A Study of the Dynamics of Laminar and Turbulent Fully and Partially Premixed Flames

by

Vivek K. Khanna

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Mechanical Engineering

APPROVED:

Dr. Uri Vandsburger, Chairman

______________________________ ________________________________
Dr. William T. Baumann Dr. Jeffery Lovett

______________________________ ________________________________
Dr. George Richards Dr. William R. Saunders

July, 2001
Blacksburg, VA
A Study of the Dynamics of Laminar and Turbulent Fully and Partially Premixed Flames

Vivek K. Khanna

(ABSTRACT)

Environmental pollution concerns and a need to reduce NO\textsubscript{x} and other pollutant levels in exhaust of land based gas turbines resulted in the development of lean premixed combustors. These combustors are often susceptible to thermo-acoustic instabilities, which manifest as pressure and heat release oscillations in the combustor. To be able to predict and control these instabilities, it is required that both the acoustics of the system, and a frequency-resolved response of the combustion process to incoming perturbations be understood. Presently, a system-level approach is being used to predict the thermo-acoustic instability, and it requires simple, yet accurate models which would describe the behavior of each dynamic block within the loop. This present research effort was directed towards developing reduced order models for the dynamics of laminar flat flames, swirl stabilized turbulent flames, and in evaluating the effects of the variation in fuel composition on flame dynamics.

The laminar flat flame study was conducted on instrument grade methane, propane, and ethane flames for four total flow rates from 145 cc/sec to 200 cc/sec, and five equivalence ratios from 0.5 to 0.75. The analysis was done by measuring the frequency resolved velocity perturbations, u', and the \textit{OH}* chemiluminescence, as a measure of unsteady heat release rate, q'. The experimental data showed the corresponding flame dynamics to be fourth order in nature with a pure time delay. One of the resonance was shown to represent the pulsation of the flame location caused by fluctuation in the flame speed and fluctuating heat losses to the flame stabilizer. The other resonance was correlated to the dynamics of the chemical kinetics involved in the combustion process. The time delay was correlated to the chemical time delay. The reduced order models developed indicated that at $\Phi \leq 0.65$, the chemical kinetics significantly affected the dynamics of the combustion process. Upon comparing the
results of the experiments with the three fuels, it was concluded that for all equivalence ratios studied, propane flame had a higher dynamic gain than methane flames. Ethane flames exhibited a higher dynamic gain than methane flame in the frequency range of 20-100 Hz. Thus, burning of propane instead of methane increased the likelihood of the occurrence of thermo-acoustic instabilities. However, burning of ethane instead of methane in flames that were stabilized at ultra lean conditions, it was expected that stable or marginally stable systems could exhibit instabilities at a frequency other than the one at which methane flames were marginally stable.

The experimental techniques developed during the dynamic studies conducted on laminar flat flames were applied to swirl stabilized turbulent flames. Experiments were performed for $Q_{Air} = 15$ scfm and 20 scfm, $\Phi = 0.55, 0.6, 0.65$, and $S = 0.79$ and 1.19. The results of fully premixed experiments showed that the flame behaved as a 8th order low pass filter. The results of the partially premixed experiment exhibited a rich spectra, which maintained its bandwidth over the entire range of frequency studied. Comparison of fully and partially premixed flames in the frequency range of 200-400 Hz, indicated that at overall lean conditions the dynamic gain of the totally premixed flames was almost an order of magnitude lower than that of the partially premixed conditions. Thus, it was concluded that combustors with fully premixed flames have a higher probability of being thermo-acoustically stable than those with partially premixed flames. Furthermore, the dynamic results of fully and partially premixed conditions showed that independent of the operating conditions, there was a sharp increase in the dynamic gain at frequencies commensurate to the longitudinal acoustic modes of the combustor. This phenomenon was attributed to the near field acoustic effects that generated evanescent waves in the radial and azimuthal direction.
To my beloved wife Neeta
Acknowledgments

This work has been funded by the Department of Energy AGTSR subcontract number 98-01-SR065.

My committee chair and mentor, Dr. Uri Vandsburger deserves my deepest gratitude. Throughout the course of my graduate studies at Virginia Tech, he provided technical expertise and encouragement and helped me maintain my focus and stay on course to achieve my goals. He always made me feel that I was a valued asset to his research program, offering me responsibility and seeking my opinion on a variety of matters. I greatly appreciate the latitude I was given in pursuing the research contained in this thesis.

I would also like to thank my other professors from the group, Dr. William Saunders and Dr. William Baumann for their invaluable guidance during the numerous discussions that were held for the progress of this research. They have taught me to be critical of my work, which helped me considerably to improve the research work. Both of them were primarily responsible for molding my thought processes from dynamic and controls perspective.

I am also grateful to my other committee members Dr. George Richards and Dr. Jeffery Lovett for their valuable suggestions and guidance.

There are several students in the department who have been extremely helpful during this period at Virginia Tech. Particularly, I would like to thank Stephen Lepera for his friendship and computational and experimental expertise. Ludwig Haber has always been available for consultation on chemiluminescence and optical setup. I would also like to thank all the
other members of the VACCG and RFL group, especially Christopher Wieczorek, Denzil John, Wajid Chisty, Adam Hendricks, Patrick Early, Jesse Seymore and Prateep Chaterjee.

I am also grateful to my wife Neeta for her love, support and sacrifice for the pursuit my dreams.

Vivek K. Khanna

Virginia Polytechnic Institute and State University

July 2001
Contents

List of Figures xvi

List of Tables xxvii

I Introduction 1

1 Background, Motivation, and Objectives 2

 1.1 Background .. 2
 1.2 Motivation .. 4
 1.3 Research Objectives ... 5
 1.3.1 Research Overview .. 5
 1.3.2 Specific Areas Studied 7

2 Concepts and Definitions 9

 2.1 Combustion Terminology ... 9
 2.1.1 Stoichiometric Reaction 9
 2.1.2 Equivalence Ratio ... 10
2.1.3 Flame Temperature ... 10
2.1.4 Classification of Flames .. 12
2.1.5 Flame Speed ... 14
2.1.6 Flashback and Blowoff ... 15
2.1.7 Chemiluminescence ... 15

2.2 Systems Theory Terminology ... 17
2.2.1 Linear and Nonlinear Systems ... 17
2.2.2 System Representation .. 18
2.2.3 Transfer Functions and Block Diagrams 18
2.2.4 Poles and Zeros .. 19
2.2.5 Damping Ratio, Resonant Frequency and Natural Frequency 19
2.2.6 Open and Closed Loop Systems .. 20
2.2.7 Frequency Response Function .. 20

3 Review of the Field of Combustion Instabilities 22

3.1 Thermo-acoustic Instabilities - a Historical Perspective 23
3.2 Thermo-acoustic Instabilities in Complex Thermal Systems 26
 3.2.1 Instabilities Due to Mixture Strength Oscillations 27
 3.2.2 Instabilities Due to Fluid Mechanical Interaction 28
3.3 Models for Flame Dynamics .. 30
3.4 Effects of Variation in Fuel Composition 36
3.5 Summary ... 40
5.3 Acoustic Characterization .. 74
5.4 Optimization of the Chemiluminescence Measurement System .. 77
5.5 Dynamic Data Recording System .. 78
5.6 Burner Startup .. 79
5.7 Data Acquisition Procedure .. 80
5.8 Post Processing of Experimental Data .. 81

6 Flat Flame Study: Experimental Results and Analysis .. 83
6.1 Experimental System Characterization .. 83
6.2 Experimental Results of Methane Combustion .. 85
 6.2.1 Parametric Interpretation of the Experimental Results .. 85
 6.2.2 Physical Interpretation of the Experimental Results .. 91
 6.2.3 System Model .. 95
 6.2.4 1st Resonant Response .. 98
 6.2.5 2nd Resonant Response .. 106
 6.2.6 Time Delay .. 109
6.3 Experimental Results of Propane and Ethane Combustion .. 111
 6.3.1 Dynamics of Propane-air Flames .. 112
 6.3.2 Dynamics of Ethane-air Flames .. 121

7 Comparison of the Laminar Flat Flame Dynamics of Methane, Propane and Ethane Combustion .. 130
7.1 Comparison of Experimental Results .. 131
III Swirl Stabilized Turbulent Flame Dynamics

8 Swirl Stabilized Study: Technical Approach and Experimental Setup

8.1 Rationale and Objectives

8.2 Technical Approach

8.3 Experimental Setup

8.3.1 Turbulent Variable Swirl Combustor

8.3.2 Central Fuel Injection System

8.3.3 Flow Control System

8.3.4 Mixing System

8.3.5 Dynamic Heat Release Measurement

8.3.6 Dynamic Velocity Measurement System

8.3.7 Temperature Measurement

8.3.8 Data Acquisition System

9 Swirl Stabilized Flame Study: Experimental Procedure
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Turbulent Variable Swirl Combustor Assembly</td>
<td>167</td>
</tr>
<tr>
<td>9.2</td>
<td>Assembly of the Velocity Probe</td>
<td>168</td>
</tr>
<tr>
<td>9.3</td>
<td>Acoustic Characterization</td>
<td>170</td>
</tr>
<tr>
<td>9.4</td>
<td>Flow Field Characterization</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>9.4.1 Velocity Measurement</td>
<td>173</td>
</tr>
<tr>
<td>9.5</td>
<td>Optimization of the Chemiluminescence Measurement</td>
<td>177</td>
</tr>
<tr>
<td>9.6</td>
<td>Combustor Startup</td>
<td>182</td>
</tr>
<tr>
<td>9.7</td>
<td>Data Acquisition Procedure</td>
<td>183</td>
</tr>
<tr>
<td>10</td>
<td>Swirl Stabilized Flame Study: Experimental Results and Analysis</td>
<td>185</td>
</tr>
<tr>
<td>10.1</td>
<td>Experimental System Characterization</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>10.1.1 Fully Premixed Combustion Experiments</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>10.1.2 Partially Premixed Combustion Experiments</td>
<td>186</td>
</tr>
<tr>
<td>10.2</td>
<td>Experimental Results for Fully Premixed Conditions</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>10.2.1 Interpretation of the Results</td>
<td>187</td>
</tr>
<tr>
<td>10.3</td>
<td>Experimental Results for Partially Premixed Conditions</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>10.3.1 Interpretation of the Results</td>
<td>196</td>
</tr>
<tr>
<td>10.4</td>
<td>Comparison of Fully and Partially Premixed Experiments</td>
<td>206</td>
</tr>
<tr>
<td>10.5</td>
<td>Reduced Order Dynamic Models</td>
<td>211</td>
</tr>
<tr>
<td>10.6</td>
<td>Results of Reacting Flow Visualization</td>
<td>216</td>
</tr>
</tbody>
</table>
IV Conclusions and Recommendations

11 Summary and Conclusions

11.1 Background and Motivation .. 224
11.2 Research Philosophy ... 225
11.3 Laminar Flat Flame Dynamics 226
 11.3.1 1st resonant response 227
 11.3.2 2nd resonant response 227
 11.3.3 Time Delay .. 228
 11.3.4 Comparison of the Dynamics of Propane, Methane and Ethane . . . 228
11.4 Swirl Stabilized Turbulent Flame Dynamics 230
 11.4.1 Fully Premixed Conditions 231
 11.4.2 Partially Premixed Conditions 232
 11.4.3 Comparison of Fully and Partially Premixed Conditions 232
 11.4.4 Effects of Near Field Acoustics 233

12 Future Work and Recommendations

12.1 Quantification of the Dynamic Heat Release Rate 234
 12.1.1 Calibration of the Dynamic \(OH^* \) Signal 234
 12.1.2 Deduction from the System Level Closed Loop 235
12.2 Reduced Order Chemical Kinetic Models that Satisfy Dynamic Requirements 236
12.3 Dependence of the Dynamic Response of Flames on the Degree of Premixing 236
12.4 Near Field Acoustic Effects on Flame Dynamics 237
12.5 Simpler Fundamental Studies Related to Flame Dynamics 238

V Appendices ... 240

A Measurement of Acoustic Velocity Fluctuations using the Two Microphone Technique ... 241
A.1 Introduction .. 241
A.2 Velocity Probe Description .. 242
 A.2.1 Principle of Operation ... 242
 A.2.2 Probe Sensor .. 244
 A.2.3 Probe Circuit .. 245
A.3 Calibration .. 246
 A.3.1 Microphone Calibration ... 246
 A.3.2 Electronic Circuit Calibration ... 246
A.4 Technical Specification ... 250
 A.4.1 Technical Specification of Burr-Brown OPA27 250
 A.4.2 Technical Specification of Burr-Brown INA131 251
 A.4.3 Radio Shack Ultra-Miniature Tie Clip Microphone 252

B Equipment and Material Information ... 253

C Error Analysis .. 254
List of Figures

1.1 A systems level block diagram showing the various dynamic processes involved in thermo-acoustic instabilities for gaseous fuel combustion 3

1.2 Physical parameters affecting gaseous flame dynamics 6

2.1 Schematic of a burner using external heat re-circulation 14

2.2 Schematic of the energy levels and associated radiation processes 16

2.3 Block diagram representation of the input-output relationship 19

2.4 Block diagram representation of a closed loop system 20

2.5 General linear system with sinusoidal input 21

3.1 Schematic of a Rijke tube depicting the first mode instability. (a) Pressure and velocity mode shape. (b) Rayleigh Index 25

4.1 Systems level block diagram ... 50

4.2 Schematic of the energy flow ... 53

4.3 Experimental setup for laminar flat flame dynamic study 54

4.4 Schematic of the burner ... 56
4.5 Photograph of the burner ... 57
4.6 Photograph of the honeycomb ... 57
4.7 Schematic of the mixer .. 59
4.8 Schematic of the optical system .. 60
4.9 Photograph of the collection optics 61
4.10 Schematic of the monochrometer 62
4.11 The wavelength resolved efficiency of the monochrometer, the PMT and the effective optical system efficiency .. 63
4.12 Photograph of the velocity probe 65
4.13 Photograph of honeycomb with ‘Type R’ thermocouple 66
4.14 Photograph of the honeycomb bottom with the thermocouple wires cemented .. 66
4.15 Schematic of the process control system 68
4.16 Schematic of the research data collection system 69

5.1 FRF (magnitude) of microphone‘1’ to microphone ‘2’ 73
5.2 FRF (phase) of microphone‘1’ to microphone ‘2’ 73
5.3 FRF of the velocity probe output and the speaker input 76
5.4 Coherence between the velocity probe output and the speaker input .. 76

6.1 FRF (magnitude) for $Q_{Total} = 145$ cc/sec and methane-air mixture .. 86
6.2 FRF (phase) for $Q_{Total} = 145$ cc/sec and methane-air mixture .. 86
6.3 FRF (magnitude) for $Q_{Total} = 160$ cc/sec and methane-air mixture .. 87
6.4 FRF (phase) for $Q_{Total} = 160$ cc/sec and methane-air mixture .. 87
6.5 FRF (magnitude) for $Q_{Total} = 180$ cc/sec and methane-air mixture 88
6.6 FRF (phase) for $Q_{Total} = 180$ cc/sec and methane-air mixture 88
6.7 FRF (magnitude) for $Q_{Total} = 200$ cc/sec and methane-air mixture 89
6.8 FRF (phase) for $Q_{Total} = 200$ cc/sec and methane-air mixture 89
6.9 FRF (magnitude) for $\Phi = 0.5$ and methane-air mixture 92
6.10 FRF (phase) for $\Phi = 0.5$ and methane-air mixture 92
6.11 FRF (magnitude) for $\Phi = 0.75$ and methane-air mixture 93
6.12 FRF (phase) for $\Phi = 0.75$ and methane-air mixture 93
6.13 Phase plane for the 1st resonant response, methane-air mixture 97
6.14 Phase plane for the 2nd resonant response, methane-air mixture 97
6.15 Coherence between the ‘Type R’ thermocouple signal and u' 99
6.16 Local Nusselt numbers for simultaneously developing flow in a circular duct [1]100
6.17 FRF (magnitude) of the ‘Type R’ thermocouple signal and u' for methane-air mixture 101
6.18 FRF (phase) of the ‘Type R’ thermocouple signal and u' for methane-air mixture 101
6.19 Dependence of ζ of the 1st resonant response on the heat transfer potential . 104
6.20 Sketch of the Rijke tube combustor .. 105
6.21 Typical power spectrum of the pressure trace for the Rijke tube combustor . 105
6.22 Frequencies of the 2nd resonant response plotted as a function of flame temperature ... 108
6.23 Time delay as a function of Φ for methane-air mixture 110
6.24 Power spectrum of the OH^* signal at $Q_{Total} = 180$ cc/sec, $\Phi = 0.5$ and no external excitation for propane-air flames.

6.25 FRF (magnitude) for $Q_{Total} = 145$ cc/sec and propane-air mixture.

6.26 FRF (phase) for $Q_{Total} = 145$ cc/sec and propane-air mixture.

6.27 FRF (magnitude) for $Q_{Total} = 160$ cc/sec and propane-air mixture.

6.28 FRF (phase) for $Q_{Total} = 160$ cc/sec and propane-air mixture.

6.29 FRF (magnitude) for $Q_{Total} = 180$ cc/sec and propane-air mixture.

6.30 FRF (phase) for $Q_{Total} = 180$ cc/sec and propane-air mixture.

6.31 FRF (magnitude) for $Q_{Total} = 200$ cc/sec and propane-air mixture.

6.32 FRF (phase) for $Q_{Total} = 200$ cc/sec and propane-air mixture.

6.33 Phase plane for the 1st resonant response, propane-air mixture.

6.34 Phase plane for the 2nd resonant response, propane-air mixture.

6.35 Dependence of ζ of the 1st resonant response on the heat transfer potential.

6.36 Frequencies of the 2nd resonant response plotted as a function of flame temperature.

6.37 Time delay as a function of Φ for propane-air mixture.

6.38 FRF (magnitude) for $Q_{Total} = 145$ cc/sec and ethane-air mixture.

6.39 FRF (phase) for $Q_{Total} = 145$ cc/sec and ethane-air mixture.

6.40 FRF (magnitude) for $Q_{Total} = 160$ cc/sec and ethane-air mixture.

6.41 FRF (phase) for $Q_{Total} = 160$ cc/sec and ethane-air mixture.

6.42 FRF (magnitude) for $Q_{Total} = 180$ cc/sec and ethane-air mixture.

6.43 FRF (phase) for $Q_{Total} = 180$ cc/sec and ethane-air mixture.
7.14 FRF (phase) for $Q_{Total} = 200$ cc/sec and $\Phi = 0.75$ 139
7.15 Phase plane for the 1st resonant response .. 141
7.16 Dependence of ζ of the 1st resonant response on the heat transfer potential 142
7.17 Phase plane for the 2nd resonant response .. 143
7.18 Frequencies of the 2nd resonant response plotted as a function of flame temperatu 144
7.19 Power spectrum of the pressure trace in the Rijke tube combustor for $\Phi = 0.5$, and equal mean energy content 146
7.20 Power spectrum of the pressure trace in the Rijke tube combustor for $\Phi = 0.5$, and $Q_{Total} = 140$ cc/sec .. 146
7.21 Power spectrum of the pressure trace in the Rijke tube combustor for $\Phi = 0.55$, and $Q_{Total} = 140$ cc/sec .. 147
7.22 Power spectrum of the pressure trace in the Rijke tube combustor for $\Phi = 0.55$, and $Q_{Total} = 180$ cc/sec .. 147
8.1 Sketch of a swirling flow showing the various re-circulation zones 151
8.2 Experimental setup for turbulent swirl stabilized flame dynamic study 152
8.3 Photograph of the variable swirl turbulent combustor 153
8.4 Schematic of the variable swirl turbulent combustor 154
8.5 Sketch of the central fuel injection system .. 157
8.6 Piping and instrumentation diagram for the air supply system 158
8.7 Piping and instrumentation diagram for the fuel supply system 159
8.8 Schematic of the mixing chamber ... 160
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>Schematic of the OH* chemiluminescence measurement system</td>
<td>161</td>
</tr>
<tr>
<td>8.10</td>
<td>Photograph of the optical capture system</td>
<td>162</td>
</tr>
<tr>
<td>8.11</td>
<td>Schematic of the velocity probe setup</td>
<td>163</td>
</tr>
<tr>
<td>9.1</td>
<td>FRF (magnitude) of microphone ‘3’ to microphone ‘4’</td>
<td>169</td>
</tr>
<tr>
<td>9.2</td>
<td>FRF (phase) of microphone ‘3’ to microphone ‘4’</td>
<td>169</td>
</tr>
<tr>
<td>9.3</td>
<td>FRF (magnitude) of the velocity probe output and the speaker input</td>
<td>171</td>
</tr>
<tr>
<td>9.4</td>
<td>Coherence between the velocity probe output and the speaker input</td>
<td>171</td>
</tr>
<tr>
<td>9.5</td>
<td>Schematic showing the quarl and the dump inlets</td>
<td>174</td>
</tr>
<tr>
<td>9.6</td>
<td>Axial Velocity profiles along different diameters measured at 1.5 mm above the inlet of the dump for $Q_{air} = 25$ scfm and $S = 0$</td>
<td>174</td>
</tr>
<tr>
<td>9.7</td>
<td>Axial Velocity profiles measured at the inlet of the quarl for $S = 0$</td>
<td>176</td>
</tr>
<tr>
<td>9.8</td>
<td>Axial Velocity profiles measured at 1.5 mm above the inlet of the dump for $S = 0$</td>
<td>176</td>
</tr>
<tr>
<td>9.9</td>
<td>Axial velocity profiles measured at the inlet of the quarl for $S = 0.79$</td>
<td>178</td>
</tr>
<tr>
<td>9.10</td>
<td>Tangential velocity profiles measured at inlet of the quarl for $S = 0.79$</td>
<td>178</td>
</tr>
<tr>
<td>9.11</td>
<td>Axial velocity profiles measured at 1.5 mm above the inlet of the dump for $S = 0.79$</td>
<td>179</td>
</tr>
<tr>
<td>9.12</td>
<td>Tangential velocity profiles measured at 1.5 mm above the inlet of the dump for $S = 0.79$</td>
<td>179</td>
</tr>
<tr>
<td>9.13</td>
<td>Axial velocity profiles measured at the inlet of the quarl for $S = 1.19$</td>
<td>180</td>
</tr>
<tr>
<td>9.14</td>
<td>Tangential velocity profiles measured at inlet of the quarl for $S = 1.19$</td>
<td>180</td>
</tr>
</tbody>
</table>
9.15 Axial velocity profiles measured at 1.5 mm above the inlet of the dump for $S = 1.19$.. 181

9.16 Tangential velocity profiles measured at 1.5 mm above the inlet of the dump for $S = 1.19$.. 181

10.1 FRF (magnitude) for $Q_{Air} = 15$ scfm, $S = 0.79$ under fully premixed conditions 188

10.2 FRF (phase) for $Q_{Air} = 15$ scfm, $S = 0.79$ under fully premixed conditions . 188

10.3 FRF (magnitude) for $Q_{Air} = 15$ scfm, $S = 1.19$ under fully premixed conditions 189

10.4 FRF (phase) for $Q_{Air} = 15$ scfm, $S = 1.19$ under fully premixed conditions . 189

10.5 FRF (magnitude) for $Q_{Air} = 20$ scfm, $S = 0.79$ under fully premixed conditions 190

10.6 FRF (phase) for $Q_{Air} = 20$ scfm, $S = 0.79$ under fully premixed conditions . 190

10.7 FRF (magnitude) for $Q_{Air} = 20$ scfm, $S = 1.19$ under fully premixed conditions 191

10.8 FRF (phase) for $Q_{Air} = 20$ scfm, $S = 1.19$ under fully premixed conditions . 191

10.9 FRF (magnitude) for $\Phi = 0.55$ under fully premixed conditions 194

10.10 FRF (phase) for $\Phi = 0.55$ under fully premixed conditions 194

10.11 FRF (magnitude) for $\Phi = 0.65$ under fully premixed conditions 195

10.12 FRF (phase) for $\Phi = 0.65$ under fully premixed conditions 195

10.13 FRF (magnitude) for $Q_{Air} = 15$ scfm, $S = 0.79$ under partially premixed conditions .. 197

10.14 FRF (phase) for $Q_{Air} = 15$ scfm, $S = 0.79$ under partially premixed conditions 197

10.15 FRF (magnitude) for $Q_{Air} = 15$ scfm, $S = 1.19$ under partially premixed conditions .. 198

10.16 FRF (phase) for $Q_{Air} = 15$ scfm, $S = 1.19$ under partially premixed conditions 198
10.17 FRF (magnitude) for $Q_{\text{Air}} = 20$ scfm, $S = 0.79$ under partially premixed conditions ... 199
10.18 FRF (phase) for $Q_{\text{Air}} = 20$ scfm, $S = 0.79$ under partially premixed conditions 199
10.19 FRF (magnitude) for $Q_{\text{Air}} = 20$ scfm, $S = 1.19$ under partially premixed conditions ... 200
10.20 FRF (phase) for $Q_{\text{Air}} = 20$ scfm, $S = 1.19$ under partially premixed conditions 200
10.21 FRF (magnitude) for $S = 1.19, \Phi = 0.55$ under partially premixed conditions ... 201
10.22 FRF (phase) for $S = 1.19, \Phi = 0.55$ under partially premixed conditions ... 201
10.23 FRF (magnitude) for $S = 0.79, \Phi = 0.55$ under partially premixed conditions ... 202
10.24 FRF (phase) for $S = 0.79, \Phi = 0.55$ under partially premixed conditions ... 202
10.25 FRF (magnitude) for $S = 1.19, \Phi = 0.65$ under partially premixed conditions ... 203
10.26 FRF (phase) for $S = 1.19, \Phi = 0.65$ under partially premixed conditions ... 203
10.27 FRF (magnitude) for $S = 0.79, \Phi = 0.65$ under partially premixed conditions ... 204
10.28 FRF (phase) for $S = 0.79, \Phi = 0.65$ under partially premixed conditions ... 204
10.29 FRF (magnitude) for $\Phi = 0.55, S = 0.79$... 207
10.30 FRF (phase) for $\Phi = 0.55, S = 0.79$... 207
10.31 FRF (magnitude) for $\Phi = 0.55, S = 1.19$... 208
10.32 FRF (phase) for $\Phi = 0.55, S = 1.19$... 208
10.33 FRF (magnitude) for $\Phi = 0.65, S = 0.79$... 209
10.34 FRF (phase) for $\Phi = 0.65, S = 0.79$... 209
10.35 FRF (magnitude) for $\Phi = 0.65, S = 1.19$... 210
10.36 FRF (phase) for $\Phi = 0.65, S = 1.19$... 210

xxiv
10.37 FRF (magnitude) for $Q_{\text{Air}} = 15$ scfm, $S = 0.79$ under fully premixed conditions
10.38 FRF (phase) for $Q_{\text{Air}} = 15$ scfm, $S = 0.79$ under fully premixed conditions
10.39 FRF (magnitude) for $Q_{\text{Air}} = 15$ scfm, $S = 1.19$ under fully premixed conditions
10.40 FRF (phase) for $Q_{\text{Air}} = 15$ scfm, $S = 1.19$ under fully premixed conditions
10.41 FRF (magnitude) for $Q_{\text{Air}} = 20$ scfm, $S = 0.79$ under fully premixed conditions
10.42 FRF (phase) for $Q_{\text{Air}} = 20$ scfm, $S = 0.79$ under fully premixed conditions
10.43 FRF (magnitude) for $Q_{\text{Air}} = 20$ scfm, $S = 1.19$ under fully premixed conditions
10.44 FRF (phase) for $Q_{\text{Air}} = 20$ scfm, $S = 1.19$ under fully premixed conditions
10.45 Power spectrum of u' between 250 and 295 Hz
10.46 Power spectrum of OH^* signal and FRF (magnitude) for $Q_{\text{Air}} = 15$ scfm and $S = 1.19$, between 250 and 295 Hz
10.47 System level description of the turbulent swirl stabilized combustion process
10.48 (a) Image of swirl stabilized turbulent flame for $Q_{\text{Air}} = 15$ scfm, $S = 1.19$ and $\Phi = 0.55$, under steady burning conditions (b) Image of turbulent swirl stabilized flame for $Q_{\text{Air}} = 15$ scfm, $S = 1.19$ and $\Phi = 0.6$, under steady burning conditions
10.49 Phase locked images of turbulent swirl stabilized flame for $Q_{\text{Air}} = 15$ scfm, $S = 1.19$ and $\Phi = 0.6$, with excitation at 275 Hz
10.50 Phase locked images of turbulent swirl stabilized flame for $Q_{\text{Air}} = 15$ scfm, $S = 1.19$ and $\Phi = 0.6$, with excitation at 105 Hz
12.1 System level description of controlled combustion dynamic experiment
12.2 Schematic of the laminar conical flame burner with radial variations in species concentrations/mixture-equivalence ratio
A.1 Velocity probe .. 242
A.2 Sketch of the velocity probe 244
A.3 Velocity probe circuit diagram 245
A.4 Details of the Burr-Brown instrumentation amplifier INA 131 246
A.5 FRF (magnitude) of microphone 1 and 2 247
A.6 FRF (phase) of microphone 1 and 2 247
A.7 The FRF magnitude of the velocity probe circuit to 2 mV random noise input 249
C.1 Calibration of the flow meter, SR No. 20050501 256
C.2 Calibration of the flow meter, SR No. 20050502 257
E.1 Sketch of the high pressure combustor 278
F.1 The dependence of the dynamic OH* signal measured at 170 Hz on the voltage applied at the probe frequency .. 281
F.2 Systems level block diagram describing the dynamic process involved in the probe signal experiment .. 282
G.1 Dimensioned Drawing of Swirl Stabilized Turbulent Combustor 284
List of Tables

2.1 Flammability limits and flame properties .. 11

3.1 Summary table of the literature available on Flame Dynamics 40

3.2 Summary table of the literature available on Rijke Tube Burner 42

3.3 Summary table of the literature available on Thermo-Acoustic Instabilities . 44

5.1 Radial acoustic velocity at a plane 70 mm below the top of the honeycomb . 75

6.1 Temperatures measured at the top and bottom surface of the honeycomb for
experiments using methane ... 84

6.2 Percent change in the mean energy content for various flow conditions refer-
enced to $\Phi = 0.5$ and $Q_{Total} = 145$ cc/sec .. 94

6.3 Resonant frequencies of the 1^{st} resonant response compared with the reso-
nances evaluated for the thermocouple dynamics 102

B.1 Sources of the various equipment and materials used 253

C.1 Maximum errors in the fuel flow rates .. 255
D.1 Poles, zeros, gain and time delay for burner stabilized laminar flat flame burning methane ... 258
D.2 Poles, zeros, gain and time delay for burner stabilized laminar flat flame burning propane 262
D.3 Poles, zeros, gain and time delay for burner stabilized laminar flat flame burning ethane .. 266
D.4 Temperatures measured at the top and bottom surface of the honeycomb for experiments burning methane 269
D.5 Temperatures measured at the top and bottom surface of the honeycomb for experiments burning propane 270
D.6 Temperatures measured at the top and bottom surface of the honeycomb for experiments burning ethane 271
D.7 Flame temperature for burner stabilized laminar flat flame 272
D.8 Poles, zeros, gain and time delay for swirl stabilized turbulent flame burning methane .. 273
Nomenclature

A Pre-exponential factor
A_c Cross sectional area of flow
A_d Dynamics of plant acoustics
A_t Total area of the tangential inlet
c Speed of sound
CRZ Central re-circulation zone
C_f Friction coefficient
C_p Specific heat
D Diameter
D_h Hydraulic diameter
Ea Activation energy
FFT Fast Fourier Transform
FRF Frequency response function
F_d Dynamics of combustion process
G_x Axial flux of the axial momentum
G_θ Axial flux of the swirl momentum
h Planck's constant
h_x Local convective heat transfer coefficient
k Thermal conductivity
L Length
m' Fluctuations in the mass flow rate
$N u_x$ Local Nuselts number
ORZ Outer re-circulation zone
p' Fluctuation in pressure
$ar{p}$ Mean pressure
P Total pressure
P_o Combustor pressure
P_r Prandlt number
q' Fluctuations in the heat release rate
q_{net} Net heat transfer
Q_{Air} Total air flow rate
Q_{Total} Total flow rate
r_e Radius on which the tangential inlets are attached
R Rayleigh’s index
Re Reynolds number
RR Reaction rate
R_o Radius of the inlet of the quarl
R_u Universal gas constant
S Swirl number
S_g Geometric swirl number
S_L Flame speed
t Time
T Temperature
T_{af} Adiabatic flame temperature
T_f Flame Temperature
T_g Gas temperature
T_w Wall temperature
u' Fluctuations in the velocity
$ar{u}$ Mean velocity
u'_a Feedback component of the acoustic perturbation

u'_s Externally imparted velocity perturbations upstream of the flame

u_z Velocity in axial direction

u_θ Velocity in tangential direction

U Total velocity

α_g Absorptivity of the gas

ϵ_g Emissivity of the gas

ζ Damping ratio

μ Viscosity

ν Frequency of the photon energy

ρ Density

τ Time delay

τ_{chem} Time delay due to chemical kinetics

ϕ Phase angle

ω Frequency in radians

ω_n Natural frequency

Φ Equivalence ratio

Φ' Fluctuations in equivalence ratio

Ω Ohms