Studies on Hydrogen Selective Silica Membranes and
the Catalytic Reforming of CH₄ with CO₂ in a Membrane Reactor

Doohwan Lee

Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Chemical Engineering

S. Ted Oyama, Chairman

David F. Cox

Eva Marand

Richey M. Davis

John R. Morris

May 9, 2003

Blacksburg, Virginia

Keywords: Silica Membrane, Permeation Mechanism, Dry reforming, Membrane Reactor
Studies on Hydrogen Selective Silica Membranes and the Catalytic Reforming of CH₄ with CO₂ in a Membrane Reactor

Doohwan Lee

Abstract

In this work the synthesis, characterization, and gas transport properties of hydrogen selective silica membranes were studied along with the catalytic reforming of CH₄ with CO₂ (CH₄ + CO → 2 CO + 2 H₂) in a hydrogen separation membrane reactor. The silica membranes were prepared by chemical vapor deposition (CVD) of a thin SiO₂ layer on porous supports (Vycor glass and alumina) using thermal decomposition of tetraethylorthosilicate (TEOS) in an inert atmosphere. These membranes displayed high hydrogen permeances (10⁻⁸ – 10⁻⁷ mol m⁻² s⁻¹ Pa⁻¹) and excellent H₂ selectivities (above 99.9 %) over other gases (CH₄, CO, and CO₂). The membranes were characterized using Scanning Electron Microscopy and Atomic Force Microscopy, and the mechanism of gas transport was studied applying existing theories with a newly developed treatment.

The catalytic reforming of CH₄ with CO₂ was carried out in a membrane reactor installed with a hydrogen separation ceramic membrane. The reaction was conducted at various pressures (1 – 20 atm) and temperatures (873 K and 923 K) at non-equilibrium conditions, and the results were compared with those obtained in a packed bed reactor in order to evaluate performance of the membrane reactor for the reaction. It was found that concurrent and selective removal of hydrogen from the reaction in the membrane reactor resulted in considerable enhancements in the yields of the reaction products, H₂ and CO. The enhancements in the product yields in the membrane reactor increased with pressure showing a maximum at 5 atm, and then decreased at higher pressures. This was due to a trade-off between a thermodynamic quantity (hydrogen production by the reaction) and transport property (hydrogen separation through the membrane). It was also found that the reverse water-gas shift (RWGS) reaction occurred simultaneously with the reforming reaction giving the detrimental effect on the reaction system by reducing the amount of hydrogen production in favor of water. This was particularly significant at high pressures.
Acknowledgements

I would like to express my sincere gratitude to my advisor, Professor Dr. S. Ted Oyama, for his guidance and support. During my tenure he always advised and encouraged me giving invaluable insight and new perspectives. I am deeply indebted to him and very thankful for his efforts. I was fortunate to have him as my advisor.

I also would like to thank my advisory committee, Dr. Cox, Dr. Davis, Dr. Marand and Dr. Morris, for their supports and helpful inputs on my research. I also thank Dr. Gibbs and Dr. Lucia for their introduction of theoretical simulation and numerical optimization to me.

I thank the past and current group members of the Environmental Catalysis and Nanomaterials Laboratory and the Surface Science Laboratory. They helped me throughout my tenure sharing their precious thoughts and time. I would also like to thank all the staff in the Chemical Engineering Department at Virginia Tech for their help and support.

The atomic force microscopy measurements on the Nanosil membrane presented in this dissertation was conducted in Dr. Iwasawa’s Lab at the University of Tokyo in Japan by S. Sugiyama and K. Fukui. I thank them for their contribution on my research. I also thank Sanjun Liu in Dr. Saraf’s Lab and Stephen McCartney in Materials Science Laboratory at Virginia Tech for their help in atomic force microscopy and scanning electron microscopy measurements on the silica/alumina composite membrane.

Financial support for this research was provided by the Director, Division of Chemical and Thermal Systems of the National Science Foundation, under Grant CTS98-15041. The research project was also sponsored by ConocoPhilips.
Table of Contents

Chapter 1. Introduction ... 1
 1.1. Literature Review .. 2
 1.1.1. Hydrogen Selective Membranes 2
 1.1.2. Membrane Reactors for the CH₄ Reforming Reactions 4
 1.2. Scope of the Present Work ... 5

Chapter 2. Synthesis and Characterization of a Silica Membrane
 Supported on Porous Vycor .. 9
 2.1. Introduction .. 9
 2.2. Experimental .. 10
 2.3. Results and Discussion ... 11
 2.4. Conclusions ... 17

Chapter 3. Mechanism of Gas Transport through a Supported
 Silica Membrane .. 20
 3.1. Introduction .. 20
 3.2. Experimental .. 20
 3.3. Gas Transport through the Membranes 21
 3.3.1. Theoretical Background .. 22
 3.3.1.1. Sorption ... 22
 3.3.1.2. Diffusion .. 23
 3.3.1.3. Permeation ... 25
 3.4. Results and Discussion ... 27
 3.4.1. Permeance of the Vycor Glass Membrane 28
 3.4.2. Permeance of the Silica Membrane 33
 3.5. Conclusions ... 42
Chapter 4. A Highly Hydrogen Permeable Silica Membrane

Supported on Porous Alumina.. 46

4.1. Introduction... 46
4.2. Experimental... 46
4.3. Results and Discussion.. 49
 4.3.1. Gas Transport through the Alumina Support......................... 49
 4.3.2. Gas Transport through the Silica Membrane.......................... 52
 4.3.3. Characterization of the Membranes....................................... 55
 4.3.4. Mechanism of H₂ and He Permeation through the Silica Membrane...... 60
4.4. Conclusions... 64

Chapter 5. Catalytic Reforming of CH₄ with CO₂ in a Membrane Reactor:

A Study on Effect of Pressure .. 66

5.1. Introduction... 66
5.2. Experimental... 66
 5.2.1. Preparation of Rh/Al₂O₃ Catalyst.. 66
 5.2.2. Preparation of Hydrogen Selective Silica Membranes.............. 67
 5.2.3. Reforming of CH₄ with CO₂ in a Plug Flow Reactor and
 a Membrane Reactor... 68
5.3. Results... 71
 5.3.1. Properties of the Catalyst and Membranes........................... 71
 5.3.2. The CH₄/CO₂ Reforming in the Packed Bed and Membrane Reactor.... 74
 5.3.2.1. Conversions of the reactants... 74
 5.3.2.2. Utilization of CH₄ and CO₂.. 76
 5.3.2.3. Yields of the reaction products..................................... 78
 5.4. Discussion... 80
 5.5. Conclusions... 89

Chapter 6. Conclusions... 92
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical processing of the supported membranes</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Illustration of the silica membrane preparation</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic of the CVD reactor system</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Pore size distributions of the Vycor and Nanosil membranes</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Permeance of light gases through the Vycor membrane</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Temperature dependence of permeability through the Vycor and Nanosil Membranes</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Atomic force micrographs of the Vycor and Nanosil membranes</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Nitrogen adsorption/desorption isotherms for the Vycor and Nanosil membrane</td>
<td>27</td>
</tr>
<tr>
<td>3.2</td>
<td>Pore size distributions of the Vycor and Nanosil membrane</td>
<td>28</td>
</tr>
<tr>
<td>3.3</td>
<td>Q × (MT)^1/2 vs. temperature for the Vycor membrane</td>
<td>29</td>
</tr>
<tr>
<td>3.4</td>
<td>Model-calculated and experimental gas permeance on the Vycor membrane</td>
<td>31</td>
</tr>
<tr>
<td>3.5</td>
<td>Surface transport of CH₄, CO, and CO₂ through the Vycor membrane</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>Gas permeance vs. silica deposition time</td>
<td>34</td>
</tr>
<tr>
<td>3.7</td>
<td>Temperature dependence of the permeance of He, Ne, and H₂</td>
<td>35</td>
</tr>
<tr>
<td>3.8</td>
<td>Model-calculated He permeance on the silica layer, and experimental permeance on the Vycor and Nanosil membranes</td>
<td>36</td>
</tr>
<tr>
<td>3.9</td>
<td>Model-calculated Ne permeance on the silica layer, and experimental permeance on the Vycor and Nanosil membranes</td>
<td>37</td>
</tr>
<tr>
<td>3.10</td>
<td>Model-calculated H₂ permeance on the silica layer, and experimental permeance on the Vycor and Nanosil membranes</td>
<td>37</td>
</tr>
<tr>
<td>3.11</td>
<td>Structure of β-cristobalite</td>
<td>38</td>
</tr>
<tr>
<td>3.12</td>
<td>He, Ne, and H₂ permeability on the silica layer and vitreous glasses</td>
<td>39</td>
</tr>
<tr>
<td>3.13</td>
<td>Statistical model calculated He, Ne, and H₂ permeance on the silica layer.</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Pore size distribution of the unsupported γ-Al₂O₃ film</td>
<td>49</td>
</tr>
</tbody>
</table>
Figure 4.2. Gas permeance vs. molecular weight\(^{1/2}\) for the fresh alumina support……. 51
Figure 4.3. Gas permeance vs. temperature\(^{1/2}\) for the fresh alumina support………. 51
Figure 4.4. Gas permeance vs. silica deposition time………………………………. 52
Figure 4.5. Selectivity of hydrogen vs. H\(_2\) permeance………………………….. 53
Figure 4.6. Arrhenius plot for the permeance of H\(_2\) and He on the silica membrane… 54
Figure 4.7. SEM cross-sectional photos of the fresh alumina support and
the silica membrane……………………………………………………….. 56
Figure 4.8. AFM images of the surface of the fresh \(\gamma\)-Al\(_2\)O\(_3\) and
the silica membrane……………………………………………………….. 58
Figure 4.9. Schematic representations of uniform and preferential film deposition…. 60
Figure 4.10. Statistical model calculated He and H\(_2\) permeance on the silica m
membrane………………………………………………………………… 62
Figure 5.1. Membrane reactor configuration………………………………………. 69
Figure 5.2. A schematic of the reactor system………………………………………. 71
Figure 5.3. Permeance vs. silica deposition time……………………………………. 73
Figure 5.4. Hydrogen selectivity vs. H\(_2\) permeance…………………………….. 74
Figure 5.5. Conversion vs. reaction pressure………………………………………. 75
Figure 5.6. Reactant utilization vs. reaction pressure……………………………… 77
Figure 5.7. Yields of the reaction products vs. reaction pressure………………….. 79
Figure 5.8. Utilization ratio of the reactants vs. reaction pressure………………….. 83
Figure 5.9. Yield ratio vs. reaction pressure……………………………………….. 84
Figure 5.10. Hydrogen separation vs. reaction pressure…………………………. 87
Figure 5.11. Enhancement of H\(_2\) yield vs. reaction pressure…………………. 88
Figure 5.12. Enhancement of CO yield vs. reaction pressure…………………. 88
List of Tables

Table 1.1. Performance of hydrogen separation membranes.......................... 3
Table 2.1. Parameters in the Knudsen equation.. 14
Table 3.1. Values of the parameters for the Knudsen model.......................... 30
Table 3.2. Values of the model parameters for surface diffusion on Vycor....... 32
Table 3.3. Activation energies on the deposited silica layer and vitreous silica glass... 39
Table 3.4. Values of the parameters for the statistical model analysis............. 42
Table 4.1. Best fit preexponential factor and activation energy for
the Arrhenius gas permeation equation... 55
Table 4.2. Best fit model parameters for the statistical gas permeance model..... 63
Table 5.1. Reactants inlet flow conditions.. 68
Table 5.2. BET surface area and CO uptake of the Rh/Al₂O₃ catalyst............. 72
Table 5.3. Experimental K₁ and K₂ values for the dry reforming reaction
and the RWGS reaction... 85