ACKNOWLEDGEMENTS

I would like to thank everyone who directly or indirectly had an influence in the completion of my graduate study. I especially would like to thank my academic advisor, Dr. Susan Duncan, for helping me through these two years and guiding me with patience and support. I would also like to thank Dr. Herbein, Dr. O’Keefe and Dr. Sumner for their suggestions and help. I want to express my special gratitude to Walter Hartman and Kim Waterman; this research could not have been done without their help. Also, I would like to thank Harriet Williams for her valuable help in lab. Thank you to Wendy Wark and Juan Loor for helping me with the feeding of the cows and milk collection. Thank you Marleen, Jodi and Jennifer for helping in sensory and during processing.

I would like to thank my parents, sisters and friends back home who sent me their love and support all the time, and inspired me to accomplish this task.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>TITLE</td>
</tr>
<tr>
<td>ii</td>
<td>ABSTRACT</td>
</tr>
<tr>
<td>iv</td>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>v</td>
<td>TABLE OF CONTENTS</td>
</tr>
<tr>
<td>ix</td>
<td>LIST OF TABLES</td>
</tr>
<tr>
<td>xi</td>
<td>LIST OF FIGURES</td>
</tr>
</tbody>
</table>

CHAPTER I. INTRODUCTION

CHAPTER II. REVIEW OF LITERATURE

- Saturated Fatty Acids 3
- Polyunsaturated Fatty Acids (PUFAs) 3
- Oleic Acid (Monounsaturated Fatty Acids (MUFA) 5
- Trans Fatty Acids 5
- Modification of Fatty Acids in Milkfat 6
 - Influence of Bovine Diet Manipulation 7
- Chemical Properties of Milkfat 9
 - Fatty Acid Composition 9
 - Lipid Oxidation 9
 - Flavor 13
- Physical Properties of Milkfat 13
Crystallization Behavior of Milkfat

Meting Behavior of Milkfat

Textural Characteristics of Milkfat

Butter

Ice Cream

References

CHAPTER III. OXIDATION AND TEXTURAL CHARACTERISTICS OF BUTTER AND ICE CREAM WITH MODIFIED FATTY ACID PROFILES

ABSTRACT

INTRODUCTION

MATERIALS AND METHODS

Modification of Bovine Diet to Alter Milkfat

Postharvest Milk Processing

Butter and Butteroil Processing

Ice Cream Production

Chemical Analyses

Compositional Analyses

Fatty Acid Profile

Oxidation Analyses

Freezing point

Color

Texture and Physicochemical Analyses

Sensory Analyses
PAGE

Microbial Analyses 35
Statistical Analyses 35

RESULTS AND DISCUSSION 37
Fatty Acid Profile of Milkfat 37
Changes in Physical Characteristics of Butter by Fatty Acid Modification 40
Oxidation Stability of Milkfat in Ice Cream with Modified Fatty Acid Profile 42
Physicochemical and Textural Properties of Ice Cream Related to Modified Fatty Acid Profile 47

CONCLUSIONS 53

ACKNOWLEDGEMENT 54

REFERENCES 55

APPENDICES 59

APPENDIX A. Chemical Analyses of Lipids 59

Figure A-1. Fatty acid profile of milkfat cows fed normal, high-oleic and high-linoleic diets 60
Table A-1. Fatty acid profile of milkfat cows fed normal, high-oleic and high-linoleic diets (milkfat extracted from ice cream stored at –24 C) 61
Table A-2 Total fatty acid profile of milkfat cows fed normal, high-oleic and high-linoleic diets 62
Table A-3. Peroxide values (meq of peroxide/Kg sample) of milk, cream, and ice cream during the processing period (0 months) and ice cream during 2 months of storage and 3-5 months of storage (Period when sensory analyses took place) 63
Table A-4. % Free fatty acids of milk, cream, and ice cream during the processing period (0 months) and ice cream during 2 months of storage and 3-5 months of storage (Period when sensory analyses took place)

Table A-5 Acid value of milk, cream, and ice cream during the processing period (0 months) and ice cream during 2 months of storage and 3-5 months of storage (Period when sensory analyses took place)

Table A-6 Proximate compositions of ice cream mixes during processing period (0 months)

Table A-7 Microbiological Analyses

APPENDIX B. Physical Analyses

Table B-1 Butter and ice cream firmness expressed in joules measured at specific temperature ranges.

Table B-2. Apparent viscosity (milli pascals) of ice cream mixes at increasing and then decreasing shear rates

Table B-3. Dropping points and solid fat index of the butteroil Treatments

APPENDIX C. Sensory Analyses

Table C-1. Responses of Overall Difference test with description of results

Figure C-1. Human Subjects Form for Sensory Evaluation

Figure C-2. Sample Scorecards of the triangle test

Figure C-3. Sample Scorecard of the ease of dipping test

Figure C-4. Sample Scorecard of the oxidation flavor

VITAE
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1. % Total diet dry matter in bovine diets with different fatty acid concentrations</td>
<td>28</td>
</tr>
<tr>
<td>3.2. Oleic and linoleic diet rotations assigned to each cow</td>
<td>29</td>
</tr>
<tr>
<td>3.3. 10% Fat ice cream formulation</td>
<td>31</td>
</tr>
<tr>
<td>3.4. Fatty acid profile of milkfat from cows fed normal, high-oleic and high-linoleic diets</td>
<td>38</td>
</tr>
<tr>
<td>3.5. Paired comparison test on oxidation off flavors in ice cream</td>
<td>46</td>
</tr>
<tr>
<td>3.6. Responses of texture test Ease of Dipping test (Paired Comparison Test)</td>
<td>51</td>
</tr>
<tr>
<td>A-1. Fatty acid profile of milkfat form cows fed normal, high-oleic and high-linoleic diets. (milkfat extracted from ice cream stored at –24C).</td>
<td>61</td>
</tr>
<tr>
<td>A-2. Total Fatty acid profile of milkfat form cows fed normal, high-oleic and high-linoleic diets</td>
<td>62</td>
</tr>
<tr>
<td>A-3. Peroxide values (meq of peroxide/Kg sample) of milk cream and ice cream during the processing period (0 months) and ice cream during 2 months of storage and 3-5 months of storage (Period when sensory analyses took place).</td>
<td>63</td>
</tr>
<tr>
<td>A-4. % Free fatty acids of milk cream and ice cream during the processing period (0 months) and ice cream during 2 months of storage and 3-5 months of storage (Period when sensory analyses took place).</td>
<td>64</td>
</tr>
<tr>
<td>A-5. Acid value of milk cream and ice cream during the processing period (0 months) and ice cream during 2 months of storage and 3-5 months of storage (Period when sensory analyses took place).</td>
<td>64</td>
</tr>
<tr>
<td>A-6. Proximate compositions of ice cream mixes during processing period (0 months)</td>
<td>65</td>
</tr>
<tr>
<td>A-7 Microbiological Analyses</td>
<td>65</td>
</tr>
<tr>
<td>B-1. Butter and ice cream firmness expressed in joules measured at specific temperature ranges</td>
<td>67</td>
</tr>
</tbody>
</table>
B-2. Apparent viscosity (milli pascals) of ice cream mixes at increasing and then decreasing shear rates 68

B-3. Dropping points and solid fat index of the butteroil treatments 69

C-1. Responses of overall difference test (Triangle Test) 71
LIST OF FIGURES

Figure 2-1. Linoleic acid biohydrogenation 7

Figure 2-2. Autooxidation scheme 11

Figure 2-3. Variation of peroxide values with time in a intermediate moisture food at 35 C. The point of rancidity determined organoleptically 12

Figure 3-1. Butter firmness (joules) in a temperature range between 4.2-5.5 ºC 41

Figure 3-2. Butter solid fat index. No significant differences between the milkfat treatments were found (P>0.05) 41

Figure 3-3. Relationship between ice cream peroxide values and storage time for every ice cream treatment. Storage periods (0,2,3,4,5,7,8,9 months). The different symbols represent the three ice cream treatments 44

Figure 3-4. Hysterisis curve for ice cream mixes. Control, high-oleic (oleic) and high-linoleic (linoleic). 49

Figure A-1. Fatty acid profile of milkfat cows fed normal, high-oleic and high-linoleic Diets 60

Figure C-1. Human Subjects Form for Sensory Evaluation 73

Figure C-2. Sample Scorecards of the triangle test 79

Figure C-3. Sample Scorecard of the ease of dipping test 80

Figure C-4. Sample Scorecard of the oxidation flavor 81