2/Or10 gene subfamily. This gene subfamily has expanded in mosquito species through at least three duplication events when compared with fruit flies. More importantly, by comparing closely related species of the same genus, we were able to identify a gene duplication event (Or10 and Or10x) that produced two differentially expressed OR genes that may have adapted different functions. This study demonstrates that OR gene duplication and loss can occur in closely related Anopheles mosquitoes, which may provide them with a rapidly changing gene set that could facilitate adaptation. In the long term, comparative analysis of OR gene clusters will help illustrate the underlying mechanism of behavioral differences between Anopheles mosquitoes.

3.2: Introduction
Mosquitoes transmit a number of pathogens that cause infectious diseases such as malaria, yellow fever, dengue fever, and West Nile encephalitis. These pathogens are transmitted when a female mosquito bites a host to extract blood for egg development. Most malaria vectors belong to the genus *Anopheles* and many are members of species complexes that include sibling species that are isomorphic or morphologically similar [1]. *Anopheles gambiae*, the primary malaria vector in Sub-Saharan Africa, is the founding member of the *An. gambiae* species complex that includes six additional reproductively isolated cryptic species, *An. arabiensis*, *An. bwambiae*, *An. merus*, *An. quadriannulatus* A, and *An. quadriannulatus* B [2, 3]. The *An. gambiae* species is referred to as *An. gambiae* sensu stricto, or *An. gambiae* s.s. (*An. gambiae* hereafter). Members of this species complex show differential host preferences [4, 5]. *An. gambiae* is highly anthropophilic, attracted to humans over other vertebrates such as cattle [2, 6, 7]. *An. quadriannulatus* has been reported as either highly zoophilic, preferring animals to humans [2, 5] or opportunistic [8, 9]. *An. stephensi*, the Asian malaria mosquito, is in the same subgenus Cellia as the *An. gambiae* species complex [10]. *An. stephensi* is attracted to humans, but it has also been shown to be attracted to large amounts of CO$_2$ and 1-octen-3-ol indicating an attraction to cattle [11]. There are several reports attempting to identify the specific odorants involved in attraction of these and other mosquito species to different host species [11-14].
Odorant binding directly or indirectly to odorant receptors (ORs) is thought to be the key step in insect olfactory signaling [15]. Insect ORs were first discovered in *Drosophila melanogaster* through bioinformatic approaches [16-18]. Insect ORs have been reported in the past to be putative G-protein coupled receptors (GPCRs) [16, 17, 19], but recently this classification has been questioned [20-22]. Subsequent studies in *D. melanogaster* have begun to identify the ligands bound by these receptors. One study in particular has identified potential ligands for most of the *D. melanogaster* ORs [23]. The identification of *Drosophila* ORs has helped in the identification of OR genes in several additional insect species including *An. gambiae* [19, 24, 25], *Aedes aegypti* [26, 27], *Bombyx mori* [28-30], *Apis mellifera* [31], and *Heliothis virescens* [32, 33]. With a few exceptions, insect ORs are highly divergent within and between species. Several mosquito [34], moth [28, 29], and honeybee [35] ORs have identified ligands. In mosquitoes there have been lineage specific expansion of some OR gene families and many ORs are physically clustered (e.g., [19, 27]). We are interested in using comparative genomics targeted at mosquito OR gene clusters to identify potential gene regulatory elements, and to shed light on evolutionary mechanism(s) of OR gene expansion/loss within a cluster. In the long term such comparative analysis will help illustrate the underlying mechanism of behavioral differences between closely related insect species such as the mosquitoes of the *An. gambiae* species complex and the Cellia subgenus.
The *An. gambiae* Or2 (*AgOr2*) gene cluster contains two genes, *AgOr2* and *AgOr10*, which form a monophyletic clade that is related to *DmOr43a*, a *D. melanogaster* homolog [19, 24]. The potential ligands of both *AgOr2* and *DmOr43a* have been identified in several studies [34, 36, 37]. Thus we decided to initiate a comparative genomics study of the Or2 gene cluster in different mosquito species to trace the evolutionary history of this gene cluster. We have screened bacteria artificial chromosome (BAC) DNA libraries to locate the Or2 gene cluster in two other mosquito species, *An. stephensi* and *An. quadriannulatus*. Comparative analysis between *An. gambiae*, *An. quadriannulatus*, and *An. stephensi* as well as *Ae. aegypti* and *Culex pipiens quinquefasciatus* suggest that genes within the Or2 cluster have undergone at least three duplication events. We have also identified a new member of the Or2/Or10 gene subfamily, which is found only in *An. stephensi*. This gene, which we named *AsOr10x*, has a different expression profile than the other genes in the Or2/Or10 subfamily, indicating it might have adapted or is adapting a new function. This study demonstrates that OR gene duplication and loss can occur in closely related *Anopheles* mosquitoes. Thus the birth-and-death process as described for *Drosophila* OR genes [38] may also be used in mosquitoes which provides a rapidly changing gene set that could facilitate adaptation.
3.3: Results

3.3.1: Identification and annotation of the Or2 gene cluster in *An. stephensi* and *An. quadriannulatus*

We designed gene specific primers to amplify a 209bp region of the third exon of AgOr2. Polymerase chain reaction (PCR) products were successfully obtained using the above primer set and *An. gambiae* and *An. stephensi* genomic DNA as the templates. Sequencing confirmed that the PCR products are derived from Or2 genes in their respective species and they are 85.9% identical to each other. The Or2 fragment obtained from *An. stephensi* was then labeled with digoxigenin (DIG) in an asymmetric PCR reaction. The labeled probe was used to screen BAC DNA libraries created from *An. stephensi* and *An. quadriannulatus* genomic DNA. In the *An. quadriannulatus* BAC library we identified five positive clones among 9,216 clones screened. In the *An. stephensi* BAC library we identified six positive clones among 18,432 clones screened. Amplicon Express (Pullman, WA) sequenced one positive clone from each library. Sequencing of the *An. quadriannulatus* BAC colony insert produced approximately 148 kb of DNA sequence in five contigs. The *An. stephensi* BAC clone insert produced approximately 102 kb of DNA sequence in four contigs.

We used the program mVISTA [39] to perform global nucleotide alignments of the Or2 clusters in *An. gambiae* (AgOr2), *An. stephensi* (AsOr2), and *An. quadriannulatus* (AqOr2) (Figure 3.1). The presence of well aligned Or2 and Or10 as well as neighboring genes suggest that the two sequenced BACs are orthologous to
the reference AgOr2 cluster. Fluorescent *in situ* hybridization (FISH) results of An. *stephensi* polytene chromosomes have shown that the positive An. *stephensi* BAC hybridizes specifically to the 3R chromosome (band 3R:31B) (Igor Sharakhov, Virginia Tech, personal communication). This suggests all An. *stephensi* Or2/10 genes are localized at one discrete loci, and that our sequencing of one BAC clone provides us with all An. *stephensi* Or2/10 sequences. The BAC that contains AqOr2 showed an approximately 90% identity on average at the nucleotide level to the AgOr2 region with an even higher conservation in the areas predicted to be genes. There are several areas of sequence that have no detectable conservation between An. *gambiae* and An. *quadriannulatus*, which represents insertion/deletions (indels) between the two species (Figure 3.1). The BAC that contains AsOr2 showed an average 85% nucleotide conservation in predicted coding sequences of the AgOr2 region, but there are several areas where indels are present. One of these is a 3.35kb indel immediately downstream of the predicted AsOr10 gene (Figure 3.1, black bar). This indel is present in An. *stephensi*, but not in either An. *gambiae* or An. *quadriannulatus*. tBLASTn [40] analysis indicates this region is significantly similar to AgOr10 with an e-value of 6.0 x10-49, thus this may be a duplicated paralog of Or10. Further tBLASTn analyses using the peptide sequences of AgOr2 and AgOr10 as well as the other 77 An. *gambiae* ORs as query against the entire BAC sequences of both species revealed no additional OR sequences. Thus we have found one Or2 and one Or10 gene in An.
quadriannulatus, and one Or2 and two Or10 genes in An. stephensi. The copy of the
An. stephensi Or10 nearest to AsOr2 is phylogenetically closer to AgOr10 than the
other copy (see phylogenetic analysis below). Thus we named the two An. stephensi
Or10 genes AsOr10 and AsOr10x respectively. AsOr10x had a premature stop codon in
the predicted exon 2 according to the BAC sequence. To verify this, we sequenced
PCR products covering the AsOr10x coding region, which were obtained by using An.
stephensi genomic DNA as template. These sequencing results revealed that the An.
stephensi BAC DNA sequence was missing a 109bp piece that resulted in an artificial
stop codon in exon 2 of the AsOr10x gene. This is likely due to a mis-assembly of our
BAC DNA sequence. The corrected AsOr10x sequence is used in all subsequent
analysis. We performed additional PCR with An. stephensi genomic DNA as template
using a primer based in the AsOr10 coding sequence and another primer based in the
AsOr10x coding sequence. We were able to obtain a PCR product consistent with the
positions of AsOr10 and AsOr10x genes as predicted. Thus AsOr10x is not an artifact
of sequencing or sequence assembly.

AsOr2 and AsOr10 showed 94.1% and 93.9% amino acid identity to their
respective An. gambiae homologs (Table 3.1). AsOr10x showed 77.7% amino acid
identity to AsOr10, which is significantly higher than the 51.2% amino acid identity it
shares with AsOr2. AqOr2 and AqOr10 showed higher amino acid identities at 98.7%
and 99.7% to their respective An. gambiae homologs. It is important to note there is a
sequencing/assembly gap in our AqOr2 BAC sequence, which is predicted to be approximately 2kb according to the Amplicon Express assembly. This 2kb region is located in the sixth (last) intron of the AqOr2 gene. We have represented this region in Figure 3.2 as a dashed wedge.

3.3.2: Phylogenetic and genomic analyses suggest multiple duplication events in the mosquito Or2 gene subfamily.

Phylogenetic analysis of mosquito Or2 and Or10 peptides was performed to illuminate the evolutionary relationship between AsOr10x and other members of the Or2 gene subfamily. Included in this analysis were the peptide sequences of the Or2 and Or10 genes of An. gambiae, An. quadriannulatus, An. stephensi, Ae. aegypti, and C.p. quinquefasciatus. The Ae. aegypti OR genes were just recently reported [27], and the C.p. quinquefasciatus OR genes were obtained from the newly released genome assembly (http://cpipiens.vectorbase.org/SequenceData/Genome/). Detailed information regarding exon/intron boundaries of all mosquito Or2/10 genes were obtained using the programs GeneQuest (DNASTAR, Inc. Madison, WI) and Genewise [41], along with comparisons to current annotations, and our subsequent cDNA cloning. Exon/intron boundaries were confirmed by sequence data obtained from reverse transcription polymerase chain reaction (RT-PCR) experiments discussed below. The structure of all Or2, Or10, and Or10x genes is very similar (Figure 3.2). All of these genes except CpOr2 have the same first and last introns suggesting they are
ancestral to this subfamily. Introns are typically very small at 60-80 bp with a few exceptions. The peptide sequences coded by these genes and *DmOr43a*, the *D. melanogaster* ortholog of the *Or2* gene subfamily were aligned using ClustalX [42] (Figure 3.3). The alignment showed high amino acid conservation overall, which may be a characteristic of these closely related mosquito species. *DmOr30a, DmOr49b, AgOr21, AgOr26*, and *AgOr53* peptide sequences were then added as outgroup sequences and all sequences were realigned [19, 24].

Phylogeny was inferred from this alignment using the Bayesian program MrBayes [43]. It is clear that *DmOr43a* and the mosquito *Or2* (*Or2/Or10*) gene subfamily form a well-supported monophyletic clade (Figure 3.4A). Within the mosquito *Or2* (*Or2/Or10*) gene subfamily, *Or2* and *Or10* form two distinct clades. There is a single copy of the *Or2* gene in each mosquito species, and the phylogeny of the *Or2* genes perfectly reflects the mosquito phylogeny [10, 44]. In the *Or10* clade, there are two *Or10*-type genes in *An. stephensi, Ae. aegypti* and *C.p. quinquefasciatus*. For the two *Ae. aegypti* ORs in the *Or10* clade, we are using the nomenclature of Bohbot et al. [27], which referred to them as *AaOr9* and *AaOr10*. It appears that there are at least three gene duplication events that are responsible for the current distribution of genes in the *Or2* gene cluster. The first duplication (D1, Figure 3.4A) created the *Or2* and *Or10* clades, which happened after the separation between *D. melanogaster* and the Culicidae. The second and third duplications (D2 and D3, Figure
3.4A) happened after the separation between Culicinæ (Aedes/Culex) and Anophelinae mosquitoes. One is responsible for duplicating Or10/Or10.1 and Or9/Or10.2 in Aedes/Culex species (D2, Figure 3.4A), and the other is responsible for duplicating Or10 and Or10x in the Anophelinae species (D3, Figure 3.4A). The Or10x gene appears to have been lost in An. gambiae and An. quadriannulatus. Gene conversion is unlikely as there are sufficient levels of divergence between the different Or2/Or10 genes within a given species (Table 3.1), and the relative similarities between these genes are higher in the exons than in the introns as expected (data not shown).

Figure 3.4B illustrates the current physical relationship of the Or2 gene cluster in An. gambiae, An. stephensi, and Ae. aegypti. The genes flanking Or2 and Or10 are conserved in all three species and they are in the same orientation. Therefore it is likely that these genes were present and linked in the last common ancestor of Anophelinae and Culicinæ. The different organizations of the Or2 cluster between An. gambiae and An. stephensi may be explained by a simple tandem duplication of the Or10 gene. The different organizations of the Or2 cluster between An. gambiae and Ae. aegypti is more difficult to deduce and may involve duplications as well as chromosomal inversions that did not effect the neighboring genes. There is also potentially another duplication occurring independently in the Culex lineage because there is a third Or10 gene in the current assembly of C.p. quinquefasciatus, which is decayed with multiple stop
codons. Given the number of stop codons in this sequence, we decided not to include it in further analysis.

3.3.3: Expression analysis of AsOr2, AsOr10, and AsOr10x and intron retention in AsOr10x.

The expression profile of AsOr2, AsOr10, and AsOr10x in An. stephensi mosquitoes at various time points was determined using non-quantitative RT-PCR (Figure 3.5 and Figure 3.6). Primer sequences are shown in Table 3.2 and the exons covered by these primers are illustrated in Figure 3.2. These time points were 1st instar larvae, pupae, 4-day-old sugar fed adult females, 4-day-old adult females that were 24 hr post blood feeding, and 4-day-old sugar fed adult males. Total RNA samples were obtained from dissected adults antenna, maxillary palp, and proboscis as well as whole larvae and pupae. AsOr2 and AsOr10 were found to have very similar expression patterns as far as could be determined with non-quantitative RT-PCR (Figure 3.5, Figure 3.6, and Table 3.3). Both genes were robustly expressed in adult antenna and maxillary palp/proboscis. Both genes were not expressed in adult bodies without appendages but appeared to be expressed in adult wings (data not shown). There is no apparent difference between males and females and between sugar-fed and blood-fed females. Both AsOr2 and AsOr10 were expressed in larvae and pupae although the mRNA level of AsOr2 appeared to be low in pupae (Figure 3.6). AsOr10x has a significantly different expression pattern from AsOr2 and AsOr10. The main
difference is that although AsOr10x is robustly expressed in adult antenna of male as well as sugar-fed and blood-fed females, it is not expressed in adult maxillary palp or proboscis (Figure 3.5). RT-PCR using AsOr10x primers revealed three products at 600bp, 510bp, and 450bp. Cloning and sequencing of AsOr10x RT-PCR products showed that the 600bp fragment was an AsOr10x product primed from genomic DNA contamination. The remaining two products were amplified from cDNA templates. The predominant 450bp product was from AsOr10x cDNA with all introns excised while the 510bp product was from AsOr10x cDNA with one intron retained (Figure 3.2 and Figure 3.5). The AsOr10x RT-PCR was repeated twice and the 510bp remained recognizable in both cases. The addition of the intron leads to a premature stop codon and this transcript could only code for a substantially smaller protein of 284 amino acids. Further experimentation is needed to determine if this transcript serves any biological role in olfactory perception.

3.4: Discussion

We have identified and characterized five OR genes in the Or2/Or10 cluster from An. stephensi and An. quadriannulatus through the use of BAC libraries. We have shown that the Or2/Or10 gene cluster has expanded in mosquito species through at least three duplication events when compared with fruit flies. Lineage-specific OR gene expansion has been previously noted when comparing An. gambiae with D.
melanogaster [19] and An. gambiae with Ae. aegypti [27] gene repertoires. However, even the comparison between the Anopheles and Aedes mosquitoes is between two divergent mosquito genera spanning 145-200 MYA of evolution. Thus the resolution or power of such comparisons are limited especially considering the fast-evolving nature of the OR gene family. A recent study, on the other hand, compared ORs from the 12 sequenced Drosophila genomes and identified frequent gains and losses of OR genes through a “birth-and-death” process [38]. Our current study focuses on the Or2 gene cluster and included both divergent and closely related mosquito species. We uncovered the complexity of gene duplication and loss that led to the current distribution and expansion of the cluster. In the case of Anopheles Or10 and Or10x genes, we have shown evidence of gene duplication and loss within closely related Anopheles mosquitoes. Such a process may provide mosquitoes with a rapidly changing gene set that could facilitate adaptation. Such duplication and loss could also result in lineage-specific and even species-specific distribution of OR genes. For example, AsOr10x is only found in the Asian malaria mosquito An. stephensi, not in An. gambiae or An. quadriannulatus. It is possible that our library screening has not uncovered all copies of Or2/Or10 in An. stephensi and An. quadriannulatus, but this is unlikely. Preliminary FISH data shows the localization of the An. stephensi Or2 BAC to one region on the 3R chromosome. In both the An. stephensi and An. quadriannulatus BACs there are conserved genes flanking the ORs found in all three species indicating
these are orthologous regions. One or both species may have additional Or2 and Or10 genes at different loci, but closely related OR genes in mosquitoes are located within gene clusters and are not randomly distributed throughout the genome [19, 27]. BAC Library screening of targeted ORs can allow us to identify targeted and closely related ORs in many mosquito species without the drawbacks of whole-genome sequencing.

Another interesting finding of this study is that the above mentioned gene duplication event appears to have created genes that are differentially expressed and thus these genes may have adapted different functions. The expression of AsOr2, AsOr10, and AsOr10x mRNA is persistent throughout the mosquito life cycle, appearing early in larvae and continuing to adults. Although AsOr2 and AsOr10 have accumulated significant differences in their amino acid sequences they have a similar expression pattern. However, AsOr10x has a different expression pattern in the adults compared with AsOr2 and AsOr10. In contrast to AsOr2 and AsOr10, AsOr10x is not expressed in the maxillary palp or proboscis. In *An. gambiae*, AgOr2 mRNA is detected in both male and females in the antenna and/or maxillary palp but not the proboscis [24]. AgOr10 mRNA is also expressed in antenna and/or maxillary palp, but there is no data as to if it is sexually dimorphic [19]. In *Ae. aegypti*, AaOr2 and AaOr10 are expressed in both male and female adult antenna, and additionally AaOr2 is present in larvae antenna [27]. AaOr9 mRNA is only found in larvae antenna. In contrast to the mosquito Or2/10 genes, the *D. melanogaster* ortholog, DmOr43a, is
expressed in pupae and in adult antenna, but not in larvae, not in adult maxillary palp, or proboscis [36, 45, 46]. The expression profile of members of the Or2/Or10 gene subfamily is summarized in Table 3.3. There is no obvious conservation of the expression profile of members of this subfamily [19, 24, 27].

Existing data suggest that members of the Or2/Or10/DmOr43a subfamily encode receptors that bind benzaldehyde [36, 37] and structurally similar compounds [34]. Studies have indicated that benzaldehyde generates an avoidance response in D. melanogaster that is not sexually dimorphic [47, 48], and this behavior is dependent on DmOr43a [46]. One behavioral report found that the presence of the structurally related chemical 2-methylphenol makes ovipositioning sites more attractive for both the mosquitoes Toxorhynchites moctezuma and Toxorhynchites amboinensis [49]. Another electrophysiological study confirms a response to 2-methylphenol in An. gambiae [50]. Further behavioral studies will be necessary to understand the biological context of these responses.

Another application of the comparative genomics analysis between gene sequences among closely related species is the identification of regulatory elements. Although we have not discussed it explicitly in this paper, our comparison of the upstream sequences of Or2/Or10 genes has revealed many conserved non-coding sequences, which may be the regulatory elements of these genes (data not shown). Only two papers report information on OR gene regulation. One of these papers
reports that the *D. melanogaster* Acj6 transcription factor regulates a subset of *D. melanogaster* OR genes [16]. The second and very elegant study identified several elements that contribute to tissue and neuron specificity of some *D. melanogaster* ORs [51]. This study took advantage of the completed expression profile of virtually all *D. melanogaster* ORs. As the expression profile as well as comparative genomics data accumulate, it will become feasible to systematically identify potential regulatory sequences that control mosquito OR gene expression. A better understanding of the evolutionary change of the OR gene repertoire as well as their regulation will shed light on the genetic basis of mosquito host-seeking behavior and thus contribute to the control of mosquito-borne infectious diseases.

3.5: Conclusions

We have identified and characterized five OR genes from *An. stephensi* and *An. quadriannulatus*, which are all members of the *Or2/Or10* gene subfamily. This gene subfamily has expanded in mosquito species through at least three duplication events when compared with fruit flies. More importantly, by comparing closely related species of the same genus, we were able to identify a gene duplication event (*Or10* and *Or10x*) that produced two differentially expressed OR genes that may have adapted different functions. This study demonstrates that OR gene duplication and loss can occur in closely related *Anopheles* mosquitoes, which may provide them with
a rapidly changing gene set that could facilitate adaptation. In the long term, comparative analysis of OR gene clusters will help illustrate the underlying mechanism of behavioral differences between Anopheles mosquitoes.

3.6: Experimental Procedures

BAC library construction, screening, and sequencing. Amplicon Express (Pullman, WA) prepared BAC libraries from genomic DNA of An. stephensi Indian strain and An. quadriannulatus using a previously reported method [52]. The An. stephensi BAC library constructed has clones with an average insert size of 125.0kb giving this library a 9x fold coverage. The An. quadriannulatus BAC library had clones containing an average insert size of 123.0kb giving this library a 17x fold coverage. Screening of both libraries was accomplished by using a randomly DIG-labeled single-stranded DNA probe. The template for the probe was a ~200bp region of the AsOr2 gene amplified by using the primers 2F1 5’ CCTGCTTTGTGACCTATC 3’ and 2R1 5’ GGCCGCTATCTGGACGAG 3’ and An. stephensi genomic DNA. The template, DIG DNA labeling mix (Roche Basel, Switzerland), primer 2F1, and Taq polymerase (Takara, Otsu, Japan) were used in an asymmetric PCR reaction that produced randomly DIG-labeled single-stranded probe. Probe concentration was determined by following the procedure “Estimating the Yield of DIG-labeled DNA” listed in The Genius System User’s Guide for Filter Hybridization Version 2.0 (Boehringer Mannheim Corporation,
Indianapolis, IN). Determining probe specificity and library screening was accomplished following a standard protocol. 9,216 An. quadriannulatus and 18,432 An. stephensi clones were screened and this reflects a 4x fold and 9x fold coverage respectively. We found five and six clones respectively, which is close to what was predicted. One positive An. stephensi and An. quadriannulatus BAC were submitted to Amplicon Express for sequencing. Sequencing of the An. stephensi BAC colony insert produced approximately 102 kb of DNA sequence in four contigs. Sequencing of the An. quadriannulatus BAC colony insert produced approximately 148 kb of DNA sequence in five contigs.

PCR and Re-sequencing of the AsOr10x gene. A ~4 kb fragment spanning from AsOr10 to AsOr10x was obtained through PCR using the primers Or10LA-F1 5’ TGTTTGGGTTGGTGAGATA 3’ and Or10xLA-R1 5’ GAAGATGCTTATGCCCGTA 3’, An. stephensi genomic DNA as template, and LA (long accurate) Taq polymerase (Takara). A smaller fragment (~1 kb) was obtained using the primers Or10xSeqF 5’ CTACCGAAGGATTGCCAGAC 3’ and Or10xSeqR 5’ TTATCGCAAGTGATCTTCG3’, An. stephensi genomic DNA as template, and Taq polymerase (Takara). The smaller fragment was cloned via TA cloning into the pGEM T-Easy vector (Promega, Madison, WI) and sequenced.

Phylogenetic analysis. Phylogenetic analysis was carried out using peptide sequences from mosquito Or2 and Or10 genes. AgOr2 and AgOr10 peptide
sequences were obtained from the paper by Hill et al [19]. *AqOr2, AqOr10, AsOr2, AsOr10*, and *AsOr10x* sequences were obtained through BAC library screening as described in detail above. The *Ae. aegypti AaOr2, AaOr9*, and *AaOr10* sequences were obtained from a recent report [27]. The *C.p. quinquefasciatus* OR sequences were obtained from BLAST [40] analysis of the *C.p. quinquefasciatus* genome assembly (assembly version: CpipJ1) located on the Vectorbase website (http://cpipiens.vectorbase.org/SequenceData/Genome/). In addition to the mosquito Or2 and Or10 genes the *D. melanogaster* OR peptides *DmOr43a, DmOr30a*, and *DmOr49b* were included as the closest related non-mosquito ORs, and these sequences were also obtained from another report [53]. *AgOr21, AgOr26*, and *AgOr53*, which are related to *AgOr2/AgOr10* [19], were also included in our analysis.

Peptide sequences were aligned by the ClustalX program (v1.83.1) [42] installed on a MacBook running Mac OS 10.4.9. All parameters were left at default values except for the following changes: pairwise gap opening penalty was set to 35, multiple alignment gap opening penalty was set to 15, and multiple alignment gap extension penalty was set to 0.3. Two alignments were made one containing all of the sequences mentioned above, and one containing all of the mosquito Or2/10 sequences and *DmOr43a*. This later alignment was made into Figure 3.3, via importing into Jalview [54] for enhancement of presentation value. The former alignment was saved to the nexus format. The nexus file header was altered to make it conform to
the modified nexus format used by the program MrBayes [43]. MrBayes version 3.1.2 was complied on a PC with an Athlon 64-bit processor, 2 gigs of RAM, and running Ubuntu Linux version 7.04. The nexus file was imported into MrBayes and the prior was set with the command prset aamodelpr=mixed. This allowed MrBayes to use multiple fixed rate amino acid models in inferring a phylogenetic tree. The program was run for 100,000 generations (command mcmcp ngen=100000) with a sampling frequency of every 100 generations. A tree consensus file was generated using the commands sump burnin=250 and sumt burnin=250. This file was imported into Treeview (v1.6.6) [55] for visualization. Only labels and probability values were moved around for the sake of clear presentation.

ClustalX Alignment. Amino acid sequences of Or2/10 genes from *An. gambiae*, *An. quadriannulatus*, and *An. stephensi* were aligned using ClustalX version 2.0 [42] with default parameters. Alignment was imported into Jalview [54] for enhancement of presentation value.

Mosquitoes. *An. stephensi* Indian strain mosquitoes were used in all experiments. Mosquitoes were reared in an incubator at 27°C, ~80% humidity, and with a 12 hour light and 12 hour dark cycle. Larvae were feed for two days on 3mL of 66.6% Sera Micron Fry Food and 33.3% brewer’s yeast suspended at 1g/50mL. Adults were fed a 10% sugar solution from soaked cotton balls. The blood source for the female
mosquitoes were mice, and all females that were fed blood did so on the third day post emergence.

RT-PCR of AsOr2, AsOr10, and AsOr10x. Total RNA for RT-PCR experiments was obtained from *An. stephensi* mosquitoes at various time points. Larvae were collected within a few hours of emergence, while pupae were collected 24 hours after start of pupation to insure an approximately equal amount of males and females. Adults chemosensory tissues were dissected from ~200 live four-day-old sugar-fed female, four-day-old 24 hours post-blood feeding female, and four-day-old sugar-fed male *An. stephensi* mosquitoes. Tissues were divided into two fractions: 1) antenna and 2) maxillary palp plus proboscis. Tissue samples were processed in 80μL of Trizol (Invitrogen, Carlsbad, CA) following the standard protocol included with the reagent, and total RNA pellets were resuspended in 20μL of DEPC treated H₂O. Approximately 1.3μg of total RNA from each sample was DNaseI treated using the DNA-free kit (Ambion Austin, TX). These DNaseI treated total RNA samples were then divided into two equal pools one pool for a negative (lacking reverse transcriptase) control and one for cDNA synthesis. Two sets of negative control and cDNA template were used in the course of these RT-PCR experiments. Two different sets of AsRPS4 RT-PCR reactions were done to indicate this. The SuperScript II Reverse Transcriptase kit (Invitrogen) was then used according to that kit’s protocol with the exception of a 90 not 50 minute incubation at 42°C to generate cDNA template.
The gene-specific primer sets used in RT-PCR are listed in Table 3.2. These gene-specific primer sets all have a melting temperature of 60°C, and span at least one intron to distinguish between products primed from genomic DNA or cDNA template. PCR was then performed using 1μL (AsRPS4, AsOr2, and AsOr10) or 2μL (AsOr10x) of template from each pool, a gene-specific primer set, and Taq polymerase (Takara). 25 cycles at 60°C were used for AsRPS4 RT-PCR reactions while 35 cycles were used for AsOr2, AsOr10, and AsOr10x RT-PCR reactions. The lower number of cycles for AsRPS4 RT-PCR was to prevent saturation of the AsRPS4 product. Products that lacked introns according to size prediction were gel purified and cloned into pGEM T-Easy vector (Promega) and sequenced. In this way cDNA products were confirmed to be valid for all genes examined (AsRPS4, AsOr2, AsOr10, and AsOr10x).

List of Abbreviations

Anopheles gambiae odorant receptor, AgOr; Anopheles quadriannulatus odorant receptor, AqOr; Anopheles stephensi odorant receptor, AsOr; bacterial artificial chromosome, BAC; dioxygenin, DIG; polymerase chain reaction, PCR; fluorescent in situ hybridization, FISH; G-protein coupled receptor, GPCR; reverse transcription polymerase chain reaction, RT-PCR; odorant receptor, OR;
3.7: Figures

Figure 3.1: VISTA alignment of *An. gambiae* Or2 gene cluster with *An. stephensi* and *An. quadriannulatus* Or2 gene clusters. A VISTA alignment is a global nucleotide alignment with a graphical overview. The first row contains two brackets, and each bracket represents a pairwise alignment that is continued in its respective bracket on the second row. The upper bracket of each row is the alignment between the *AgOr2* and *AqOr2* gene clusters, while the bottom bracket of each row is the alignment between the *AgOr2* and *AsOr2* gene clusters. The height of a peak indicates the amount of nucleotide conservation within a 100bp reading frame around that point. Pink peaks are those peaks above a 70% nucleotide conservation threshold, and are considered conserved non-coding sequences (CNSs). Blue peaks are predicted coding sequences. There is one ~2kb gap in the final intron of the *AqOr2* gene in the *An. quadriannulatus* assembly as indicated by a gap in the thick grey line below the peaks. *An. gambiae* and *An. quadriannulatus* are expected to have high nucleotide conservation as they are sibling species. The region indicated by the thick black bar is the location of the *AsOr10x* gene.
Figure 3.2: Or2 and Or10 gene structure diagrams. Diagrams are drawn approximately to scale with boxes representing exons and wedges representing introns. RT-PCR products were obtained from all three of the An. stephensi Or2/Or10 genes. These RT-PCR products are represented by diagrams below their respective An. stephensi OR genes. In the case of AsOr10x there were two products, a RT-PCR product with one intron retained and a product with no introns.
Figure 3.3: ClustalX alignment of Or2 subfamily genes from *An. gambiae*, *An. quadriannulatus*, *An. stephensi*, *Ae. aegypti*, *C.p. quinquefasciatus*, and *D. melanogaster*. Alignment was visualized using Jalview. The more conserved a residue is at a given position the more intense the blue coloring.
Figure 3.4: Phylogenetic tree of Or2 and Or10 gene subfamily in four mosquito species.

A) Peptide sequences of all Or2 and Or10 genes of An. gambiae, An. stephensi, Ae. aegypti, and C.p. quinquefasciatus were aligned with closely related D. melanogaster OR genes. AgOr26, AgOr21, and AgOr53 were included as an outgroup. This phylogenetic tree was generated from the Bayesian phylogenetic program MrBayes. Values displayed are posterior probabilities indicating likelihood of branch placement. Scale at the bottom left is for substitutions per site. B) The orientation of genes in and near the Or2/Or10 gene cluster in An. gambiae, An. stephensi, and Ae. aegypti. Genes are represented as boxes, and boxes above the line are genes read left to right and vice versa for boxes below the line. Annotations for non-olfactory genes come from the Ensembl database when provided. Arrows connect orthologous genes in different species.
A)

B)

An. stephensi chromosome 3R

An. gambiae chromosome 3R

Ae. aegypti supercontig 1.185
Figure 3.5: AsOr2, AsOr10, and AsOr10x mRNA expression in 4-day-old adult An. stephensi mosquitoes. RT-PCR reactions were performed using gene specific primer sets for AsOr2, AsOr10, AsOr10x, and AsRPS4 (40s ribosomal protein s4) (Table 3.2). AsRPS4 is used as a positive control. The templates were either negative control (lacking reverse transcriptase, -RT) or cDNA. Two different sets of negative control and cDNA template were used, one for AsOr2/Or10 RT-PCR and the other for the AsOr10x RT-PCR (hence the presence of two sets of AsRPS4 reactions). RT-PCR reactions were run on 1.5% agarose gels with -RT reactions on the left and cDNA reactions on the right with 100bp DNA markers (M) separating both sets. The tissues used were (1) antenna from 4-day-old sugar fed females, (2) maxillary palp/proboscis from 4-day-old sugar fed females, (3) antenna from 4-day-old females 24 hours post blood feeding, (4) maxillary palp/proboscis from 4-day-old females 24 hours post blood feeding, (5) antenna from 4-day-old sugar fed males, and (6) maxillary palp/proboscis from 4-day-old sugar fed males. See Table 3.2 for RT-PCR product sizes versus genomic DNA contamination product sizes. The 510bp RT-PCR product of AsOr10x is generated from AsOr10x template containing one intron but lacking another one.
Figure 3.6: Expression profile of AsOr2, AsOr10, and AsOr10x in An. stephensi larvae and pupae. RT-PCR reactions were performed on RNA isolated from An. stephensi larvae (1) and pupae (2). See legend of Figure 3.5 for details.
3.8: Tables

Table 3.1: Percent identity between *Anopheles Or2/Or10* amino acid sequences

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>AgOr2</td>
<td>1</td>
<td>98.7</td>
<td>94.1</td>
<td>55.8</td>
<td>56</td>
<td>56.5</td>
<td>51.5</td>
</tr>
<tr>
<td>AqOr2</td>
<td>2</td>
<td></td>
<td>93.9</td>
<td>55.8</td>
<td>56</td>
<td>56.5</td>
<td>51.5</td>
</tr>
<tr>
<td>AsOr2</td>
<td>3</td>
<td></td>
<td></td>
<td>56.3</td>
<td>56.6</td>
<td>57</td>
<td>51.2</td>
</tr>
<tr>
<td>AgOr10</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>99.7</td>
<td>93.9</td>
<td>77.2</td>
</tr>
<tr>
<td>AqOr10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93.9</td>
<td>77.2</td>
</tr>
<tr>
<td>AsOr10</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>77.7</td>
</tr>
<tr>
<td>AsOr10x</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.2: RT-PCR primers and size of predicted products

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
<th>PCR from Genomic DNA (with intron)</th>
<th>PCR from cDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AsRPS4</td>
<td>CACGAGGATGGATGTGGAC</td>
<td>GGTGAATAACTCCGCTGGAT</td>
<td>1368 bp</td>
<td>261 bp</td>
</tr>
<tr>
<td>AsOr2</td>
<td>GATCGAAGAGTGCCGATAA</td>
<td>GGTCACAAAGACGCACTAA</td>
<td>633 bp</td>
<td>403 bp</td>
</tr>
<tr>
<td>AsOr10</td>
<td>CAGCTGGGTGCTTACCTTCC</td>
<td>GTTCAGCAGCAGTGGAAACA</td>
<td>755 bp</td>
<td>570 bp</td>
</tr>
<tr>
<td>AsOr10x</td>
<td>CATACCCGGGATAAGCATCT</td>
<td>TTCCTCCCGATTCATTCCT</td>
<td>595 bp</td>
<td>457 bp</td>
</tr>
</tbody>
</table>
Table 3.3: Summary of the expression profile of genes in the Or2/Or10 subfamily

<table>
<thead>
<tr>
<th></th>
<th>Larvae</th>
<th>Pupae</th>
<th>Adult Female (NBF)</th>
<th>Adult Male</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antenna</td>
<td>Palp</td>
<td>Proboscis</td>
<td>Antenna</td>
</tr>
<tr>
<td>AgOr21</td>
<td>unknown</td>
<td>unknown</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>AgOr10</td>
<td>unknown</td>
<td>unknown</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>AsOr2²</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>present</td>
</tr>
<tr>
<td>AsOr10²</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>AsOr10x²</td>
<td>present</td>
<td>present</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>AaOr2³</td>
<td>present</td>
<td>unknown</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>AaOr9³</td>
<td>present</td>
<td>unknown</td>
<td>absent</td>
<td>absent</td>
</tr>
<tr>
<td>AaOr10³</td>
<td>absent</td>
<td>absent</td>
<td>present</td>
<td>absent</td>
</tr>
<tr>
<td>DmOr43a⁴</td>
<td>absent</td>
<td>present</td>
<td>absent</td>
<td>absent</td>
</tr>
</tbody>
</table>

1. See reference 24 for data
2. This study
3. See reference 27 for data
4. See references 34, 43, 44
Acknowledgements

Thanks to Dr. Igor Sharakhov for information about the chromosomal location of the Or2 cluster in *An. stephensi*, and suggestions on changes to the manuscript. Thanks to Dr. Jim Biedler for helpful comments on the manuscript. Thanks to Dr. Senay Sengul for her kind gift of the *An. stephensi* RPS4 primers. This work is supported by a NIH grant AI063252 to Z.T.

3.9: Bibliography

29. Nakagawa T, Sakurai T, Nishioka T, Touhara K: Insect sex-pheromone signals mediated
Chapter 4. Expression profile and knockdown of AaOr7, AaGr1, AaGr2, and AaGr3 in Aedes aegypti

4.1: Abstract

Insect odorant receptors are believed to be critical components for both odorant recognition and olfactory signaling. The closely related family of gustatory receptors code both taste and olfactory receptors. Recent whole genome sequencing projects have led to the identification of odorant and gustatory receptor genes in several insect species. Most of these genes code orphan proteins with unknown functions. Many recent studies have focused on determining the function of Drosophila melanogaster olfactory receptors. The techniques used in these studies are not transferable to other insect species such as mosquitoes.

In this report we have studied the dengue mosquito Aedes aegypti’s odorant receptor Or7 (AaOr7) and gustatory receptors Gr1 and Gr2 (AaGr1 and AaGr2). These receptors are orthologs of receptors of known function in other species. We have found the distribution of these genes in chemosensory tissue using quantitative and non-quantitative RT-PCR. AaOr7 is widely expressed in antenna, maxillary palp, and proboscis of adults. There is very limited expression in bodies and legs, and surprisingly lower amount of AaOr7 in male antenna compared to female antennas. The putative CO₂-detecting receptors AaGr1-3 are expressed almost exclusively in the maxillary palp in addition to expression in Ae. aegypti larvae. The presence of these
receptors in larvae suggests they are able to respond to CO$_2$, something that hasn’t been previously reported. To determine the actual function of these receptors in mosquitoes we decided to lower their mRNA levels which in turn will eventually lower protein levels generating loss-of-function mosquitoes to assay. Recombinant double subgenomic Sindbis viruses were able to lowere mRNA levels of these receptors. Recombinant Sindbis viruses are able to target odorant and gustatory receptors and knockdown mRNA levels to 15% of uninfected mosquitoes. This work is ongoing as we improve upon this knockdown technique and develop effective behavior assays to test the potential loss-of-function mosquitoes.

4.2: Introduction

Insect odorant receptors (ORs) are a large and diverse family of seven-transmembrane proteins. These receptors were first discovered in *Drosophila melanogaster* through a combination of bioinformatics and cDNA library screening [1-3]. This family has also been identified in several non-*Drosophila* insect species including *Anopheles gambiae*, *Aedes aegypti*, *Apis mellifera*, *Bombyx mori*, and *Tribolium castaneum* [4-8]. Functional studies have shown that ORs detect several biologically significant odorants. One *Ap. mellifera* receptor responds to a major component of queen retinue pheromone [9]. The AgOr1 receptor in *An. gambiae* responds to a component of human sweat [10]. ORs are shown to be necessary for
detection of many other specific odorants [11, 12]. There is an ongoing effort to identify ORs that bind other biologically important odorants through functional studies.

Three types of approaches have been used to determine the function of *D. melanogaster* ORs. One approach is to disrupt an OR gene and assay the loss-of-function phenotype. A recent study explored the function of DmOr83b by using a combination of gene targeting and behavior assays [13]. Another group misexpressed the *DmOr43a* gene to identify the function of the DmOr43a protein [14]. The second approach is to express receptors in heterologous expression systems (using *Xenopus* oocytes, HEK293 cells, or Sf9 cells) and perform either two-electrode voltage-clamp electrophysiology or calcium imaging [11, 15, 16]. These heterologously expressed receptors are able to generate observable changes in voltage potential in the presence of a recognized ligand. Recent reports have indicated that this is likely due to the ability of ORs to form ion channels and utilize cell signaling components [17, 18]. Most *D. melanogaster* OR function studies have employed a different strategy of expressing a transgenic receptor gene in a neuron with no endogenously expressed receptor (the "empty neuron" system) and then performing electroantennograms [19]. Primarily through this approach almost every *D. melanogaster* OR has an assigned putative function [20-23]. The gene disruption and knockout techniques available in *D. melanogaster* are unfortunately not always present in other insect species. Although this system has been used to deorphanize ORs from non-*Drosophila* species this was
only accomplished by inserting receptors into *D. melanogaster* neurons [10]. This is a less than ideal approach as ORs are expressed in an environment lacking other native (non-*Drosophila*) olfactory proteins such as odorant binding proteins, odorant degrading enzymes, and sensory neuron membrane proteins. Receptor specificity for a ligand might be affected without these proteins or in the presence of *D. melanogaster* olfactory proteins.

A second family of chemoreceptor proteins, the taste or gustatory receptor (GR) family, has been identified in insects. Both OR and GR families encode seven-transmembrane proteins, are highly divergent, have few obvious orthologs conserved between different insect lineages, and display similarity to other protein families besides each other. GRs are expressed in insect gustatory tissues including the proboscis, legs, and wings [24-26]. Several of these receptors are also expressed in olfactory tissue [27]. Given their expression profile, GRs have been hypothesized to be predominately taste receptors, and several functional studies have confirmed this [28-30]. The most well studied receptors are members of a small subfamily that are found conserved throughout many different species (see supplementary material in [31]). *DmGr21a* and *DmGr63a* are the *D. melanogaster* GRs of this subfamily. Both receptors are co-expressed in ab1C antennal neurons and these neurons synapse to the V glomeruli in the antennal lobe [27, 32, 33]. These studies have found that both GRs are required for detection of CO2 in fruit flies, making them functionally olfactory
receptors although not phylogenetically ORs. This family has also been identified in the mosquito *An. gambiae* [4], and a preliminary report has found that these GRs confer CO$_2$ detection [31]. Therefore both the insect OR and GR families encode at least some olfactory receptors, which detect biologically important odorants. Given their similarity a method to test the function of receptors of one family should work with the other family as it pertains to detection of odorants.

Several different mosquito species serve as disease vectors transmitting causative agents that result in malaria, dengue, West Nile encephalitis, and yellow fever. Not all mosquito species are disease vectors in large part due to their host-seeking behavior. Hosts are detected by mosquitoes in response to host olfactory cues [34]. There is a great deal of interest in identifying how olfaction in mosquitoes works, and more specifically which mosquito ORs/GRs are involved in detection of host-odors. We decided to study the function of mosquito ORs and GRs by knocking down the mRNA levels of select receptors, and using assays to measure behavioral differences. It is well established that mosquitoes utilize an RNAi pathway, and that this pathway can be exploited to lower genes of interest mRNA levels. In *Ae. aegypti* the double subgenomic Sindbis virus (SINV) has been used to knockdown a number of non-olfactory endogenous and exogenous genes [35-37]. We have developed several recombinant SINVs targeting the *AaOr7*, *AaGr1*, and *AaGr2* genes alone and in different combinations. These genes are orthologs of olfactory receptors with known
function in other insect species. AaOr7 is an ortholog of DmOr83b, which is required for many olfactory driven behaviors in D. melanogaster [13]. AaGr1 and AaGr2 are Ae. aegypti members of the DmGr21a and DmGr63a subfamily. By knocking down ORs/GRs with known or possible functions already assigned, we can test the validity of our approach.

4.3: Results
4.3.1: Expression Profile of AaOr7, AaGr1, AaGr2, and AaGr3

We first wanted to determine the expression profile of the genes of interest to determine at which stages of life and which chemosensory tissues they are expressed. A previous study has already identified the members of the CO$_2$ detecting GR subfamily in Ae. aegypti: AaGr1, AaGr2, and AaGr3 [38]. We designed gene specific primers to amplify regions from these genes that cross at least one predicted intron to distinguish products primed from cDNA with those primed from genomic DNA. An additional set of primers was designed to amplify cDNA products of the AaOr7 gene. Although this gene already has a described expression profile, we include it in this analysis for consistency and to serve as a positive control [39]. To determine effectiveness of cDNA synthesis we used the AaRPS7 (ribosomal protein S7) gene as it is a housekeeping gene, which should have unchanged mRNA levels at each stage of development.
We isolated total RNA from *Ae. aegypti* mosquitoes at several life stages and from several different tissues. From young mosquitoes we obtained total RNA from the whole bodies of 1st, 2nd, 3rd, and 4th instar larvae and from pupae. Five to six days post-emergence adult male and female mosquitoes were dissected, and then total RNA was extracted from antenna, maxillary palp, proboscis, and legs. Both non-bloodfed (NBF) and 24 hours post-bloodfed (BF) female mosquitoes were used to determine if any of the receptors were knocked down after blood feeding. Total RNA was used to synthesize cDNA and this was used in several non-quantitative RT-PCR reactions along with gene specific primers (Figure 4.1A and Figure 4.2A). We found that *AaOr7* is robustly expressed in both young and adult mosquitoes. In adults the three major olfactory tissues of mosquitoes (antenna, maxillary palp, and proboscis) showed *AaOr7* expression (Figure 4.2A), which is consistent with previous data [39]. Of significant note we saw no expression of *AaOr7* in BF females or males legs, but only a very low level in NBF female legs. The expression of *AaGr1-3* was much more restricted than *AaOr7*. All three GRs were found expressed in larvae and pupae, but at low levels suggesting transitory expression or stable expression in a very small number of larvae neurons (Figure 4.1A). In adults *AaGr1-3* expression is localized almost exclusively to the maxillary palp with significantly lower levels in the antenna and proboscis (Figure 4.2A).
To determine more precisely differences in mRNA levels between tissues we decided to perform real-time PCR. Custom-made Taqman assays for AaRPS7, AaOr7, AaGr1, AaGr2, and AaGr3 were developed by Applied Biosystems. These assays were used in conjunction with our cDNA pools to determine relative mRNA levels of a given gene in several different tissues (Figure 4.1B, Figure 4.2B, and Table 4.1-Table 4.8). All genes were compared with their relative gene levels in 1st instar larvae therefore the mRNA level of each gene in 1st instar larvae was set to one. In larvae we found that all four receptor genes mRNA levels were relatively unchanged from 1st to 4th instar. This was not true of pupae where we saw an increase of mRNA levels in all four genes. The most dramatic example is AaGr1 which displayed 40.6 fold increase in mRNA levels compared to 1st instar larvae (Figure 4.1B and Table 4.1). AaOr7 is expressed at much higher levels in female antenna than in either palp or proboscis, which is consistent with its role as a primary olfactory tissue (Table 4.8). Male antennas display much lower levels of AaOr7 perhaps reflecting a different distribution or number of neurons in female Ae. aegypti. Additionally our analysis of leg tissues has shown that AaOr7 is expressed in NBF, BF, and male legs, but at <3% of NBF proboscis AaOr7 mRNA levels (data not shown). AaGr1-3 was indeed expressed in maxillary palp at 36.10 to 113.2 times the levels in NBF Proboscis (Table 4.2, Table 4.4, and Table 4.6). Surprisingly we found that only AaGr1 shows any reduction of mRNA levels in BF females while AaGr2 and AaGr3 stay the same. It is possible AaGr1 mRNA knockdown
eventually destabilizes the CO$_2$ detecting complex leading to the reported lack of interest in CO$_2$ post-bloodfeeding. More experiments must be conducted before this can be conclusively proven. As far as could be determined with both non-quantitative and quantitative RT-PCR AaGr1-3 expression profiles are very similar supporting previous data that receptors of this family colocalize in the same neurons [31-33].

4.3.2: Mosquito chemosensory tissues are infected by recombinant SINV

Previous data has shown that SINVs are able to infect a large range of tissues in different insect species [40]. We wanted to determine if the SINV could infect chemosensory tissues, and possibly olfactory sensory neurons. We obtained a plasmid encoding a SINV that expresses green fluorescent protein (GFP), and then the virus (GFP-SINV) was raised as above. GFP-SINV was injected into the abdomen of 0-24 hour post-emergence Ae. aegypti female mosquitoes. Four days post infection, uninfected and infected mosquitoes were examined for green fluorescence (Figure 4.3). Comparing our uninfected control with infected mosquitoes we observed an obvious difference with infected mosquitoes showing green fluorescence in a wide range of tissues including abdomen, thorax, eyes, etc. Of importance for this study we saw florescence between the antennal segments (Figure 4.3, pink arrows), and the tips of the maxillary palp (Figure 4.3, blue arrows), and the proboscis (Figure 4.3, orange arrows). Fluorescence is possibly localized throughout the entirety of these tissues,
but the mosquito cuticle may block the fluorescence. In another study (Sengul and Tu, unpublished) it was shown that another family of olfactory proteins (odorant binding proteins) could be knocked down by SINVs. These data suggest that mosquito olfactory sensory neurons can be infected by SINVs.

4.3.3: Developing Recombinant SINVs

Previous studies have shown that by inserting gene fragments into SINVs and then infecting mosquitoes with these recombinant viruses results in targeted gene knockdown [35-37]. We decided to focus on knocking down \textit{AaOr7, AaGr1,} and \textit{AaGr2} by developing a series of recombinant SINVs. The first step in producing the viruses was to PCR amplify regions of these three genes from genomic DNA or non-bloodfed female antenna cDNA (Table 4.9). We produced four inserts for \textit{AaOr7} in different regions of the \textit{AaOr7} gene to insure sufficient knockdown (Figure 4.4A). As an \textit{Or83b} ortholog, knocking down \textit{AaOr7} should lead to mosquitoes deficient in most normal olfactory cues [13]. The gene fragments were then cloned into the TE3’2Jmcs vector, a SINV-encoding plasmid. Figure 4.4B lists all the different plasmids constructed, and the different combination of receptor gene fragments cloned into each plasmid. Plasmids and the recombinant viruses they produce were named according to the gene fragments they contain. Plasmids were used as template in an \textit{in vitro} transcription reaction to produce viral RNA, and it was then electroporated into
BHK21 cells. These cells were allowed to produce the recombinant viruses for 48 hours, and then the viruses were harvested by centrifugation.

4.3.4: SINV mediated knockdown of AaOr7 and AaGr1

The AaOr7 SINV, AaGr1 SINV, AaGr1+AaOr7 SINV, and AaGr1+AaGr2 SINV recombinant SINVs ([Figure 4.4B](#)) were injected into the abdomen of 0-24 hour post-emergence *Ae. aegypti* female mosquitoes. As a negative control we injected mosquitoes with the TE3'2JE2 virus, which contains an E2 insert but no receptor gene inserts. Mosquitoes were feed on sugar water for 19 days post infection to ensure sufficient time for viral proliferation. Uninfected, TE3'2JE2 infected, and recombinant SINV infected mosquitoes were surgically dissected removing antenna, maxillary palp, and proboscis. Total RNA was extracted from these tissues and converted into cDNA for mRNA expression analysis.

Real-time PCR assays were obtained from Applied Biosystems for the *AaRPS7* (ribosomal protein S7) gene as an endogenous control along with the *AaGr1*, *AaGr2*, and *AaOr7* genes. We used these assays along with our cDNA template to determine relative quantities of our genes of interest in each tissue, and determine if infected mosquitoes showed lower mRNA levels of these genes ([Figure 4.5](#) and [Table 4.10](#)). Each graph on [Figure 4.5](#) represents a separate reaction run with separate negative controls and calibrators. Each graph has at least one negative control which is
uninfected and/or TE3’2JE2 infected tissue. Calibrators for AaOr7 assays are negative control antenna tissue, while calibrators for AaGr1 and AaGr2 assays are negative control maxillary palp. These tissues were chosen as calibrators because they have the highest relative levels of the genes assayed (Figure 4.2). All viruses except the AaOr7 SINV (data not shown) produced some level of gene knockdown. The most significant knockdown was that of AaGr2 in the maxillary palp of AaGr1+AaGr2 SINV infected mosquitoes. AaGr2 mRNA levels in AaGr1+AaGr2 SINV infected maxillary palp were only 15.04% of AaGr2 mRNA levels in uninfected maxillary palp. Less significant knockdowns of AaGr1 were found in AaGr1 SINV infected maxillary palp and in AaGr1+AaOr7 SINV infected maxillary palp. AaOr7 mRNA levels were also depressed in AaGr1+AaOr7 SINV infected antenna. From these data we've determined that OR and GR mRNA levels can be depressed to as low as 15.0% of normal using recombinant SINVs.

4.3.5: Behavior Assay

Having shown that ORs and GRs mRNA levels can be lowered using recombinant SINVs we then develop a behavioral assay setup to test for behavioral defects in infected mosquitoes. The assay setup we choose is illustrated on Figure 4.6A. This setup is a dual-choice olfactometer allowing mosquitoes to associate in a non-random manner with one side of the apparatus or the other in response to test
odors. For example if an attractive odor is used on one side then mosquitoes will associate with that side of the container and attempt to touch/interact with the odor source. The opposite would be true of a repulsive odor. Currently we are working to further refine this assay with known attractive chemicals and non-bloodfed *Ae. aegypti* female mosquitoes. Figure 4.6B illustrates that *Ae. aegypti* females are attracted to palm sweat and CO$_2$ versus palm sweat alone.

4.4: Discussion

The study of insect ORs has greatly expanded in the recent years. Currently most studies focus on how ORs interact with other proteins to generate a signaling pathway and also which ORs respond to biologically important odorants. In this current report we have accomplished several things. The first was to determine the expression profile of the *Ae. aegypti* CO$_2$ detecting subfamily members AaGr1, AaGr2, and AaGr3. Using non-quantitative RT-PCR we were able to determine that these three receptors have nearly identical expression profiles in keeping with previous data from *An. gambiae* [31]. In adults all three receptors are expressed almost exclusively in the maxillary palp the CO$_2$-sensing organ of mosquitoes. Surprisingly these receptors are expressed in larvae and pupae suggesting young mosquitoes may respond to CO$_2$. As far as we know this has not been observed in any mosquito species. A recent study has shown that *D. melanogaster* larvae do respond to CO$_2$, and that the *Drosophila*
orthologs of AaGr1-3 are present [41]. Behavior assays of Ae. aegypti larvae should
determine if CO₂ elicits a response.

One major purpose of this study was to develop a method to determine the
function of mosquito chemosensory receptors. We have used recombinant SINVs
containing fragments of receptor genes of known or suspected function (AaOr7,
AaGr1, and AaGr2) to lower mRNA levels of these genes which may generate loss-of-
function behavioral phenotypes. Ae. aegypti female mosquitoes infected with these
viruses display lower receptor mRNA levels than those not infected and/or those
infected with non-recombinant SINVs. The most significant knockdown resulted in
AaGr2 mRNA levels being only 15.0% of uninfected levels. In order to obtain better
knockdowns we have developed several more AaOr7 recombinant SINVs containing
inserts of AaOr7 in different regions of the gene and at different sizes. Currently these
viruses have been used to infect another group of 0-24 hour post-emergence
mosquitoes and results are pending. We hope to identify from these series of viruses
features that lead to more effective knockdowns of ORs/GRs with recombinant SINVs.
The final thrust of this study is to establish a behavior setup to assay our potential loss-
of-function behavioral knockdown Ae. aegypti. Given the infectious nature of the SINV
the main requirement for this assay is that it is easy to assemble/disassemble for
cleaning. Currently we have a very preliminary setup that works with non-bloodfed Ae.
aegypti females.
4.5: Methods

Non-quantitative RT-PCR. Total RNA was extracted from Ae. aegypti (Liverpool strain) mosquitoes at various life stages. The whole bodies of 1st, 2nd, 3rd, and 4th instar larvae along with pupae were homogenized in Trizol (Invitrogen; Carlsbad, CA), and total RNA extracted according to the included protocol. Live 5-6 day old Ae. aegypti adults were dissected on ice with the antenna, maxillary palp, proboscis, and legs being removed and placed immediately into Trizol. Adult tissues were homogenized and total RNA extracted according to the included protocol including the optional steps for handling small volumes of tissues. Total RNA was then treated to remove genomic DNA contamination using the Turbo DNA Free kit (Ambion; Austin, TX), and total RNA concentrations measured by spectrometry. cDNA was synthesized from 500ng of adult total RNA or 2ug of larvae or pupae total RNA using the SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen). Non-quantitative RT-PCR reagents were composed of 1uL of cDNA, Taq polymerase and reagents (Takara; Otsu, Japan), and gene specific primers for AaRPS7 (JB29 5' ATGGTTTTTCGGATCAAAGG 3', JB31 5' GGAATTCTGAACGTAACGTCAC 3'), AaOr7 (AaOr7F 5' GGTCTATGCTCTGGCTCAGG 3', AaOr7R 5' AACTGCACCAACACCATGAA 3') AaGr1 (AaGr1F 5' TCTACTGCGATGGTCTGCTG 3', AaGr1R 5' CAGAGCTGGGATGAGAGCTT 3'), AaGr2 (AaGr2F 5' TGAGACACGCTCAGTGCTGCAGTCACGTT 3', AaGr2R 5'
AACCAGGTAGATCGCAATGG 3’), and AaGr3 (AaGr3F 5’
GGAGAGTGTTCGGTTTGGAA 3’, AaGr3R 5’ CAGGCCGTAGATCGAAAGAG 3’).
Reactions for AaRPS7 were amplified for 25 cycles, while all other reactions were
amplified for 30 cycles. Reactions were analyzed on 1.5% agarose gels.

Developing Recombinant SINVs. Inserts for SINVs were PCR amplified from Ae.
aegypti genomic DNA or non-bloodfed female antenna cDNA using custom primers
designed according to AaOr7, AaGr1, and AaGr2 gene sequences. XbaI/PacI
restriction sites were added to the 5’ ends of primers to facilitate directional cloning.
Directional cloning of gene fragments into the TE3'2Jmcs plasmid resulted in gene
fragments being in the anti-sense orientation. Subsequent recombinant plasmids
were linearized by cleaving with Xhol. An *in vitro* transcription reaction was performed
using the linearized plasmid as template along with components of the T7/SP6
Riboprobe System (Promega; Fitchburg, WI). Viral RNA was stored at -80°C to
minimize RNA degradation. BHK21 cells were grown in T-150 flasks with 20mL of 1x
Dulbecco/Vogt modified Eagle’s minimal essential medium (DMEM) (Mediatech;
Manassas, VA) supplemented with 10% FBS and 1% penicillin/streptomycin at 37°C
untill cells reached a 100% confluency. Cells were washed twice with 10mL of 1x PBS
(Mediatech) and then removed from flask surface by incubation with 5mL of 0.25%
Trypsin-EDTA (Gibco/Invitrogen) for no more than three minutes followed by firm
tapping. 15mL of 1x DMEM supplemented with 10% FBS and 1% penicillin/
streptomycin was added to cells and medium and pipetted till thoroughly mixed. Cells were transferred to 50mL tubes and then centrifuged at 1000RPM at 4°C for five minutes to pellet cells. Cell pellet was washed twice using 1x PBS (Mediatech) followed by centrifugation at 000RPM at 4°C for five minutes. Cell count was estimated using a hemocytometer and pellet was resuspended in 1x PBS to give a final concentration of 1*10^7 cells/mL. 400μL of cells were needed for each virus plus two more 400μL aliquotes for negative controls. Each aliquiote of cells was pipetted into electroporation vials, and then 12μL of viral RNA were added to all but two vials. Vials were pulse electroporated using the following conditions: 460 V, 725 Ω, 0075 μF except for one vial lacking virus. Electroporated cells were sowed in T-25 flasks with 5mL of 1x Dulbecco/Vogt modified Eagle's minimal essential medium (DMEM) (Mediatech; Manassas, VA) with 10% FBS and 1% penicillin/streptomycin. After 48 hours the medium was removed from the flasks and centrifuged at 1000 RPM for 6 minutes at 4°C to remove cell debris. Virus-containing media were placed into 1mL vials and stored at -80°C till needed. The concentration of the viruses was determined by a titer test. BHK21 cells were sowed into 96 well plates with DMEM with 10% FBS and 1% penicillin/streptomycin, and cells were allowed to grow to 100% confluent. Media in each well was then replaced with 270μL 1x DMEM containing 2% FBS. A series of 1:10 dilutions of the virus was made for each row of wells starting with addition of 30μL of virus-containing media. The dilutions ranged from 10^-1 to 10^-8. 96
well plates were incubated at 37°C for three to four days after infection. Cells in each well were examined for signs of cytopathic effect (CPE). Titer was estimated based on how dilute a virus could be, while still causing cells to display CPE. Only viruses showing CPE at 10^{-6} to 10^{-8} dilution were used to inject *Ae. aegypti* mosquitoes.

Injection of Mosquitoes with Recombinant SINVs. 0-24 hour post-emergence *Ae. aegypti* non-bloodfed females were anesthetized by cold. Mosquitoes were microinjected with 0.5μL of virus each by injection into the abdomen.

Real-time PCR. Real-time PCR assays were designed and produced by Applied Biosystems (Foster City, CA) for the *AaRPS7*, *AaOr7*, *AaGr1*, and *AaGr2* genes. Reactions were composed of 1μL of 1:3 diluted cDNA template, Taqman Universal PCR Master Mix (Applied Biosystems), and assay mix. Reactions were done in triplicate to serve as technical replicates. A 7300 Real-Time PCR System machine (Applied Biosystems) was used to cycle reaction temperatures and collect data. Data was analyzed on the included software. Uninfected or TE3’2JE2 infected antenna, or maxillary palp was used as a calibrator. Relative quantities of all genes was determined using the $2^{-\Delta\Delta Ct}$ method [42].

Behavior Assays. Behavior assays were conducted in the apparatus illustrated in Figure 4.6. In brief the assay apparatus consisted of a plastic container with mesh netting between container bottom and lid. Female non-bloodfed *Ae. aegypti* mosquitoes were anesthetized using cold, and placed into the assay apparatus.
Mosquitoes were then left at room temperature for 30 minutes to allow mosquitoes to recover from cold treatment. After cold treatment plastic spacers were placed above two equidistant circular openings in the lid. Odors or water were spotted onto cotton pads, one cotton pad was placed in the spacer, and then heated water bottles were placed on top of the pad. Heated water bottles were connected to a water bath kept at 42°C. Assays were conducted for five minutes allowing mosquitoes to associate with either side of the apparatus. Mosquitoes were considered attracted to a particular odor when they landed below a spacer and showed probing behavior. After counting the total number of mosquitoes on both holes we divided each number by the total number of mosquitoes tested to give the proportion of mosquitoes responding to each side.

4.6: Figures

Figure 4.1: AaOr7 and AaGr1-3 non-quantitative and quantitative RT-PCR results in young mosquitoes. A) Gene specific primers were used in combination with cDNA template derived from 1st (1), 2nd (2), 3rd (3), and 4th (4) instar larvae and pupae (P) to generate RT-PCR products. Expected sizes of products lacking introns are 562bp for AaRPS7, 261bp for AaOr7, 317bp for AaGr1, 260bp for AaGr2, and 793bp for AaGr3. Arrows point to the cDNA products. B) Real-time PCR results for larvae and pupae. Taqman assays were used along with cDNA to determine relative quantities of a gene.
in one tissue is compared to another. 1st instar larvae were used as the calibrator in all graphs.
Figure 4.2: *AaOr7* and *AaGr1-3* non-quantitative and quantitative RT-PCR results in adult chemosensory tissues. A) *Ae. aegypti* 5-6 day old non-bloodfed (NBF) female, 24 hour post-bloodfed female (BF), and male chemosensory tissues were dissected. The tissues were antenna (A), maxillary palp (Pa), proboscis (Pr), and legs (L). Total RNA extracted from these tissues was used to generate cDNA. See Figure 4.1 for expected product sizes. B) Real-time PCR results for adult chemosensory tissues. NBF Proboscis was used as the calibrator sample in all graphs.
Figure 4.3: Uninfected and GFP-SINV infected *Ae. aegypti* females. Uninfected mosquitoes show little auto-fluorescence, while those infected with GFP-SINV Sindbis virus show fluorescence in many tissues. GFP-SINV infected mosquitoes display fluorescence between antennal segments (pink arrows), on the maxillary palp tips (blue arrows), and at the tip of the proboscis (orange arrows). This suggests SINV infection can spread from the abdomen to olfactory tissues and potentially infect olfactory sensory neurons.
Figure 4.4: Development of Recombinant Sindbis Viruses. A) A diagram of the AaOr7 gene where boxes represent exons and wedges represent introns. Dashed wedges indicate intronic regions not drawn to scale. Colored lines below the gene indicate regions amplified by gene specific primers and the names of these products. Intronic regions were not amplified as cDNA was used as template. B) Diagrams of recombinant SINV encoding plasmids. Lines represent vector backbone, while boxes represent receptor gene fragment inserts. Names of the recombinant SINVs are to the left of the diagrams.
Figure 4.5: Real-time PCR results for infected mosquitoes. Each graph represents relative quantities of *AaOr7, AaGr1*, and/or *AaGr2* in uninfected and infected female chemosensory tissues. Calibrator samples are those set to a relative quantity of one.
Figure 4.6: Behavior Assay Setup and Preliminary Results. A) Side and top views of behavior assay setup. Mosquitoes are placed into container and container is sealed by mesh netting. Odor-soaked cotton pads are placed on spacers located above two openings in the lid. Constantly heated water bottles are then placed on top of the spacers. Mosquitoes are able to choose which side of the container to associate with depending on their attraction or repulsion to odors tested. B) Preliminary results of Ae. aegypti non-bloodfed female mosquitoes to palm sweat and CO₂ versus palm sweat alone. Results reflect 10 trials involving 250 individual mosquitoes.
4.7: Tables

Table 4.1: Relative quantities of AaGr1 mRNA in Ae. aegypti larvae and pupae

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC_T Standard Error</th>
<th>ΔΔC_T</th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> instar</td>
<td>0.309</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2<sup>nd</sup> instar</td>
<td>0.128</td>
<td>-3.241</td>
<td>9.454492375</td>
</tr>
<tr>
<td>3<sup>rd</sup> instar</td>
<td>0.147</td>
<td>-3.334</td>
<td>10.08402713</td>
</tr>
<tr>
<td>4<sup>th</sup> instar</td>
<td>0.225</td>
<td>-2.156</td>
<td>4.456774603</td>
</tr>
<tr>
<td>Pupae</td>
<td>0.187</td>
<td>-5.344</td>
<td>40.61666835</td>
</tr>
</tbody>
</table>
Table 4.2: Relative quantities of AaGr1 mRNA in Ae. aegypti adult chemosensory tissue

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC_T Standard Error</th>
<th>ΔΔC_T</th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBF Antenna</td>
<td>0.263</td>
<td>-0.668</td>
<td>1.5888688</td>
</tr>
<tr>
<td>BF Antenna</td>
<td>N/A</td>
<td>Und.</td>
<td>0</td>
</tr>
<tr>
<td>Male Antenna</td>
<td>0.266</td>
<td>0.751</td>
<td>0.594191553</td>
</tr>
<tr>
<td>NBF Palp</td>
<td>0.2</td>
<td>-6.691</td>
<td>103.3217375</td>
</tr>
<tr>
<td>BF Palp</td>
<td>0.173</td>
<td>-5.593</td>
<td>48.26816245</td>
</tr>
<tr>
<td>Male Palp</td>
<td>0.074</td>
<td>-6.823</td>
<td>113.2211757</td>
</tr>
<tr>
<td>NBF Proboscis</td>
<td>0.25</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BF Proboscis</td>
<td>0.133</td>
<td>0.417</td>
<td>0.748980467</td>
</tr>
<tr>
<td>Male Proboscis</td>
<td>0.204</td>
<td>0.89</td>
<td>0.539614118</td>
</tr>
</tbody>
</table>
Table 4.3: Relative quantities of AaGr2 mRNA in *Ae. aegypti* larvae and pupae

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC<sub>T</sub> Standard Error</th>
<th>ΔΔC<sub>T</sub></th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> instar</td>
<td>0.246</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2<sup>nd</sup> instar</td>
<td>0.459</td>
<td>-1.135</td>
<td>2.196185628</td>
</tr>
<tr>
<td>3<sup>rd</sup> instar</td>
<td>0.78</td>
<td>0.384</td>
<td>0.76630998</td>
</tr>
<tr>
<td>4<sup>th</sup> instar</td>
<td>0.13</td>
<td>-3.167</td>
<td>8.981771377</td>
</tr>
<tr>
<td>Pupae</td>
<td>0.23</td>
<td>-4.118</td>
<td>17.36366995</td>
</tr>
</tbody>
</table>
Table 4.4: Relative quantities of AaGr2 mRNA in *Ae. aegypti* adult chemosensory tissue

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔCₜ Standard Error</th>
<th>ΔΔCₜ</th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBF Antenna</td>
<td>0.236</td>
<td>-0.921</td>
<td>1.893427262</td>
</tr>
<tr>
<td>BF Antenna</td>
<td>0.498</td>
<td>-1.323</td>
<td>2.50185816</td>
</tr>
<tr>
<td>Male Antenna</td>
<td>0.324</td>
<td>2.616</td>
<td>0.163119368</td>
</tr>
<tr>
<td>NBF Palp</td>
<td>0.134</td>
<td>-6.572</td>
<td>95.141311</td>
</tr>
<tr>
<td>BF Palp</td>
<td>0.173</td>
<td>-6.367</td>
<td>82.53876804</td>
</tr>
<tr>
<td>Male Palp</td>
<td>0.062</td>
<td>-5.802</td>
<td>55.79252733</td>
</tr>
<tr>
<td>NBF Proboscis</td>
<td>0.054</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BF Proboscis</td>
<td>0.124</td>
<td>0.405</td>
<td>0.755236293</td>
</tr>
<tr>
<td>Male Proboscis</td>
<td>0.064</td>
<td>0.494</td>
<td>0.710053679</td>
</tr>
</tbody>
</table>
Table 4.5: Relative quantities of AaGr3 mRNA in Ae. aegypti larvae and pupae

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC<sub>T</sub> Standard Error</th>
<th>ΔΔC<sub>T</sub></th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> instar</td>
<td>0.127</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2<sup>nd</sup> instar</td>
<td>0.25</td>
<td>-0.061</td>
<td>1.043188594</td>
</tr>
<tr>
<td>3<sup>rd</sup> instar</td>
<td>0.323</td>
<td>-0.404</td>
<td>1.32317144</td>
</tr>
<tr>
<td>4<sup>th</sup> instar</td>
<td>0.192</td>
<td>1.285</td>
<td>0.410370804</td>
</tr>
<tr>
<td>Pupae</td>
<td>0.213</td>
<td>-2.015</td>
<td>4.041805786</td>
</tr>
</tbody>
</table>
Table 4.6: Relative quantities of AaGr3 mRNA in *Ae. aegypti* adult chemosensory tissue

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC_T Standard Error</th>
<th>ΔΔC_T</th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBF Antenna</td>
<td>0.159</td>
<td>-1.123</td>
<td>2.177994031</td>
</tr>
<tr>
<td>BF Antenna</td>
<td>0</td>
<td>-1.612</td>
<td>3.056753042</td>
</tr>
<tr>
<td>Male Antenna</td>
<td>0.254</td>
<td>2.374</td>
<td>0.192910022</td>
</tr>
<tr>
<td>NBF Palp</td>
<td>0.15</td>
<td>-5.703</td>
<td>52.09236384</td>
</tr>
<tr>
<td>BF Palp</td>
<td>0.179</td>
<td>-5.742</td>
<td>53.51976959</td>
</tr>
<tr>
<td>Male Palp</td>
<td>0.041</td>
<td>-5.172</td>
<td>36.05181531</td>
</tr>
<tr>
<td>NBF Proboscis</td>
<td>0.116</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BF Proboscis</td>
<td>0.257</td>
<td>-4.60E-04</td>
<td>1.000319107</td>
</tr>
<tr>
<td>Male Proboscis</td>
<td>0.154</td>
<td>0.81</td>
<td>0.570381858</td>
</tr>
</tbody>
</table>
Table 4.7: Relative quantities of AaOr7 mRNA in *Ae. aegypti* larvae and pupae

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔCt Standard Error</th>
<th>ΔΔCt</th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1<sup>st</sup> instar</td>
<td>0.118</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2<sup>nd</sup> instar</td>
<td>0.222</td>
<td>-1.029</td>
<td>2.040609318</td>
</tr>
<tr>
<td>3<sup>rd</sup> instar</td>
<td>0.329</td>
<td>1.66</td>
<td>0.316439148</td>
</tr>
<tr>
<td>4<sup>th</sup> instar</td>
<td>0.395</td>
<td>2.775</td>
<td>0.146097156</td>
</tr>
<tr>
<td>Pupae</td>
<td>0.188</td>
<td>-2.172</td>
<td>4.506476914</td>
</tr>
</tbody>
</table>
Table 4.8: Relative quantities of AaOr7 mRNA in *Ae. aegypti* adult chemochemical tissue

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC<sub>T</sub> Standard Error</th>
<th>ΔΔC<sub>T</sub></th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBF Antenna</td>
<td>0.072</td>
<td>-5.347</td>
<td>40.70121622</td>
</tr>
<tr>
<td>BF Antenna</td>
<td>0.084</td>
<td>-5.128</td>
<td>34.96888765</td>
</tr>
<tr>
<td>Male Antenna</td>
<td>0.077</td>
<td>-2.892</td>
<td>7.422987812</td>
</tr>
<tr>
<td>NBF Palp</td>
<td>0.032</td>
<td>-2.694</td>
<td>6.471050787</td>
</tr>
<tr>
<td>BF Palp</td>
<td>0.033</td>
<td>-3.164</td>
<td>8.963113714</td>
</tr>
<tr>
<td>Male Palp</td>
<td>0.084</td>
<td>-1.715</td>
<td>3.282966435</td>
</tr>
<tr>
<td>NBF Proboscis</td>
<td>0.122</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BF Proboscis</td>
<td>0.095</td>
<td>0.238</td>
<td>0.847919965</td>
</tr>
<tr>
<td>Male Proboscis</td>
<td>0.091</td>
<td>-0.344</td>
<td>1.269270886</td>
</tr>
<tr>
<td>Primer Name</td>
<td>Primer Sequence 5' to 3'</td>
<td>Primer Name</td>
<td>Primer Sequence 5' to 3'</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Gr1-XbaI</td>
<td>CCCCTCTAGACATAAATACAAAAACGTTC</td>
<td>Gr1-AscI</td>
<td>AAAAGCCGCGCGTCTCAACCATGCACGCAAACTA</td>
</tr>
<tr>
<td>Gr2-Not I</td>
<td>TTTGCGGCGCGCTGGTTGCACTTCAGCCAGCT</td>
<td>Gr2-PacI</td>
<td>AAAATTAGCAGAAGCTTAAAGCAACTCCG</td>
</tr>
<tr>
<td>Or7-PacI</td>
<td>AAAATTTAGCAGCGCTTTGCTTTACCTTAGCCA</td>
<td>Or7-NotI</td>
<td>AAAAGGCGCCGCGCAAAATCCATAGGCTGCTGTT</td>
</tr>
<tr>
<td>AaOr7-743-393F</td>
<td>TTAATTAACGATAAGCATTCTTCGAGGATA</td>
<td>AaOr7-393R</td>
<td>TCTAGAAATCTTTTCGCTTTGCTGATCTTT</td>
</tr>
<tr>
<td>AaOr7-743-946F</td>
<td>TTAATTAACGATAAGCATTCTTCGAGGATA</td>
<td>AaOr7-743-946R</td>
<td>TCTAGAACAAGCGCCAGAGCAAGCATAGAC</td>
</tr>
<tr>
<td>AaOr7-946F</td>
<td>TTAATTAACGATAAGCATTCTTCGAGGATA</td>
<td>AaOr7-743-946R</td>
<td>TCTAGAACAAGCGCCAGAGCAAGCATAGAC</td>
</tr>
</tbody>
</table>
Table 4.10: Relative quantities of *AaOr7*, *AaGr1*, and *AaGr2* in infected samples

AaGr1 Real-Time Assay

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC<sub>T</sub></th>
<th>Standard Error</th>
<th>ΔΔC<sub>T</sub></th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected Antenna</td>
<td>0.407</td>
<td>7.707</td>
<td>0.00478588</td>
<td></td>
</tr>
<tr>
<td>TE3’2JE2 SINV Antenna</td>
<td>0.149</td>
<td>7.459</td>
<td>0.005683518</td>
<td></td>
</tr>
<tr>
<td>AaGr1+AaGr2 SINV Antenna</td>
<td>0.163</td>
<td>7.201</td>
<td>0.006796464</td>
<td></td>
</tr>
<tr>
<td>Uninfected Palp</td>
<td>0.094</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TE3’2JE2 SINV Palp</td>
<td>0.157</td>
<td>0.026</td>
<td>0.982139595</td>
<td></td>
</tr>
<tr>
<td>AaGr1+AaGr2 SINV Palp</td>
<td>0.224</td>
<td>0.264</td>
<td>0.832775771</td>
<td></td>
</tr>
<tr>
<td>Uninfected Proboscis</td>
<td>0.902</td>
<td>10.925</td>
<td>0.000514336</td>
<td></td>
</tr>
<tr>
<td>TE3’2JE2 SINV Proboscis</td>
<td>0.173</td>
<td>8.586</td>
<td>0.002602295</td>
<td></td>
</tr>
<tr>
<td>AaGr1+AaGr2 SINV Proboscis</td>
<td>0.268</td>
<td>5.843</td>
<td>0.017421347</td>
<td></td>
</tr>
</tbody>
</table>

AaGr2 Real-Time Assay

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC<sub>T</sub></th>
<th>Standard Error</th>
<th>ΔΔC<sub>T</sub></th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE3’2JE2 SINV Antenna</td>
<td>0.205</td>
<td>5.542</td>
<td>0.021463066</td>
<td></td>
</tr>
<tr>
<td>AaGr1 SINV Antenna</td>
<td>0.244</td>
<td>5.358</td>
<td>0.024382671</td>
<td></td>
</tr>
<tr>
<td>AaGr1+AaGr2 SINV Antenna</td>
<td>0.09</td>
<td>6.183</td>
<td>0.013763584</td>
<td></td>
</tr>
<tr>
<td>TE3’2JE2 SINV Palp</td>
<td>0.12</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>AaGr1 SINV Palp</td>
<td>0.133</td>
<td>0.842</td>
<td>0.557869661</td>
<td></td>
</tr>
<tr>
<td>AaGr1+AaGr2 SINV Palp</td>
<td>0.604</td>
<td>1.341</td>
<td>0.394746943</td>
<td></td>
</tr>
<tr>
<td>TE3’2JE2 SINV Proboscis</td>
<td>0.313</td>
<td>4.944</td>
<td>0.032486857</td>
<td></td>
</tr>
<tr>
<td>AaGr1 SINV Proboscis</td>
<td>0.191</td>
<td>5.815</td>
<td>0.017762765</td>
<td></td>
</tr>
<tr>
<td>AaGr1+AaGr2 SINV Proboscis</td>
<td>0.228</td>
<td>6.527</td>
<td>0.010843693</td>
<td></td>
</tr>
</tbody>
</table>

153
AaOr7 Real-Time Assay

<table>
<thead>
<tr>
<th>Sample</th>
<th>ΔC<sub>T</sub> Standard Error</th>
<th>ΔΔC<sub>T</sub></th>
<th>Relative Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TE3'2JE2 SINV Antenna</td>
<td>0.204</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>AaGr1 SINV Antenna</td>
<td>0.27</td>
<td>-0.59</td>
<td>1.505246747</td>
</tr>
<tr>
<td>AaGr1+AaOr7 SINV Antenna</td>
<td>0.234</td>
<td>0.9</td>
<td>0.535886731</td>
</tr>
<tr>
<td>TE3'2JE2 SINV Palp</td>
<td>0.091</td>
<td>2.72</td>
<td>0.151774361</td>
</tr>
<tr>
<td>AaGr1 SINV Palp</td>
<td>0.931</td>
<td>3.634</td>
<td>0.080548414</td>
</tr>
<tr>
<td>AaGr1+AaOr7 SINV Palp</td>
<td>0.637</td>
<td>3.609</td>
<td>0.081956376</td>
</tr>
<tr>
<td>TE3'2JE2 SINV Proboscis</td>
<td>0.135</td>
<td>4.886</td>
<td>0.03381952</td>
</tr>
<tr>
<td>AaGr1 SINV Proboscis</td>
<td>0.309</td>
<td>3.599</td>
<td>0.082526428</td>
</tr>
<tr>
<td>AaGr1+AaOr7 SINV Proboscis</td>
<td>0.191</td>
<td>6.05</td>
<td>0.015092755</td>
</tr>
</tbody>
</table>

Abreviations

24 hours post-bloodfed female mosquito, BF; green fluorescent protein, GFP; gustatory receptor, GR; non-bloodfed female mosquito, NBF; odorant receptor, OR; Sindbis virus, SINV

Acknowledgements

Thanks to Dr. Jim Beidler for the kind gift of his *AaRPS7* primers. Thanks to Randy Saunders for his maintaining the *Ae. aegypti* mosquito stocks and providing all the mosquitoes needed for these experiments. Thanks to both Drs. Zach Adelman and Kevin Myles for all their help with the sindbis virus, including providing us with the TE3’2Jmcs, TE3’2JE2, and TE3’2JGFP plasmids.
4.8: Bibliography

17. Sato K, Pellegrino M, Nakagawa T, Nakagawa T, Vosshall LB, Touhara K: *Insect"

