Contents

Abstract .. ii

1 Introduction ... 1
 1.1 Background .. 1
 1.2 Interface Behavior in SSI Analyses .. 3
 1.2.1 The North Lock Wall at McAlpine Locks ... 3
 1.2.2 Limitations of existing interface models ... 7
 1.3 Project Scope .. 11
 1.3.1 Interface testing .. 11
 1.3.2 Extended hyperbolic model for interfaces .. 13
 1.3.3 Implementation of the model in SOILSTRUCT-ALPHA 14
 1.3.4 Lock wall simulation .. 14
 1.4 Report Organization .. 15

2 Literature Review .. 16
 2.1 Interface Testing .. 16
 2.1.1 Direct Shear Box (DSB) devices ... 17
 2.1.2 Direct Simple Shear (DSS) devices .. 18
 2.1.3 Other devices .. 19
 2.1.4 Summary of previous findings on interface testing and interface behavior .. 21
 2.1.5 The Large Direct Shear Box (LDSB) ... 22
 2.2 Interface Modeling ... 23
 2.2.1 Interface elements ... 23
 2.2.2 Interface constitutive models .. 26
 2.2.3 The hyperbolic model ... 27
 2.3 SSI Analyses of Retaining Walls .. 31
 2.3.1 Review of previous work ... 31
 2.3.2 Simplified procedure for calculating the downdrag force 33
 2.4 Summary .. 42

3 Laboratory Testing .. 45
 3.1 Soil Properties ... 46
 3.1.1 Triaxial testing .. 48
 3.1.2 Consolidation testing .. 49
 3.1.3 Hyperbolic parameters .. 49
 3.2 Concrete Specimen .. 50
 3.2.1 Materials ... 52
 3.2.2 Preparation of the specimen .. 52
 3.2.3 Surface texture .. 55
 3.3 Interface Testing Procedures .. 60
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1</td>
<td>The soil box</td>
<td>60</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Preparation of the interface</td>
<td>60</td>
</tr>
<tr>
<td>3.3.3</td>
<td>The Large Direct Shear Box (LDSB)</td>
<td>62</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Test setup</td>
<td>64</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Data reduction</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Interface Testing Program</td>
<td>64</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Testing parameters</td>
<td>65</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Types of interface tests</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Results of Interface Tests</td>
<td>69</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Interface response to initial loading</td>
<td>69</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Interface response to staged shear</td>
<td>70</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Interface response to unloading-reloading</td>
<td>71</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Interface response to multidirectional stress paths</td>
<td>72</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
<td>72</td>
</tr>
<tr>
<td>4</td>
<td>Extended Hyperbolic Model</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental Observations of Interface Response</td>
<td>76</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Normalization of interface test data</td>
<td>76</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Development of yield surfaces during interface shear</td>
<td>80</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Loading regions</td>
<td>89</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Interface response at yield</td>
<td>92</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Interface response during unloading-reloading</td>
<td>96</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Interface response during transition loading</td>
<td>97</td>
</tr>
<tr>
<td>4.2</td>
<td>Formulation of the Extended Hyperbolic Model</td>
<td>100</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Hypothesis of interface response at yield</td>
<td>101</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Mathematical formulation</td>
<td>104</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Formulation of the extended hyperbolic model for interfaces at yield</td>
<td>108</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Behavior of the model</td>
<td>109</td>
</tr>
<tr>
<td>4.3</td>
<td>Formulation of the Extended Hyperbolic Model for Unloading-Reloading</td>
<td>114</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Version I</td>
<td>115</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Version II</td>
<td>117</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Version III</td>
<td>121</td>
</tr>
<tr>
<td>4.4</td>
<td>Determination of the Model Parameter Values</td>
<td>125</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Determination of parameter values for interfaces at yield</td>
<td>126</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Determination of interface parameter values for unloading-reloading</td>
<td>134</td>
</tr>
<tr>
<td>4.5</td>
<td>Evaluation of the Extended Hyperbolic Model</td>
<td>143</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Accuracy of the model of yield-inducing shear</td>
<td>144</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Accuracy of the model for unloading-reloading</td>
<td>149</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Accuracy of the model for staged shear</td>
<td>154</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Accuracy of the model for shearing along complex stress paths</td>
<td>156</td>
</tr>
<tr>
<td>4.6</td>
<td>Implementation of the Extended Hyperbolic Model</td>
<td>172</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Incremental analyses</td>
<td>172</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Identification of type of loading</td>
<td>173</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Implementation of the formulation for yield-inducing shear</td>
<td>173</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Implementation of Version I</td>
<td>176</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Implementation of Version II</td>
<td>176</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>4.6.6 Implementation of Version III</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>4.6.7 Implementation of the extended hyperbolic model in SOILSTRUCT-ALPHA</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>4.7 Summary and Conclusions</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>5 Lock Wall Simulation</td>
<td>186</td>
<td></td>
</tr>
<tr>
<td>5.1 The IRW Facility</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>5.1.1 Components of the IRW</td>
<td>187</td>
<td></td>
</tr>
<tr>
<td>5.1.2 Preparations for the test</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>5.2 Testing Procedures</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>5.2.1 Stage 1, Backfilling</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>5.2.2 Stage 2, Surcharge</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>5.2.3 Stage 3, Inundation</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>5.3 Test Results</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>5.3.1 Results from stage 1</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>5.3.2 Results from stage 2</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>5.3.3 Results from stage 3</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>5.4 Discussion of Test Results</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>5.4.1 Response of the wall-backfill system to backfilling</td>
<td>201</td>
<td></td>
</tr>
<tr>
<td>5.4.2 Response of the wall-backfill system to surcharge</td>
<td>204</td>
<td></td>
</tr>
<tr>
<td>5.4.3 Response of the wall-backfill system to inundation</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>5.4.4 Special considerations for finite element analyses of the IRW</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>5.5 Finite Element Analysis Procedures</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>5.5.1 Summary of features of SOILSTRUCT-ALPHA</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>5.5.2 Finite element mesh</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>5.5.3 Tentative soil properties</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>5.5.4 Near-field interface properties</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>5.6 Calibration Analyses</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>5.6.1 Analysis of backfilling</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>5.6.2 Analysis of surcharge application and removal</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>5.7 Analysis of Backfill Inundation</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>5.8 Summary and Conclusions</td>
<td>227</td>
<td></td>
</tr>
<tr>
<td>6 Summary and Conclusions</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>6.1 Summary of Activities</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>6.1.1 Literature review</td>
<td>232</td>
<td></td>
</tr>
<tr>
<td>6.1.2 Laboratory testing</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>6.1.3 Extended hyperbolic model</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>6.1.4 Lock wall simulation</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>6.2 Recommendations for Future Work</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>241</td>
<td></td>
</tr>
</tbody>
</table>

Appendix A: Results of Triaxial and Consolidation Tests

A.1 Triaxial Tests

A.2 Consolidation Testing
List of Figures

Figure 1-1. Typical section, north wall of new RCC McAlpine Lock (adapted from Ebeling and Wahl 1997) .. 4

Figure 1-2. Simplified illustration of the mechanism of downdrag and shear reversal in a typical lock wall ... 6

Figure 1-3. Types of loading expected on the interface between a lock wall and the backfill ... 8

Figure 1-4. Two models for interface shear stress-displacement response under unloading (adapted from Ebeling and Wahl 1997) 10

Figure 1-5. Laboratory stress paths to study the response of a wall-backfill interface .. 12

Figure 2-1. Distortion of the sand mass during interface tests in the DSB and DSS devices .. 19

Figure 2-2. Goodman, Taylor, and Brekke (1968) zero thickness interface element and corresponding element stiffness matrix 24

Figure 2-3. Application of the Clough and Duncan (1971) interface hyperbolic model to a typical set of test data 28

Figure 2-4. Vertical and effective horizontal earth pressure forces on vertical plane extending from through the backfill from the heel of the monolith (adapted from ETL 1110-2-352 (HQUSACE 1994)) ... 34

Figure 2-5. Rock-founded retaining wall definition sketches (adapted from Filz, Duncan, and Ebeling 1997) ... 36

Figure 2-6. Value of $K_{c,sol,ref}$ recommended for design (adapted from Filz, Duncan, and Ebeling 1997) .. 39

Figure 2-7. Value of $K_{c,q,ref}$ recommended for design (adapted from Filz, Duncan, and Ebeling 1997) .. 40

Figure 2-8. Values of the correction factors C_θ, C_N, and C_s (adapted
from Filz, Duncan, and Ebeling 1997) ... 41

Figure 2-9. Values of the correction factor \(C_{\text{w}} \) recommended for design
(adapted form EM 1110-2-2100 (HQUSACE, in preparation)) 43

Figure 3-1. Grain size distribution of the soils used for interface testing 47

Figure 3-2. Microscopic view of the sands used for interface testing 48

Figure 3-3. Hyperbolic parameter values for Density sand
and Light Castle sand and comparison to values
reported by Duncan et al. (1980) for similar soils 51

Figure 3-4. Preparation of the concrete specimen ... 53

Figure 3-5. Grain size distribution of aggregates used for the preparation
of the concrete specimen .. 54

Figure 3-6. Surface texture of representative retaining walls 57

Figure 3-7. Preparation of sand-to-concrete interface and setup for testing 61

Figure 3-8. View of the LDSB ready for soil-to-concrete interface testing 63

Figure 3-9. Types of laboratory interface shear tests performed 68

Figure 4-1. Degradation of the tangent shear stiffness during initial
loading of the dense-density-sand-to-concrete interface 78

Figure 4-2. Diagram of normalized interface shear stiffness
for the dense-Density-sand-to-concrete interface 79

Figure 4-3. Unload-reload Test T203_15 on the dense-Density-sand-to-concrete Degradation... 81

Figure 4-4. Staged shear Test T105_40 on for the dense-Density-sand-to-concrete interface ... 83

Figure 4-5. Diagram of normalized interface shear stiffness
for unload-reload Test T203_15 .. 85

Figure 4-6. Diagram of normalized interface shear stiffness
for staged shear Test T105_40 .. 87

Figure 4-7. Evolution of yield surfaces during interface shear 88

Figure 4-8. Loading regions for Versions I and II of the extended
hyperbolic model .. 90
Figure 4-9. Comparison between the normalized stiffness diagrams for Tests T203_15 and T10540 .. 91

Figure 4-10. Loading regions for Version III of the extended hyperbolic model ... 93

Figure 4-11. Multidirectional stress path test T205_5 on the dense-Density-Sand-to-concrete interface ... 94

Figure 4-12. Multidirectional stress path Test T206_5 on the dense-Density-Sand-to-concrete interface ... 98

Figure 4-13. Interface response to a set of hypothetical initial loading tests 102

Figure 4-14. Type of interface response assumed in the extended hyperbolic formulation ... 103

Figure 4-15. Determination of the interface stiffness along an inclined stress path .. 105

Figure 4-16. Interface response at yield for inclined stress paths in the extended hyperbolic model ... 110

Figure 4-17. Interface response assumed in Version I for unloading-reloading ... 116

Figure 4-18. Interface response assumed in Version II for unloading-reloading .. 118

Figure 4-19. Normalized interface response during transition loading assumed in Version III ... 122

Figure 4-20. Adjustment of the value of stiffness number n_j of the dense-Density-sand-to-concrete interface using normalized data from initial loading tests ... 128

Figure 4-21. Normalized hyperbolic diagrams for different values of the stiffness number K_f and failure ratio R_j ... 130

Figure 4-22. Adjustment of the value of stiffness number K_f for the dense-Density-Sand-to-concrete interface ... 131

Figure 4-23. Proposed approximation for the estimation of the stiffness number for unloading-reloading K_{urj} ... 136

Figure 4-24. Proposed approximation for the estimation of the scaling factor α ... 139
Figure 4-25. Comparison between the extended hyperbolic model and data from initial loading tests on the dense-Density-Sand-to-concrete interface .. 145

Figure 4-26. Comparison between the extended hyperbolic model and data from initial loading tests on the medium-dense-Density-sand-to-concrete interface ... 146

Figure 4-27. Comparison between the extended hyperbolic model and data from initial loading tests on the dense-Light-Castle-Sand-to-concrete interface .. 147

Figure 4-28. Comparison between the extended hyperbolic model and data from multidirectional stress path Test T205_5 performed on the dense-Density-Sand-to-concrete interface 148

Figure 4-29. Application of the extended hyperbolic model for unload-reload stress paths contained in Quadrant I of the $\tau-\sigma_n$ plane ... 150

Figure 4-30. Comparison between the extended hyperbolic model and data from Test T201_5 performed on the dense-Density-Sand-to-concrete interface .. 151

Figure 4-31. Comparison between the extended hyperbolic model and data from Test T202_5 performed on the dense-Density-sand-to-concrete interface .. 152

Figure 4-32. Comparison between the extended hyperbolic model and data from Test T203_15 performed on the dense-Density-sand-to-concrete interface .. 153

Figure 4-33. Application of the extended hyperbolic model for staged shear stress paths ... 155

Figure 4-34. Comparison between the extended hyperbolic model and data from Test T105_40 performed on the dense-Density-sand-to-concrete interface .. 157

Figure 4-35. Comparison between the extended hyperbolic model and data from Test T106_15 performed on the dense-Density-sand-to-concrete interface .. 159

Figure 4-36. Comparison between the extended hyperbolic model and data from multidirectional stress path Test T204_5 performed on the dense-Density-Sand-to-concrete interface 161

Figure 4-37. Comparison between the extended hyperbolic model
and data from multidirectional stress path Test T206_5 performed on the dense-Density-Sand-to-concrete interface 164

Figure 4-38.Comparison between the extended hyperbolic model and data from multidirectional stress path Test T305_10 performed on the medium-dense-Density-sand-to-concrete interface.. 167

Figure 4-39.Comparison between the extended hyperbolic model and data from multidirectional stress path Test T405_10 performed on the dense-Light-Castle-Sand-to-concrete interface... 170

Figure 4-40.Procedure for the determination of the type of loading applied to an interface element during the ith load step................... 174

Figure 4-41.Flowchart for the determination of the tangent shear stiffness of an interface element at yield during the ith load step 175

Figure 4-42.Flowchart for the determination of the tangent shear stiffness of an interface element during the ith load step, using Version I of the extended hyperbolic model 177

Figure 4-43.Flowchart for the determination of the tangent shear stiffness of an interface element during the ith load step, using Version II of the extended hyperbolic model.......................... 178

Figure 4-44. Flowchart for the determination of the tangent shear stiffness of an interface element during the ith load step, using Version III of the extended hyperbolic model....................... 180

Figure 5-1. The IRW test facility (after Sehn 1990).. 188

Figure 5-2. Cross-section of the IRW... 189

Figure 5-3. IRW panels (after Sehn 1990) .. 190

Figure 5-4. Stages of the lock wall simulation performed in the IRW test facility.. 194

Figure 5-5. View of the IRW at different stages of the lock wall simulation 195

Figure 5-6. Evolution of the lateral earth pressure coefficient K_h during backfilling in the IRW.. 202

Figure 5-7. Lateral pressure distribution at the end of backfilling................. 203

Figure 5-8. Evolution of the vertical shear force coefficient K_v during backfilling in the IRW.. 204
Figure 5-9. Vertical shear force coefficient for surcharge $K_{v,q}$ in the IRW........ 205
Figure 5-10. Values of the correction factor C_{wt} during inundation
of the backfill in the IRW ... 206
Figure 5-11. Finite element mesh used for the analyses.............................. 215
Figure 5-12. Adjustment of stress-dependent backfill property for finite
element analyses of the IRW .. 218
Figure 5-13. Results of calibration analyses of backfilling and comparison
to IRW test data.. 223
Figure 5-14. Results of calibration analyses of surcharge and comparison
to IRW test data.. 226
Figure 5-15. Results of finite element analyses of inundation and comparison
to IRW test data.. 228
Figure A-1. Results of CD triaxial tests on medium-dense Density sand
Figure A-2. Results of CD triaxial tests on dense Density sand
Figure A-3. Results of CD triaxial tests on medium dense Light Castle sand
Figure A-4. Results of CD triaxial tests on dense Light Castle sand
Figure A-5. Results of consolidation tests on medium dense Density sand
Figure A-6. Results of consolidation tests on dense Density sand
Figure A-7. Results of consolidation tests on medium dense Light Castle sand
Figure A-8. Results of consolidation tests on dense Light Castle sand
Figure A-9. Relationship between hydrocompression strain and relative
density for Light Castle sand
Figure B-1. Transformed stress-strain plots from triaxial test data
on medium-dense Density sand and determination of hyperbolic
parameter values
Figure B-2. Determination of hyperbolic parameters K and n
for medium-dense Density sand
Figure B-3. Determination of hyperbolic parameters K_b and m
for medium-dense Density sand
Figure B-4. Hyperbolic model for medium-dense Density sand and
comparison to CD triaxial test data

Figure B-5. Transformed stress-strain plots from triaxial test data on dense Density sand and determination of hyperbolic parameter values

Figure B-6. Determination of hyperbolic parameters K and n for dense Density Sand

Figure B-7. Determination of hyperbolic parameters K_b and m for dense Density Sand

Figure B-8. Hyperbolic model for dense Density Sand and comparison to CD triaxial test data

Figure B-9. Transformed stress-strain plots from triaxial test data on medium-dense Light Castle Sand and determination of hyperbolic parameter values

Figure B-10. Determination of hyperbolic parameters K and n for medium-dense Light Castle sand

Figure B-11. Determination of hyperbolic parameters K_b and m for medium-dense Light Castle sand

Figure B-12. Hyperbolic model for medium-dense Light Castle sand and comparison to CD triaxial test data

Figure B-13. Transformed stress-strain plots from triaxial test data on dense Light Castle Sand and determination of hyperbolic parameter values

Figure B-14. Determination of hyperbolic parameters K and n for dense Light Castle sand

Figure B-15. Determination of hyperbolic parameters K_b and m for dense Light Castle sand

Figure B-16. Hyperbolic model for dense Light Castle sand and comparison to CD triaxial test data

Figure B-17. Example determination of axial and volumetric strain values at 70 and 95 percent of strength. Data from CD triaxial tests on dense Light Castle Sand

Figure B-18. Determination of the normalized values of E_i and B for each of the CD triaxial tests performed on dense Light Castle sand (adapted from Duncan et al. 1980)
Figure B-19. Determination of hyperbolic parameters K and n
from the E_i / p_a values determined in column (15)
of Figure B18

Figure B-20. Determination of hyperbolic parameters K_b and m
from the B/p_a values determined in column (16)
of Figure B18

Figure C-1. Results of initial loading tests on dense-Density-sand-to-concrete interface

Figure C-2. Peak and residual shear strength envelopes for initial
on dense-Density-sand-to-concrete interface

Figure C-3. Results of initial loading tests on medium-dense-Density-sand-to-concrete interface

Figure C-4. Peak and residual shear strength envelopes for initial
on medium-dense-Density-sand-to-concrete interface

Figure C-5. Results of initial loading tests on dense-Light-Castle-sand-to-concrete interface

Figure C-6. Peak and residual shear strength envelopes for initial
on dense-Light-sand-to-concrete interface

Figure C-7. Staged shear test on dense-Density-sand-to-concrete interface,
Specimen S105. Data on shear reversals are omitted

Figure C-8. Staged test on dense-Density-sand-to-concrete interface,
Specimen S106. Data on shear reversals are omitted

Figure C-9. Staged tests on dense-Density-sand-to-concrete interface,
Specimen S101

Figure C-10. Staged tests on dense-Density-sand-to-concrete interface,
Specimen S102

Figure C-11. Staged tests on dense-Density-sand-to-concrete interface,
Specimen S103

Figure C-12. Unload-reload test on dense-Density-sand-to-concrete interface,
$\sigma_n = 33$ kPa, Specimen S201

Figure C-13. Unload-reload test on dense-Density-sand-to-concrete interface,
$\sigma_n = 33$ kPa, Specimen S202

Figure C-14. Unload-reload test on dense-Density-sand-to-concrete interface,
Figure C-15. Cycle of shear reversals on dense-Density-sand-to-concrete interface, $\sigma_n = 15$ kPa, Specimen S101

Figure C-16. Cycle of shear reversals on dense-Density-sand-to-concrete interface, $\sigma_n = 33$ kPa, Specimen S102

Figure C-17. Cycle of shear reversals on dense-Density-sand-to-concrete interface, $\sigma_n = 102$ kPa, Specimen S103

Figure C-18. Cycle of shear reversals on dense-Density-sand-to-concrete interface, $\sigma_n = 274$ kPa, Specimen S104

Figure C-19. Shear reversal on medium-dense-Density-sand-to-concrete interface, $\sigma_n = 35$ kPa, Specimen S302

Figure C-20. Cycle of shear reversals on medium-dense-Density-sand-to-concrete interface, $\sigma_n = 104$ kPa, Specimen S303

Figure C-21. Cycle of shear reversals on medium-dense-Density-sand-to-concrete interface, $\sigma_n = 276$ kPa, Specimen S304

Figure C-22. Cycle of shear reversals on dense-Light-Castle-sand-to-concrete interface, $\sigma_n = 15$ kPa, Specimen S401

Figure C-23. Cycle of shear reversals on dense-Light-Castle-sand-to-concrete interface, $\sigma_n = 35$ kPa, Specimen S402

Figure C-24. Cycle of shear reversals on dense-Light-Castle-sand-to-concrete interface, $\sigma_n = 104$ kPa, Specimen S403

Figure C-25. Cycle of shear reversals on dense-Light-Castle-sand-to-concrete interface, $\sigma_n = 276$ kPa, Specimen S404

Figure C-26. Multidirectional stress path Test T204_5 on dense-Density-sand-to-concrete interface

Figure C-27. Multidirectional stress path Test T205_5 on dense-Density-sand-to-concrete interface

Figure C-28. Multidirectional stress path Test T206_5 on dense-Density-sand-to-concrete interface

Figure C-29. Multidirectional stress path Test T305_10 on dense-Density-sand-to-concrete interface

Figure C-30. Multidirectional stress path Test T405_10 on dense-Density-
sand-to-concrete interface

Figure D-1. Transformed plots for initial loading tests on dense-Density-sand-to-concrete interface

Figure D-2. Determination of hyperbolic parameters K_i and n_i
for dense-Density-sand-to-concrete interface

Figure D-3. Comparison between the hyperbolic model and data
from initial loading tests on dense-Density-sand-to-concrete interface

Figure D-4. Transformed plots for initial loading tests on medium-dense-Density-sand-to-concrete interface

Figure D-5. Determination of hyperbolic parameters K_i and n_i
for medium-dense-Density-sand-to-concrete interface

Figure D-6. Comparison between the hyperbolic model and data
from initial loading tests on medium-dense-Density-sand-to-concrete interface

Figure D-7. Transformed plots for initial loading tests on dense-Light-Castle-sand-to-concrete interface

Figure D-8. Determination of hyperbolic parameters K_i and n_i
for dense-Light-Castle-sand-to-concrete interface

Figure D-9. Comparison between the hyperbolic model and data from initial loading tests on dense-Light-Castle-sand-to-concrete interface

Figure D-10. Example determination of interface displacements
at 70 and 95 percent of strength. Data from interface tests on dense Light Castle sand

Figure D-11. Determination of the normalized valued of K_{ni} for each of the initial loading tests performed on the dense-Light-Castle-sand-to-concrete interface

Figure D-12. Determination of hyperbolic parameters K_i and n_i from the K_{ni} / γ_e values determined in column (12) of Figure D-11
List of Tables

Table 1-1 Summary of Results from SSI Analyses for the North Lock at McAlpine Locks (adapted from Ebeling and Wahl, 1997) 5

Table 1-2. Comparison of Results of SSI Analysis at Section A-A for Two Different Models of Interface Response to Unloading (adapted from Ebeling and Wahl, 1997) 9

Table 2-1. Previous Work on Direct Shear Testing of Sand-to-Concrete and Sand-to-Steel Interfaces ... 18

Table 2-2. Previous Work on Direct Simple Shear Testing to Sand-to-Concrete and Sand-to-Steel Interfaces 20

Table 3-1. Characteristics of the Soils Used for Interface Testing 46

Table 3-2. Summary of Results of CD Triaxial Tests 49

Table 3-3. Hyperbolic Parameter Values of Soils Used for Interface Testing 50

Table 3-4. Mixing Proportions of Concrete ... 55

Table 3-5. Physical Properties of the Concrete Mix ... 55
Table 4-16. Summary of Parameter Values for Unloading-Reloading of the Medium Dense Density Sand against Concrete Interface...... 143

Table 4-17. Summary of Parameter Values for Unloading-Reloading of the Dense Light Castle Sand against Concrete Interface............ 143

Table 5-1. Features of the Data Acquisition System for the Lock Wall Simulation... 192

Table 5-2. Summary of the Force Measurements during Stage 1 of the IRW Test (Backfilling)... 197

Table 5-3. Data From Gloetzl Pressure Cells at the End of Stage 1 (Backfilling) .. 198

Table 5-4. Summary of the Results of Stage 2 of the IRW (Surcharge) 199

Table 5-5. Summary of the Results of Stage 3 of the IRW (Inundation) 200

Table 5-6. Summary of Soil Properties Required in SOILSTRUCT-ALPHA Analyses ... 213

Table 5-7. Summary of Property Values for Structural Materials in the IRW Analyses.. 214

Table 5-8. Tentative Property Values for the Light Castle Sand Backfill 216

Table 5-9. Property Values of the Wall-Backfill Interface used for the Finite Element Analyses of the IRW 221

Table 5-10. Backfill Property Values Determined from Calibration Analyses of Stage 1 of the IRW Test.. 222

Table 5-11. Backfill Property Values Determined from Calibration Analyses of Stage 2 of the IRW Test.. 225

Table B-1. Determination of Bulk Modulus for Medium Dense Density Sand ..B5

Table B-2. Determination of Bulk Modulus for Dense Density Sand.B5

Table B-3. Determination of Bulk Modulus for Medium-Dense Light Castle Sand..B5

Table B-4. Determination of Bulk Modulus for Dense Light Castle SandB6

Table C-1. Organization of the Figures in Appendix C..........................C1
Table E-1. Summary of State Parameters at Selected Points along in Multidirectional stress path T405_10 ..E2

Table E-2. Summary of Hyperbolic Parameter Values for the Dense-Light-Castle-Sand-against-Concrete InterfaceE2

Table E-3. Summary of Parameter Values for Unloading-Reloading of the Dense-Light-Castle-Sand-against-Concrete InterfaceE4