THE EFFECTS OF BOLT SPACING ON THE
PERFORMANCE OF SINGLE-SHEAR TIMBER
CONNECTIONS UNDER REVERSE-CYCLIC
LOADING

Dustin Graham Albright

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
IN
CIVIL ENGINEERING

Approved by:

______________________________ _____________________________
Dr. Thomas E. Cousins Dr. Joseph Loferski

Dr. Raymond H. Plaut

24 April 2006
Blacksburg, Virginia

Keywords: Bolt Spacing, Single-Shear, Timber Connections, Reverse-Cyclic Loading
The Effects of Bolt Spacing on the Performance of Single-Shear Timber Connections Under Reverse-Cyclic Loading

Dustin Graham Albright

(ABSTRACT)

Much previous experimentation related to wood structures has employed monotonic loading to replicate static situations. However, instances of natural hazards have raised interest in the response of structural connections to dynamic loads. This increased interest led the Consortium of Universities for Research in Earthquake Engineering (CUREE) to develop a testing protocol for reverse-cyclic loading, which involves cycling loads through zero in order to test specimens in both tension and compression. With the CUREE testing protocol in place, recent research has been devoted to understanding the effects of reverse-cyclic loading on multiple-fastener connections.

Experimentation by Heine (2001), Anderson (2002), Billings (2004) and others contributed to a better understanding of bolted connection behavior under reverse-cyclic loading. However, some questions remained. Billings was unable to consistently produce yield modes III and IV, meaning that her suggested bolt spacing of seven times the bolt diameter (7D) could not be applied to connections subject to these yield modes without further testing. In addition, the work of Anderson and Billings raised questions regarding the proper measurement of bending yield strength in bolts and the relationship between the bending yield strength and the tensile yield strength. These topics are each addressed by this project and thesis report.

Results of the connection testing presented in this report can be used in conjunction with the work of Anderson and Billings to critically evaluate the 4D between-bolt spacing recommended by the National Design Specification (NDS) for Wood Construction (AF&PA, 2001). Results of the bolt testing provide a supplement to the search for a reliable method for the measurement of bending yield strength in bolts.
Acknowledgments

This research was enabled by funding from the United States Department of Agriculture (Contract ID: USDA-NRI-CGP #2003-35103-12948) and the assistance of many other individuals along the way.

I want to thank my committee members for all of their help and patience, as well as each of my professors for their time and dedication to teaching. I also want to thank Rick Caudill, Kenny Albert, and David Jones for their invaluable assistance throughout the course of my experimentation.

Thank you to Mary Billings, Guy Anderson, Richard Hamlin, Ben Muzal, David Finkenbinder, Ben Mohr, Roger Blevins, Roger Hamilton, and Dr. Thomas Murray for their guidance at various points during this project.

Thank you to Morgan Lumber Company of Red Oak, Virginia and to Amelia Lumber Company of Amelia, Virginia for their generous donation of all wood materials.

Thank you to my wife, Amy, for her love and encouragement, and for consistently staying awake when I related details of my research. I also wish to thank family and friends for their prayers and support.

Finally, I want to thank God whose blessings provided the opportunity for my studies, and my Lord and Redeemer Jesus Christ, whose sacrifice helps to keep this research, among other things, in perspective.
Table of Contents

Chapter 1: Introduction

1.1 Introduction ... 1
1.2 Objectives ... 2
1.3 Significance ... 3
1.4 Overview .. 3

Chapter 2: Background

2.1 Introduction ... 5
2.2 Dowel-Type Wood Connections
 2.2.1 Single-Fastener Connections ... 5
 2.2.2 Multiple-Fastener Connections ... 9
 2.2.3 Dynamic Loading .. 9
 2.2.4 Multiple-Bolt Connections Subject to Reverse-Cyclic Loading 10
2.3 Dowel Bearing Strength ... 14
2.4 Bolt Bending
 2.4.1 General ... 17
 2.4.2 Bolt Manufacture .. 18
 2.4.3 Bolt Bending ... 21
 2.4.4 Tensile Test ... 22
 2.4.5 3-Point Bending Test ... 23
 2.4.6 Cantilever Bending Test .. 26

Chapter 3: Methods and Materials

3.1 Introduction ... 28
3.2 Bolt Tests
 3.2.1 General ... 29
 3.2.2 Materials ... 31
 3.2.3 Sample Size Determination .. 32
 3.2.4 Specimen Identification ... 33
 3.2.5 Tensile Tests ... 33
 3.2.6 3-Point Bending Tests .. 34
 3.2.7 Cantilever Bending Tests .. 37
3.3 Connection Tests
 3.3.1 General ... 40
 3.3.2 Materials ... 42
 3.3.3 Sample Size Determination .. 43
 3.3.4 Specimen Identification ... 44
 3.3.5 Connection Layout and Fixture Details ... 44
 3.3.6 Monotonic Tests .. 50
 3.3.7 Reverse-Cyclic Tests .. 51
References

Appendix A: Preliminary Calculations

Appendix B: Connection Test Results
 B.1 Introduction
 B.2 Monotonic Tests
 B.3 Reverse Cyclic Tests
 B.4 Dowel Embedment Tests
 B.5 Moisture Content and Specific Gravity

Appendix C: Bolt Test Results
 C.1 Introduction
 C.2 3-Point Bending Tests
 C.3 Cantilever Bending Tests

Vita
List of Figures

Figure 2.1: Yield Modes for Single-Shear Connections (after AF&PA, 2001)6
Figure 2.2: Illustration of Full-Hole Setup for Dowel Bearing Strength15
Figure 2.3: Illustration of Half-Hole Setup for Dowel Bearing Strength15
Figure 2.4: Illustration of Modified Full-Hole Setup Used by Anderson (2002) and Billings (2004) ... 16
Figure 2.5: Illustration of Extrusion and Trimming Die (after McBain, et. al., 1982) .. 19
Figure 2.6: Threaded Tensile Test Fixture ... 22
Figure 2.7: Schematic of 3-Point Loading Procedure 24
Figure 2.8: Load vs. Deflection Plot Illustrating 5% Offset Yield Load 25
Figure 2.9: Schematic of Cantilever Loading Procedure 27

Figure 3.1: Diagram and Photograph of Tensile Test Setup 34
Figure 3.2: Schematic of 3-Point Test Fixture .. 35
Figure 3.3: 3-Point Test Setup .. 36
Figure 3.4: Schematic of Cantilever Test Fixture ... 38
Figure 3.5: Cantilever Test Setup .. 39
Figure 3.6: Grade Stamp from 2x6 Member ... 42
Figure 3.7: Grade Stamp from 4x6 Member .. 43
Figure 3.8: Connection Layout .. 45
Figure 3.9: Connection Test Setup .. 46
Figure 3.10: Bottom Fixture and Potentiometer .. 47
Figure 3.11: Top Fixture .. 48
Figure 3.12: Side Bracing System ... 49
Figure 3.13: Graphical Representation of CUREE Reverse-Cyclic Protocol 53
Figure 3.14: Source Regions for Dowel Bearing Specimens 55
Figure 3.15: Dowel Bearing Specimen ... 56
Figure 3.16: Dowel Embedment Test Setup ... 57
Figure 3.17: E.E.P. Curve for Monotonic Loading 60
Figure 3.18: Piece-Wise Load vs. Deflection Curve for Reverse-Cyclic Data 62
Figure 3.19: E.E.P. Curves for Reverse-Cyclic Data 62

Figure 4.1: Example Connections from 37m and 38m Data Sets 69
Figure 4.2: Example Groups of Tested Bolts from 37m and 38m Data Sets 70
Figure 4.3: Example Load vs. Deflection Plot and E.E.P. Curve-Fit from 37m Data Set ... 71
Figure 4.4: Example Connections from 37c and 38c Data Sets 74
Figure 4.5: Example Groups of Tested Bolts from 37c and 38c Data Sets 75
Figure 4.6: Example Load vs. Deflection Plot and Linear Curve-Fit from 37c Data Set ... 76
Figure 4.7: Example E.E.P. Curves from 37c Data Set 77
Figure 4.8: Maximum Loads, Mode III .. 79
Figure 4.9: Failure Loads, Mode III
Figure 4.10: Elastic Stiffnesses, Mode III
Figure 4.11: 5% Offset Loads, Mode III
Figure 4.12: E.E.P. Energies, Mode III
Figure 4.13: Ductility Ratios, Mode III
Figure 4.14: E.E.P. Yield Loads, Mode III
Figure 4.15: Example Connections from 47m and 48m Data Sets
Figure 4.16: Example Groups of Tested Bolts from 47m and 48m Data Sets
Figure 4.17: Example Load vs. Deflection Plot and E.E.P. Curve-Fit from 47m Data Set
Figure 4.18: Example Connections from 47c and 48c Data Sets
Figure 4.19: Example Groups of Tested Bolts from 47c and 48c Data Sets
Figure 4.20: Example Load vs. Deflection Plot and Linear Curve-Fit from 47c Data Set
Figure 4.21: Example E.E.P. Curves from 47c Data Set
Figure 4.22: Maximum Loads, Mode IV
Figure 4.23: Failure Loads, Mode IV
Figure 4.24: Elastic Stiffnesses, Mode IV
Figure 4.25: 5% Offset Loads, Mode IV
Figure 4.26: E.E.P. Energies, Mode IV
Figure 4.27: Ductility Ratios, Mode IV
Figure 4.28: E.E.P. Yield Loads, Mode IV
Figure 4.29: Tensile Test Apparatus
Figure 4.30: Typical Bolt Specimen
Figure 4.31: Failure in Threaded Section
Figure 4.32: Ideal Extensometer Location
Figure 4.33: Example Load-Deflection Curve and 5% Offset Line, 3-point Method
Figure 4.34: Example Load-Deflection Curve and 5% Offset Line, Cantilever Method

Figure B.1: Load vs. Deflection and E.E.P. Curve, 37m1
Figure B.2: Load vs. Deflection and E.E.P. Curve, 37m2
Figure B.3: Load vs. Deflection and E.E.P. Curve, 37m3
Figure B.4: Load vs. Deflection and E.E.P. Curve, 38m1
Figure B.5: Load vs. Deflection and E.E.P. Curve, 38m2
Figure B.6: Load vs. Deflection and E.E.P. Curve, 38m3
Figure B.7: Load vs. Deflection and E.E.P. Curve, 47m1
Figure B.8: Load vs. Deflection and E.E.P. Curve, 47m2
Figure B.9: Load vs. Deflection and E.E.P. Curve, 47m3
Figure B.10: Load vs. Deflection and E.E.P. Curve, 48m1
Figure B.11: Load vs. Deflection and E.E.P. Curve, 48m2
Figure B.12: Load vs. Deflection and E.E.P. Curve, 48m4
Figure B.13: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c1
Figure B.14: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c2
Figure B.15: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c3
Figure B.16: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c4 150
Figure B.17: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c5 151
Figure B.18: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c6 152
Figure B.19: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c7 153
Figure B.20: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c8 154
Figure B.21: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c9 155
Figure B.22: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 37c10 156
Figure B.23: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c1 157
Figure B.24: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c2 158
Figure B.25: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c3 159
Figure B.26: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c4 160
Figure B.27: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c5 161
Figure B.28: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c6 162
Figure B.29: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c7 163
Figure B.30: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c8 164
Figure B.31: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c9 165
Figure B.32: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 38c10 166
Figure B.33: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c2 167
Figure B.34: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c3 168
Figure B.35: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c4 169
Figure B.36: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c5 170
Figure B.37: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c6 171
Figure B.38: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c7 172
Figure B.39: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c8 173
Figure B.40: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c9 174
Figure B.41: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c10 175
Figure B.42: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 47c11 176
Figure B.43: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c1 177
Figure B.44: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c2 178
Figure B.45: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c3 179
Figure B.46: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c5 180
Figure B.47: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c6 181
Figure B.48: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c7 182
Figure B.49: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c8 183
Figure B.50: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c9 184
Figure B.51: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c10 185
Figure B.52: Load vs. Deflection, E.E.P. Curves, and 5% Offset Lines, 48c11 186

Figure C.1: Load vs. Deflection Curve and 5% Offset Line, E4s1 196
Figure C.2: Load vs. Deflection Curve and 5% Offset Line, E4s2 196
Figure C.3: Load vs. Deflection Curve and 5% Offset Line, E4s3 197
Figure C.4: Load vs. Deflection Curve and 5% Offset Line, E4s4 197
Figure C.5: Load vs. Deflection Curve and 5% Offset Line, E4s5 198
Figure C.6: Load vs. Deflection Curve and 5% Offset Line, E4s6 198
Figure C.7: Load vs. Deflection Curve and 5% Offset Line, E4s7 199
Figure C.8: Load vs. Deflection Curve and 5% Offset Line, E4s8
Figure C.9: Load vs. Deflection Curve and 5% Offset Line, E4s9
Figure C.10: Load vs. Deflection Curve and 5% Offset Line, E4s10
Figure C.11: Load vs. Deflection Curve and 5% Offset Line, E6s1
Figure C.12: Load vs. Deflection Curve and 5% Offset Line, E6s2
Figure C.13: Load vs. Deflection Curve and 5% Offset Line, E6s3
Figure C.14: Load vs. Deflection Curve and 5% Offset Line, E6s4
Figure C.15: Load vs. Deflection Curve and 5% Offset Line, E6s5
Figure C.16: Load vs. Deflection Curve and 5% Offset Line, E6s6
Figure C.17: Load vs. Deflection Curve and 5% Offset Line, E6s7
Figure C.18: Load vs. Deflection Curve and 5% Offset Line, E6s8
Figure C.19: Load vs. Deflection Curve and 5% Offset Line, E6s9
Figure C.20: Load vs. Deflection Curve and 5% Offset Line, E6s10
Figure C.21: Load vs. Deflection Curve and 5% Offset Line, E8s1
Figure C.22: Load vs. Deflection Curve and 5% Offset Line, E8s2
Figure C.23: Load vs. Deflection Curve and 5% Offset Line, E8s3
Figure C.24: Load vs. Deflection Curve and 5% Offset Line, E8s4
Figure C.25: Load vs. Deflection Curve and 5% Offset Line, E8s5
Figure C.26: Load vs. Deflection Curve and 5% Offset Line, E8s6
Figure C.27: Load vs. Deflection Curve and 5% Offset Line, E8s7
Figure C.28: Load vs. Deflection Curve and 5% Offset Line, E8s8
Figure C.29: Load vs. Deflection Curve and 5% Offset Line, E8s9
Figure C.30: Load vs. Deflection Curve and 5% Offset Line, E8s10
Figure C.31: Load vs. Deflection Curve and 5% Offset Line, H4s1
Figure C.32: Load vs. Deflection Curve and 5% Offset Line, H4s2
Figure C.33: Load vs. Deflection Curve and 5% Offset Line, H4s3
Figure C.34: Load vs. Deflection Curve and 5% Offset Line, H4s4
Figure C.35: Load vs. Deflection Curve and 5% Offset Line, H4s5
Figure C.36: Load vs. Deflection Curve and 5% Offset Line, H4s6
Figure C.37: Load vs. Deflection Curve and 5% Offset Line, H4s7
Figure C.38: Load vs. Deflection Curve and 5% Offset Line, H4s8
Figure C.39: Load vs. Deflection Curve and 5% Offset Line, H4s9
Figure C.40: Load vs. Deflection Curve and 5% Offset Line, H4s10
Figure C.41: Load vs. Deflection Curve and 5% Offset Line, H6s1
Figure C.42: Load vs. Deflection Curve and 5% Offset Line, H6s2
Figure C.43: Load vs. Deflection Curve and 5% Offset Line, H6s3
Figure C.44: Load vs. Deflection Curve and 5% Offset Line, H6s4
Figure C.45: Load vs. Deflection Curve and 5% Offset Line, H6s5
Figure C.46: Load vs. Deflection Curve and 5% Offset Line, H6s6
Figure C.47: Load vs. Deflection Curve and 5% Offset Line, H6s7
Figure C.48: Load vs. Deflection Curve and 5% Offset Line, H6s8
Figure C.49: Load vs. Deflection Curve and 5% Offset Line, H6s9
Figure C.50: Load vs. Deflection Curve and 5% Offset Line, H6s10
Figure C.51: Load vs. Deflection Curve and 5% Offset Line, H8s1
Figure C.52: Load vs. Deflection Curve and 5% Offset Line, H8s2
Figure C.53: Load vs. Deflection Curve and 5% Offset Line, H8s3
Figure C.100: Load vs. Deflection Curve and 5% Offset Line, E6c10……………………. 250
Figure C.101: Load vs. Deflection Curve and 5% Offset Line, E8c1……………………. 251
Figure C.102: Load vs. Deflection Curve and 5% Offset Line, E8c2……………………. 252
Figure C.103: Load vs. Deflection Curve and 5% Offset Line, E8c3……………………. 252
Figure C.104: Load vs. Deflection Curve and 5% Offset Line, E8c4……………………. 253
Figure C.105: Load vs. Deflection Curve and 5% Offset Line, E8c5……………………. 253
Figure C.106: Load vs. Deflection Curve and 5% Offset Line, E8c6……………………. 254
Figure C.107: Load vs. Deflection Curve and 5% Offset Line, E8c7……………………. 254
Figure C.108: Load vs. Deflection Curve and 5% Offset Line, E8c8……………………. 255
Figure C.109: Load vs. Deflection Curve and 5% Offset Line, E8c9……………………. 255
Figure C.110: Load vs. Deflection Curve and 5% Offset Line, E8c10……………………. 256
Figure C.111: Load vs. Deflection Curve and 5% Offset Line, H4c1……………………. 257
Figure C.112: Load vs. Deflection Curve and 5% Offset Line, H4c2……………………. 257
Figure C.113: Load vs. Deflection Curve and 5% Offset Line, H4c3……………………. 258
Figure C.114: Load vs. Deflection Curve and 5% Offset Line, H4c4……………………. 258
Figure C.115: Load vs. Deflection Curve and 5% Offset Line, H4c5……………………. 259
Figure C.116: Load vs. Deflection Curve and 5% Offset Line, H4c6……………………. 259
Figure C.117: Load vs. Deflection Curve and 5% Offset Line, H4c7……………………. 260
Figure C.118: Load vs. Deflection Curve and 5% Offset Line, H4c8……………………. 260
Figure C.119: Load vs. Deflection Curve and 5% Offset Line, H4c9……………………. 261
Figure C.120: Load vs. Deflection Curve and 5% Offset Line, H4c10……………………. 261
Figure C.121: Load vs. Deflection Curve and 5% Offset Line, H6c1……………………. 262
Figure C.122: Load vs. Deflection Curve and 5% Offset Line, H6c2……………………. 263
Figure C.123: Load vs. Deflection Curve and 5% Offset Line, H6c3……………………. 263
Figure C.124: Load vs. Deflection Curve and 5% Offset Line, H6c4……………………. 264
Figure C.125: Load vs. Deflection Curve and 5% Offset Line, H6c5……………………. 264
Figure C.126: Load vs. Deflection Curve and 5% Offset Line, H6c6……………………. 265
Figure C.127: Load vs. Deflection Curve and 5% Offset Line, H6c7……………………. 265
Figure C.128: Load vs. Deflection Curve and 5% Offset Line, H6c8……………………. 266
Figure C.129: Load vs. Deflection Curve and 5% Offset Line, H6c9……………………. 266
Figure C.130: Load vs. Deflection Curve and 5% Offset Line, H6c10……………………. 267
Figure C.131: Load vs. Deflection Curve and 5% Offset Line, H8c1……………………. 268
Figure C.132: Load vs. Deflection Curve and 5% Offset Line, H8c2……………………. 268
Figure C.133: Load vs. Deflection Curve and 5% Offset Line, H8c3……………………. 269
Figure C.134: Load vs. Deflection Curve and 5% Offset Line, H8c4……………………. 269
Figure C.135: Load vs. Deflection Curve and 5% Offset Line, H8c5……………………. 270
Figure C.136: Load vs. Deflection Curve and 5% Offset Line, H8c6……………………. 270
Figure C.137: Load vs. Deflection Curve and 5% Offset Line, H8c7……………………. 271
Figure C.138: Load vs. Deflection Curve and 5% Offset Line, H8c8……………………. 271
Figure C.139: Load vs. Deflection Curve and 5% Offset Line, H8c9……………………. 272
Figure C.140: Load vs. Deflection Curve and 5% Offset Line, H8c10……………………. 272
Figure C.141: Load vs. Deflection Curve and 5% Offset Line, F4c1……………………. 273
Figure C.142: Load vs. Deflection Curve and 5% Offset Line, F4c2……………………. 274
Figure C.143: Load vs. Deflection Curve and 5% Offset Line, F4c3……………………. 274
Figure C.144: Load vs. Deflection Curve and 5% Offset Line, F4c4……………………. 275
Figure C.145: Load vs. Deflection Curve and 5% Offset Line, F4c5……………………. 275
Figure C.146: Load vs. Deflection Curve and 5% Offset Line, F4c6………………… 276
Figure C.147: Load vs. Deflection Curve and 5% Offset Line, F4c7………………… 276
Figure C.148: Load vs. Deflection Curve and 5% Offset Line, F4c8………………… 277
Figure C.149: Load vs. Deflection Curve and 5% Offset Line, F4c9………………… 277
Figure C.150: Load vs. Deflection Curve and 5% Offset Line, F4c10……………….. 278
Figure C.151: Load vs. Deflection Curve and 5% Offset Line, F6c1………………… 279
Figure C.152: Load vs. Deflection Curve and 5% Offset Line, F6c2………………… 279
Figure C.153: Load vs. Deflection Curve and 5% Offset Line, F6c3………………… 280
Figure C.154: Load vs. Deflection Curve and 5% Offset Line, F6c4………………… 280
Figure C.155: Load vs. Deflection Curve and 5% Offset Line, F6c5………………… 281
Figure C.156: Load vs. Deflection Curve and 5% Offset Line, F6c6………………… 281
Figure C.157: Load vs. Deflection Curve and 5% Offset Line, F6c7………………… 282
Figure C.158: Load vs. Deflection Curve and 5% Offset Line, F6c8………………… 282
Figure C.159: Load vs. Deflection Curve and 5% Offset Line, F6c9………………… 283
Figure C.160: Load vs. Deflection Curve and 5% Offset Line, F6c10……………….. 283
Figure C.161: Load vs. Deflection Curve and 5% Offset Line, F8c1………………… 284
Figure C.162: Load vs. Deflection Curve and 5% Offset Line, F8c2………………… 285
Figure C.163: Load vs. Deflection Curve and 5% Offset Line, F8c3………………… 285
Figure C.164: Load vs. Deflection Curve and 5% Offset Line, F8c4………………… 286
Figure C.165: Load vs. Deflection Curve and 5% Offset Line, F8c5………………… 286
Figure C.166: Load vs. Deflection Curve and 5% Offset Line, F8c6………………… 287
Figure C.167: Load vs. Deflection Curve and 5% Offset Line, F8c7………………… 287
Figure C.168: Load vs. Deflection Curve and 5% Offset Line, F8c8………………… 288
Figure C.169: Load vs. Deflection Curve and 5% Offset Line, F8c9………………… 288
Figure C.170: Load vs. Deflection Curve and 5% Offset Line, F8c10……………….. 289
List of Tables

Table 2.1: Yield Limit Equations for Single-Shear (after AF&PA, 2001) 8
Table 2.2: Experimental vs. Predicted Bearing Strengths 17

Table 3.1: Intended Schedule for Bolt Testing .. 30
Table 3.2: Actual Schedule for Bolt Testing ... 31
Table 3.3: Bolt Types and Manufacturer’s Markings ... 32
Table 3.4: Span Lengths for 3-Point Bend Tests .. 37
Table 3.5: Moment Arms for Cantilever Tests .. 40
Table 3.6: Summary of Connection Testing ... 41

Table 4.1: Preliminary Bolt Bending Yield Strengths .. 65
Table 4.2: Preliminary Dowel Embedment Strengths 65
Table 4.3: Nominal Design Values for Yield Limit Calculations 66
Table 4.4: Maximum Loads Expected ... 67
Table 4.5: Monotonic Test Results for Mode III, with 7D Spacing 72
Table 4.6: Monotonic Test Results for Mode III, with 8D Spacing 73
Table 4.7: Mean Values for Strength and Serviceability Parameters, Mode III, Monotonic ... 73
Table 4.8: Reverse-Cyclic Test Results for Mode III, with 7D Spacing 78
Table 4.9: Reverse-Cyclic Test Results for Mode III, with 8D Spacing 78
Table 4.10: Comparison of Mean Test Values, Mode III, Reverse-Cyclic 79
Table 4.11: Monotonic Test Results for Mode IV with 7D Spacing 87
Table 4.12: Monotonic Test Results for Mode IV with 8D Spacing 88
Table 4.13: Mean Values for Strength and Serviceability Parameters, Mode IV, Monotonic ... 88
Table 4.14: Reverse-Cyclic Test Results for Mode IV with 7D Spacing 93
Table 4.15: Reverse-Cyclic Test Results for Mode IV with 8D Spacing 93
Table 4.16: Comparison of Mean Test Values, Mode IV, Reverse-Cyclic 94
Table 4.17: t-Test Results for Mode III, Reverse-Cyclic 98
Table 4.18: Null Hypothesis Results for Mode III, Reverse-Cyclic 99
Table 4.19: t-Test Results for Mode IV, Reverse-Cyclic 99
Table 4.20: Null Hypothesis Results for Mode IV, Reverse-Cyclic 100
Table 4.21: Dowel Embedment Strength (F_d), Monotonic Testing 101
Table 4.22: Dowel Embedment Strength (F_d), Reverse-Cyclic Testing 101
Table 4.23: Moisture Content (MC) and Specific Gravity (SG), Monotonic Testing .. 102
Table 4.24: Moisture Content (MC) and Specific Gravity (SG), Reverse-Cyclic Testing ... 102
Table 4.25: Bending Yield Strengths (F_{yb}) for 3-Point Tests 112
Table 4.26: Bending Yield Strengths (F_{yb}) for Cantilever Tests 114
Table 4.27: Comparison of F_{yb} from Both Bending Test Methods 115
Table B.1: Monotonic Test Results for Mode III Connections, 7D Spacing
Table B.2: Monotonic Test Results for Mode III Connections, 8D Spacing
Table B.3: Monotonic Test Results for Mode IV Connections, 7D Spacing
Table B.4: Monotonic Test Results for Mode IV Connections, 8D Spacing
Table B.5: Summary of Mean Values for Seven Strength and Serviceability Parameters, Monotonic Tests
Table B.6: Seven Strength and Serviceability Parameters, 37c1
Table B.7: Seven Strength and Serviceability Parameters, 37c2
Table B.8: Seven Strength and Serviceability Parameters, 37c3
Table B.9: Seven Strength and Serviceability Parameters, 37c4
Table B.10: Seven Strength and Serviceability Parameters, 37c5
Table B.11: Seven Strength and Serviceability Parameters, 37c6
Table B.12: Seven Strength and Serviceability Parameters, 37c7
Table B.13: Seven Strength and Serviceability Parameters, 37c8
Table B.14: Seven Strength and Serviceability Parameters, 37c9
Table B.15: Seven Strength and Serviceability Parameters, 37c10
Table B.16: Seven Strength and Serviceability Parameters, 38e1
Table B.17: Seven Strength and Serviceability Parameters, 38e2
Table B.18: Seven Strength and Serviceability Parameters, 38e3
Table B.19: Seven Strength and Serviceability Parameters, 38e4
Table B.20: Seven Strength and Serviceability Parameters, 38e5
Table B.21: Seven Strength and Serviceability Parameters, 38e6
Table B.22: Seven Strength and Serviceability Parameters, 38e7
Table B.23: Seven Strength and Serviceability Parameters, 38e8
Table B.24: Seven Strength and Serviceability Parameters, 38e9
Table B.25: Seven Strength and Serviceability Parameters, 38e10
Table B.26: Seven Strength and Serviceability Parameters, 47c2
Table B.27: Seven Strength and Serviceability Parameters, 47c3
Table B.28: Seven Strength and Serviceability Parameters, 47c4
Table B.29: Seven Strength and Serviceability Parameters, 47c5
Table B.30: Seven Strength and Serviceability Parameters, 47c6
Table B.31: Seven Strength and Serviceability Parameters, 47c7
Table B.32: Seven Strength and Serviceability Parameters, 47c8
Table B.33: Seven Strength and Serviceability Parameters, 47c9
Table B.34: Seven Strength and Serviceability Parameters, 47c10
Table B.35: Seven Strength and Serviceability Parameters, 47c11
Table B.36: Seven Strength and Serviceability Parameters, 48c1
Table B.37: Seven Strength and Serviceability Parameters, 48c2
Table B.38: Seven Strength and Serviceability Parameters, 48c4
Table B.39: Seven Strength and Serviceability Parameters, 48c5
Table B.40: Seven Strength and Serviceability Parameters, 48c6
Table B.41: Seven Strength and Serviceability Parameters, 48c7
Table B.42: Seven Strength and Serviceability Parameters, 48c8
Table B.43: Seven Strength and Serviceability Parameters, 48c9
Table B.44: Seven Strength and Serviceability Parameters, 48c10
Table B.45: Seven Strength and Serviceability Parameters, 48c11
Table B.46: Dowel Embedment Strengths, 37m Data Set .. 187
Table B.47: Dowel Embedment Strengths, 38m Data Set .. 187
Table B.48: Dowel Embedment Strengths, 47m Data Set .. 188
Table B.49: Dowel Embedment Strengths, 48m Data Set .. 188
Table B.50: Dowel Embedment Strengths, 37c Data Set .. 189
Table B.51: Dowel Embedment Strengths, 38c Data Set .. 189
Table B.52: Dowel Embedment Strengths, 47c Data Set .. 190
Table B.53: Dowel Embedment Strengths, 48c Data Set .. 190
Table B.54: Moisture Content and Specific Gravity, 37m Data Set 191
Table B.55: Moisture Content and Specific Gravity, 38m Data Set 191
Table B.56: Moisture Content and Specific Gravity, 47m Data Set 192
Table B.57: Moisture Content and Specific Gravity, 48m Data Set 192
Table B.58: Moisture Content and Specific Gravity, 37c Data Set 193
Table B.59: Moisture Content and Specific Gravity, 38c Data Set 193
Table B.60: Moisture Content and Specific Gravity, 47c Data Set 194
Table B.61: Moisture Content and Specific Gravity, 48c Data Set 194

Table C.1: Test Results for E4s Data Set .. 195
Table C.2: Test Results for E6s Data Set .. 201
Table C.3: Test Results for E8s Data Set .. 206
Table C.4: Test Results for H4s Data Set .. 212
Table C.5: Test Results for H6s Data Set .. 217
Table C.6: Test Results for H8s Data Set .. 223
Table C.7: Test Results for F6s Data Set .. 228
Table C.8: Test Results for F8s Data Set .. 234
Table C.9: Test Results for E4c Data Set .. 240
Table C.10: Test Results for E6c Data Set ... 245
Table C.11: Test Results for E8c Data Set ... 251
Table C.12: Test Results for H4c Data Set ... 256
Table C.13: Test Results for H6c Data Set ... 262
Table C.14: Test Results for H8c Data Set ... 267
Table C.15: Test Results for F4c Data Set ... 273
Table C.16: Test Results for F6c Data Set ... 278
Table C.17: Test Results for F8c Data Set ... 284