Thesis submitted to the faculty of the Virginia Polytechnic Institute & State University in partial fulfillment of the requirements for the degree of

MASTER OF ARCHITECTURE

Professor William Brown
Chairman

Professor William Brown

Professor Eugene Eggles

Professor [Name withheld for privacy]
The character of an urban void is defined by the built surroundings which determine the appearance and the function of the enclosed space. In modelling urban form, three major zones corresponding to this phenomenon may be distinguished:

1. Core
2. Transition Zone
3. Surrounding

The transition zone contains the capacity to determine the prospective character of the framed void. It offers the possibility to intervene in the existing urban form, not by filling, but by emptying. It experiences a transformation from a neglected urban object to a clearly identified urban subject. This threshold towards the void serves as a mediating element between the two contrasting situations. It acts as a "sculpting" of an urban theater towards the void.
The history of the urban growth and urban forms in France and more particularly in the French context.

The economical and social crisis that French society had to endure had important consequences in the formation of urban housing and public space - urbanized space. Urbanism inherited from the period 1950/1960 emphasized the social inequalities creating numerous urban zones occupied by the urban lower class, the most affected by the crisis. These "poche de pauvreté" (poverty pockets) became places of segregation and exclusion, spatially as well as socially, which generated silence and political ruptures.

After having questioned the principles inherited from the "modern movement" (Congrès Internationaux d'Architecture Moderne) as they were used during the 50's/60's, the rejection of the Historic city, functionalism and zoning, automobile supremacy and the methods that accompanied them, it seems that the contemporary urban project arises from a renewed political approach to the intervention in the urban space. The urban project is a process of conception, aiming to preview and organize the evolution of an urbanized area. The urbanized area defined as a continuously dense occupied space independent of the length of time of this occupation.

An urban project is also implemented when contradictions appear between the present situation of the occupation of the space and the possibilities of passage to other forms of occupation and socially more interesting usage. The intention of an urban project is in finding an answer to these contradictions, by proposing a spatial synthesis between social needs and the available means. There are no two urban situations which are identical, but common to all:

- the definition of program on the one hand, and the relevance of the proposed spatial answer on the other hand.
This project is sited at an edge situation in the 13th ward of Paris near the "Place de Rungis", adjacent to the peripheral belt highway. The aim is to re-integrate the area with the station, including a warehouse, a former train station, and a decommissioned freight yard of the little rail way system "paris' circule".

The place is surrounded by urban block-type buildings of the 19th century on the north side and high-rise apartment buildings of the 60's on the south side. The split character between the two different urban forms is characteristic for the chosen site.

An urban project differs from architectural design in several essential points. First of all, although the physical dimension might be the same (Grande École-Peugeot Paris, Opéra Bastille), the emphasis is placed on different aspects of that physical reality. In the architectural design it is placed on the treatment of what is happening within its immediate periphery. Conversely, the urban project in contrary deals with the relation between the territory to be treated and its further environment, taking into consideration all the forms, scales, limits, and as well articulations of it.
The model shown on the opposite page illustrates the volumes occupied by the existing street streets. The different heights of the volumes are derived from the hierarchical importance of each street in the context of the street network. The new urban infill represents an attempt to locate the beginning of an urban extension to the boundary of the already existing urban context. This threshold takes place in the street using its characteristic functional qualities. The expansion of the circulation to the third dimension widens the communal spaces.
Section studies are employed to
define different ways of framing
the space between the pro-
posed project and the existing
streetfront. The section is di-
nected into rooms for the public
on the street level, semi-public
spaces on the second level and
private space on the third level.
The section on the opposite side
comprises a semi-public side-
walk on the second level and an
independent private space,
whose orientation marks its use.
The folded semi-public wall en-
closing the street opens the
street room towards the void
and creates an urban loggia.
The threshold consists of two major dependent elements:
1. the wall perpendicular to the streetfront provide the structural stability and serve as the connector to the existing urban environment.
2. the folded facade elements located parallel to the streetfront defines the sectional shape of the space formed between wall and facade.

The extent and size of the folded facade are directly dependent on the streetfront of the background. The space in section varies from completely open to completely closed in several gradations. The continuity of the row of folded elements generates enclosed, different usable rooms of different sizes.
The frames perpendicular to the streetfront define the dimension of the street and build repetitive regular elements in the longitudinal extent of the project. The thickness of the frames changes according to the structural need to support the façade's facade. The frame inhabits the passageway in order to connect both sheet sides with each other.

The density of the fold is set in relation to the density of the existing neighborhood. A play of transparency in the overlapping areas of new and old sets the position of the background in relation to the foreground and creates a stronger interaction of street room and building.
Differentiation of street and void is achieved by an offset in the floor levels.

4 floors can be used for natural light, natural ventilation and to guarantee safety in the underground parking below the street level.
The entrance situation to the single rooms is marked by the change of the ramp landing in order to change the circulation direction. The concrete wall in the steel frame wall serves as anchorage for the ramp structure and as beginning (garage) of each new element.
The wrapping skin elements are stretched on the tubular steel structure members responding to the specific need of natural light for the interior spaces. In order to maintain the closed appearance of the folded facade towards the void, the openings widen to the interior.
The wrap stretched on the steel tube structure like a canvas on a wood frame is realized by flexi-nim ducile metal sheets, for instance copper. The tension is transferred by stainless steel springs on the metal louvers ensuring a constant tension. Small changes in the length of the louvers caused by thermal expansion can therefore be avoided. The tension on the louvers is raised at the lower part of the facade and in areas where the inter-space between facade plates is accessible in order to increase the transparency of the sunscreen towards the void.
FACADE

- rainscreen shading device
- thermal enclosure
- 2% inclined 5-layered security glass glazing system
- lighting and HVAC
- 10 cm galvanized steel tube

The first floor of the facade is used as a threshold for light and a rainscreen accessible through sliding doors on both levels.
The bowler shears are separated from the (2 cm diameter) galvanized steel tubes by a plastic foam material in order to avoid corrosion caused by contact from two metals of different chemical properties. Prefabricated concrete panels with insulation fill are used in the interior areas as separation walls to the connected ramps to act as heat storage and as noise buffers. As result of their light structural importance, the connecting joints are designed as longitudinal windows to increase the transparency towards the street and the ramp system.
The linkage of the roof and the facade has been achieved by an offset of both structural systems. The penetration of the vertical and horizontal bus members respond to the intended structural transparency: two elements joined at the same level without being directly but lat-erally connected to each other. The plastic ring element ties the bus members and avoids the metallic corrosion. The slightly curved surfaces of the dished copper sheet help to distribute the light through the slim curved openings to the interior space.
The chosen approach to define an appropriate urban form seems to be under the first observation contradictory to the current urban design practice, taking in consideration that the largest area of the site stays unbuilt. The built part is reduced to the minimum of the necessary elements which support the entire idea. The reduction to the boundary of the existing urban context is achieved by the following steps:

- Homogenising of the existing situation and maintaining of territory function
- Extension of existing
- Tropos: street as public room obviating solely public obligations and property boundary
- Form: adequate answer to signification of a street structured by the way of adaptation to singular urban situations
ACKNOWLEDGMENTS

I want to dedicate this thesis to my family who always supported me on my way in life.

I would like to thank the Fulbright Commission, the Virginia Polytechnic Institute & State University, the Department of Architecture and Urban Studies and my committee Prof. William Galloway, Prof. Eugene Rieger, Prof. Heinrich Schwewe and Prof. Renge Hall who offered me the great opportunity to study in their Master of Architecture Program.

My special thanks go out to all friends I met during my studies in Blacksburg who supported me with joy, critics and humor.
education
08/2001 Master of Architecture
08/1999 M. Arch Program at the Virginia Polytechnic Institute & State University
05/1999 German Fulbright Scholarship
Master Degree in Architecture at the HfG Stuttgart - University of Applied Sciences, Germany
1994/97 Etudiant Libre - Ecole d’Architecture de Paris - LaDefense, France

experience
2001 Moore Ruble Yudell Architects Santa Monica, California USA
2001 Graduate Teaching Assistant at VPI for Hot Reversal in Graphite
1999 Tokui Mull & Partners Stuttgart, Germany
1997 Architecture Studio Paris, France
1996 Allan & Auerbach Paris, France
1994 Auer & Weber Stuttgart, Germany

workshops
2001 International Architectural Educational Exchange IABE, Los Angeles
2000 International Workshop (USA/GB) VPI, Virginia
2000 International Architectural Educational Exchange IABE, Paris
1997 La Tourette Seminar with Alvaro Siza, Lyon, France

awards
2001 Graduate Faculty Award for Excellence in Architecture, Department of Architecture, VPI
2001 Phi Kappa Phi Honor Society
2001 Tau Sigma Delta Honor Society
2000 ACSA/PP 99/00 Hollow Structure Design and Engineering Challenge Excellence Award
2000 ACSA Wood Competition 2000 Third Prize / Crafting of Space
1999 German Fulbright Scholarship
1999 Karl Kraemer Publisher Thesis Prize, Stuttgart
1996 C&I Dillingen Society Scholarship
1996 German Academic Exchange Program DAAD Scholarship
1996 Karl Kraemer Publisher Thesis Prize, Stuttgart

VITA