Phase transformations in highly electrostrictive and magnetostrictive crystals: structural heterogeneity and history dependent phase stability

By

Hu Cao

Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirement for the degree of Doctor of Philosophy in Materials Science and Engineering

Dr. Dwight D. Viehland (Chair)
Dr. Jie-Fang Li
Dr. William T. Reynolds
Dr. Yu Wang

May 8th 2008
Blacksburg, Virginia

Keywords: phase transformation, structural inhomogeneity, phase stability, ferroelectric, ferromagnetic, magnetostriction, domain engineering, x-ray diffraction, neutron inelastic scattering, diffuse scattering,

© Copyright 2008, Hu Cao
Phase transformations in highly electrostrictive and
magnetostrictive crystals: structural heterogeneity and history
dependent phase stability

Hu Cao

Abstract

Ferroelectric and ferromagnetic materials have been extensively studied for potential applications in sensors, actuators and transducers. Highly electrostrictive \((1-x)\text{Pb} (\text{Mg}_{1/3}\text{Nb}_{2/3})_x\text{PbTiO}_3\) (PMN-xPT) and highly magnetostrictive Fe-xat.%Ga are two such novel materials. Both materials systems have chemical disorders and structural inhomogeneity on a microscale, giving rise to an interesting diversity of crystal structures and novel macroscopic physical properties, which are dependent on thermal and electrical histories of the crystals. In this thesis, I have investigated phase transformations in these two systems under thermal and field (electric/magnetic) histories, using x-ray and neutron scattering techniques.

In PMN-xPT crystals, x-ray and neutron diffractions were performed along the different crystallographic orientations and for different thermal and electrical histories. Various intermediate monoclinic (M) phases that structurally ‘bridge’ the rhombohedral (R) and tetragonal (T) ones across a morphotropic phase boundary (MPB) have been observed. Systematic investigations of (001) and (110) electric (E) field-temperature phase diagrams of PMN-xPT crystals have demonstrated that the phase stability of PMN-xPT crystals is quite fragile: depending not only on modest changes in E (≤ 0.5kV/cm), but also on the direction along which E is applied. Structurally bridging monoclinic Mc or orthorhombic (O) phases were found to be associated with the T phase, whereas the monoclinic Ma or Mb phases bridged the Cubic (C) and R ones.

In addition, neutron inelastic scattering was performed on PMN-0.32PT to study the dynamic origin of the MPB. Data were obtained between 100 and 600 K under various E applied along the cubic [001] direction. The lowest frequency zone-center, transverse
optic phonon was strongly damped and softened over a wide temperature range, but started to recover on cooling into the T phase at the Curie temperature (T_C). Comparisons of my findings with prior ones for PMN and PMN-0.60PT suggest that the temperature dependence and energy scales of the soft mode dynamics in PMN-xPT are independent of PT concentration below the MPB, and that the MPB may be defined in composition space x when T_C matches the temperature at which the soft mode frequency begins to recover. High-resolution x-ray studies then showed that the C→T phase boundary shifted to higher temperatures under E by an expected amount within the MPB region: suggesting an unusual instability within the apparently cubic phase at the MPB.

In Fe-xat.%Ga alloys, the addition of Ga atoms into the b.c.c. α-Fe phase also results in diversity of crystal structures and structural inhomogeneity, which are likely the source of its unusual magneto-elastic properties. I have carefully investigated decomposition of Fe-xat.%Ga alloys subjected to different thermal treatments by x-ray and neutron diffraction for 12 < x < 25. Quenching was found to suppress the formation of a DO_3 structure in favor of a high-temperature disordered bcc (A2) one. By contrast, annealing produced a two-phase mixture of A2 + DO_3 for 14 < x < 20 and a fully DO_3 phase for x = 25. A splitting of the (2 0 0) and (0 0 2) Bragg peaks observed along the respective transverse directions indicated that Fe-xat.%Ga “crystals” are composed of several crystal grain orientations (or texture structures), which are slightly tilted with respect to each other. In order to investigate the local structural distortions and heterogeneities, neutron diffuse scattering was performed on Fe-x%Ga alloys for different thermal conditions. Diffuse scattering around a (100) superlattice reflection was found for 14<x<22 in the furnace-cooled condition, indicative of short-range ordered DO_3 nanoprecipitates in an A2 matrix. This diffuse intensity had an asymmetric radial contour and an off-centering. Analysis (x=19) revealed two broad peaks with c/a≈1.2: indicating that the DO_3-like nanoprecipitates are not cubic, but rather of lower symmetry with a large elastic strain. The strongest diffuse scattering was observed for x=19, which correspondingly had maximum magnetostriction: indicating a structural origin for enhanced magnetostriction.
Dedicated to the memory of my mother, Qinfen Ding
and to the added blessing of my daughter, Reenie Cao:

“the Cycle of Life”
I would like to express my sincere gratitude to my advisors Dr. Dwight Viehland and Dr. Jiefang Li for their faith, guidance and support throughout the course of my Ph.D. research and also for giving me the opportunity to work on these interesting projects.

I have tremendous respect to Dwight for his knowledge, wisdom and passion for research. I benefited from his guidance in every aspect during my Ph.D. study. In addition, he has been always excited about every small step forward I have made. He always made me feel that we could do anything. His patience on correcting my papers, proposals and thesis, and his assistance on my preparation for seminar and conference talks actually lead me to be a materials scientist. I deeply appreciate all of his invaluable assistances.

Equally important, Jiefang has given me great help in almost all equipment and facilities setup. She generously shared all her knowledge and experience in experimental techniques. Without her help, my research would not be so successful.

In particular, I would like to acknowledge the tremendous help that Dr. Gen Shirane at Brookhaven National Laboratory had provided us for a long time, who greatly helped me to develop expertise in x-ray diffraction and neutron scattering and revised my first important science publication in the first two years of my Ph. D. study. His presence will be missed, but I will always carry his inspirations with me and I am positive his spirit will always be present in our laboratory.

I would like to give my special acknowledgement to Dr. Guangyong Xu at Brookhaven National Laboratory, who greatly helped me in x-ray diffraction and neutron scattering studies and also helped me revise my first several important science publications.

I would equally like to give my special acknowledgement to Dr. Peter Gehring at the Neutron Center of the National Institute of Standards and Technologies. He many instructions and many great suggestions in neutron scattering, including neutron diffuse
and inelastic scatterings. His professionalism and direction at the beamlines exemplifies Civil Service: he assisted for me with valuable neutron beam-time experiments.

I most like to give my special acknowledgement to Dr. Chris C. Stock (ISIS Pulsed Neutron & Muon Source, England). When he was at the Neutron Center of the National Institute of Standards and Technologies, he gave me lots of helps in neutron inelastic scattering. He instructed me on finishing my first neutron paper.

I would like to give special acknowledgement to Dr. Yu Wang for many valuable discussions on adaptive phases and nanotwins, as related to my projects. I would also like to thank Dr. William Reynolds for the valuable discussion we held on magnetostrictive materials and high resolution transmission electron microscopy, as related to this project.

I would like to thank Feiming Bai, Naigang Wang, and Li Yan, whom are students in our research group. We have had very close cooperation and discussions on the structure studies of PMN-PT and Fe-Ga crystals. I would like to thank Dr. Shuxiang Dong for all the discussion we held in the view of real application of current project. I would like to thank David Berry for much technical support, who help all the research groups in our department. I thank all other group members: it will be always a good memory to work with these guys.

I would like to thank all of committee members for serving in my Committee and taking time out of their busy schedules to evaluate my work.

The most important acknowledgment was saved for last. I would like to express my gratitude to my parents, Linfa Cao and Qinfen Ding and my wife, Yan (Joe) Zhang. They have been constantly providing faith, encourage and enjoyment during my Ph.D. study. I will miss my mother as she was taken from us during my studies. I would like to express my deepest love to my lovely daughter, Reenie Cao. She brought to me lots of happy moments in the last half year of my Ph. D. studies and strength when I needed it most. I also would like to express my gratitude to my parents-in-law, Tianyin Zhang and Yuhua Fan for taking care of my little baby, which allowed me to have more time to focus on the completion of my thesis within the last half year.
TABLE OF CONTENTS

ABSTRACT .. ii
ACKNOWLEDGEMENTS ... v
TABLE OF CONTENTS .. vii
LIST OF TABLES ... x
LIST OF FIGURES ... xi

1. INTRODUCTION ... 1
 1.1 Significance and purposes .. 1
 1.1.1 Significance .. 1
 1.1.2 Purposes .. 1
 1.2 Ferroelectricity and ferroelectric materials .. 2
 1.2.1 Ferroelectricity and perovskite ferroelectrics .. 2
 1.2.2 Phenomenological and macroscopic theories for various ferroelectrics.. 4
 1.2.3 Microscopic theories for ferroelectric – soft modes 7
 1.2.4 PMNT and PZNT single crystals ... 8
 1.2.5 Structural origin of ultra-high electro-mechanical properties in PMNT
 and PZNT ... 10
 1.2.6 Polar-nano regions and lattice dynamics ... 21
 1.3 Ferromagnetic materials ... 23
 1.3.1 Ferromagnetism .. 23
 1.3.2 Magnetostriction and its microscopic origin ... 25
 1.3.3 High magnetostriction in Fe-xGa alloys ... 26
 1.3.4 Structurally heterogeneous model: a nano-dispersion of DO3 with
 confined tetragonal displacive transformation 28

2 EXPERIMENT PROCEDURES ... 34
 2.1 Sample preparation ... 34
 2.1.1 PMN-PT single crystals ... 34
 2.1.2 Fe-xGa alloys .. 34
 2.2 Structural analysis tools .. 35
 2.2.1 X-ray diffraction .. 35
2.2.2 Neutron triple axis spectrometer..36

3 FRAGILE PHASE STABILITY OF (1-x)Pb(Mg\(_{1/3}\)Nb\(_{2/3}\)O\(_3\))-xPbTiO\(_3\) CRYSTALS..41

3.1 Structural phase transition and phase boundary/stability studies of [001] field-cooled PMN-PT ...46
3.1.1 The C’ phase region and an abnormal thermal expansion47
3.1.2 Role of intermediate T phase in relaxor-to-normal ferroelectric transition ...52

3.2 Orthorhombic VS monoclinic Mc in [110] and [001] electric field cooled PMN-xPT..56

3.3 The intermediate monoclinic Mb phase in [110] and [111] electric field cooled PMN-xPT ...61
3.3.1 [110] electric field cooled PMN-xPT..63
3.3.2 [111] electric field cooled PMN-xPT (x=0.30)75

3.4 PMN-xPT..83
3.4.1 [001] electric field cooled PMN-xPT..83
3.4.2 [110] electric field cooled PMN-xPT ..86

3.5 Discussion and summary...88
3.5.1 Fragile phase instability – a comparison of results.................................88
3.5.2 The M\(_A\) and M\(_B\) phases...90
3.5.3 The C’ phase..94
3.5.4 Extension of T and/or O phase fields to lower x by E.............................97
3.5.5 A possible explanation for the Fragility: micro-domain averaging........98

4 DYNAMIC ORIGIN OF THE MORPHOTROPIC PHASE BOUNDARY – SOFT PHONONS AND PHASE INSTABILITY IN PMN-PT NEAR MPB...101

4.1 Neutron inelastic scattering results for PMN-0.32PT..103
4.1.1 Observation and study of the soft zone center optic mode in PMN-0.32PT..105
4.1.2 Phonon dispersion and low zone-center energy.................................107
4.1.3 Temperature dependence of the phonon energy and line-width...........110
4.2 Comparative dielectric and XRD measurements..112
4.3 Discussion and Summary..114

5 PHASE TRANSFORMATIONS AND STRUCTURAL HETEROGEITY IN
FE-GA ALLOYS..117

5.1 Structural studies of decomposition..118

5.2 Observation of tetragonal-like splittings in Fe-19at.%Ga by neutron diffuse
scattering..129

5.3 Discussion and summary...136

6 CONCLUSION AND FUTURE WORK..138

6.1 Conclusions...138

6.1.1 PMN-xPT crystals...138

6.1.2 Fe-xat.%Ga alloys...139

6.2 Future work..140

6.2.1 PMN-xPT crystals...140

6.2.2 Fe-xat.%Ga alloys...141

REFERENCE...143
LIST OF TABLES

Table 3.1 PMN-0.30PT, E//[110], E=2kV/cm, FC ..77
Table 3.2 PMN-0.30PT, FC ...80
Table 3.3 Calculated value of $\frac{a_a}{\sqrt{2}}$ and $\sqrt{2}\cos(\alpha^*/2)$ for low temperature phases in [001] and [110] electric field cooled PMN-xPT crystals........92
LIST OF FIGURES

Figure 1.1 Sketch of ferroelectric hysteresis loop illustrating the polarization switching under an external electric field...3

Figure 1.2 Sketch of the unit cell of perovskite structure ABO₃ in ferroelectrics.............5

Figure 1.3 Soft-mode energy $\hbar \omega_0$ as a function of temperature. Reprinted with permission from [10]. Copyright [1970], American Physical Society..........9

Figure 1.4 Comparison of strain behaviors under an external electric field below PMN-xPT and PZN-xPT single crystals and various PZT ceramics. Reprinted with permission from [1]. Copyright [1997], American Institute of Physic……………………………………...11

Figure 1.5 Strain response under an external electric field for (001) oriented PMN-0.8PT crystal [1]. The low electric field region A has a rhombohedral phase with four upward polar vectors along the direction of electric field; the high electric field region C has a single-domain like tetragonal phase; whereas the medium field region B connect the region A and C, indicating a R\rightarrowT phase transition. Reprinted with permission from [1]. Copyright [1997], American Institute of Physics..13

Figure 1.6 Illustration of rotation of polarization vectors in perovskite unit cells. The thick lines represent the paths followed by the end of the polarization vector of rhombohedral (R) and tetragonal (T), orthorhombic (O) and monoclinic M_A, M_B and M_C phases. The M_A, M_B and M_C notation is adopted following Vanderbilt and Cohen [30]...15

Figure 1.7 (a) Temperature dependent lattice parameters for PMN-0.33PT ceramics. (b) Temperature dependence of the general invariance condition of $a_m+c_m=a_t+c_t$ [20]. Reprinted with permission from [20]. Copyright [2003], American Physical Society...18

Figure 1.8 Dark field TEM image of stress accommodating polydomain structure in CuAu alloy [37]. The structure of the adaptive phase has the same morphology but is conformally miniaturized to reach nano- or subnanoscale. Then white and black stripes become microdomains that are “invisible” to the usual diffraction measurement and the macroplates become macrodomains that are perceived as domains of the “homogeneous” monoclinic phase (adaptive phase). Reprinted with permission from [37]. Copyright [1967], Wiley-VCH Verlag GmbH & Co. KGaA........20

Figure 1.9 Sketch of (a) ferromagnetic hysteresis loop, illustrating the magnetic domain switching under an external magnetic field; (b) temperature dependence of reciprocal susceptibility; (c) temperature dependence of spontaneous magnetizations...24

Figure 1.10 (a) a Fe-Ga binary phase equilibrium diagram reported by Fe-Ga binary
phase equilibrium diagram reported by H. Okamoto; (b) a modified metastable equilibrium phase diagram by O. Ikeda [54]; (c) crystal structures of A2, B2, DO3, DO19, and L12 (Reprinted with permission from [54]. Copyright [2002], Elsevier Ltd.).

Figure 1.11 (a) Saturation magnetostriction measured at room temperature for Fe-xGa alloys [57] (Reprinted with permission from [57] Copyright [2003], American Institute of Physics); (b) shear elastic constant \((c_{11} - c_{12})/2 \) (circle) and \(c_{44} \) (square) of Fe-xGa (solid symbols) and Fe-xAl (open symbols) [58] (Reprinted with permission from [58]. Copyright [2002], American Institute of Physics).

Figure 1.12 Inverse Fourier transform of the \{010\} reflections of Fe-19at.%Ga by HRTEM, which showing that the D03 nanostructure contains many line defects along the \{100\} [60] (Reprinted with permission from [60]. Copyright [2008], American Physical Society).

Figure 1.13 The orientation relations between bcc-based DO3 (a), fct-based DO22 (b), fcc-based L12 (c), and fcc 1/2DO22 (d) lattice cells, which visually showing a C→T displacive transformation from DO3 to L12 (or DO22).

Figure 2.1 Schematic illustrations of (a) Philips MPD high resolution x-ray diffractometer and (b) single scans and area scans in reciprocal (H0L) zone.

Figure 3.1 Modified phase diagrams of (a) [001] and (b) [110] electric field cooled PMN-xPT crystals. The dotted lines and open square signs were based on prior studies by Noheda et al. [21] (Reprinted with permission from [21]. Copyright [2002], American Physical Society). The bracketed italic R and MC represents the rhomboheral and monoclinic phases of the zero-field-cooled condition. The solid square signs represent the temperature of the dielectric maximum \(T_m \). The solid circle signs represent the temperature of phase transition in FC condition. The C’ phase below the upper dashed curve was determined by a region of abnormal thermal expansion. Solid curves drawn through these data point are only for guide of eyes.

Figure 3.2 (a) HK0 plane in reciprocal space for monoclinic PZN-0.08PT showing the two \(b \) domains at 90°±, shaded and unshaded, in which \(H \) and \(K \) are interchanged with respect to each other [22]. The double circles represent the two \(a \) domains, illustrated in b. (b) Scheme of the reciprocal unit cell of one of the \(b \) domains showing the two \(a \) domains, \(a \) and \(a' \), respectively. (Reprinted with permission from [22]. Copyright [2001], American Physical Society).

Figure 3.3 Domain configurations in reciprocal space as the application of electric field along [001] for (a), (b) and (c); and along [110] for (d), (e) and (f).
Figure 3.4 Mesh scans around the (002) and (200) profiles for PMN-32%PT at 430K, 375K, and 300K under as E=1kV/cm on cooling……………………………………..48

Figure 3.5 Evolution of lattice c-parameters as a function of temperature for PMN-32%PT under E=1kV/cm on cooling……………………………………..49

Figure 3.6 Temperature dependence of (a) the dielectric constants at 1 KHz and (b) lattice constants derived from (002) reflection under different levels of electric fields………………………………………………………………….50

Figure 3.7 Temperature dependence of the lattice parameters under E=0.5kV/cm applied along [001] for (a) PMN-0.24PT and (b) PMN-0.28PT………………..53

Figure 3.8 Temperature dependence of the dielectric constant (1kHz) under various electric fields for (a) PMN-0.24PT, and (b) PMN-0.28PT………………..55

Figure 3.9 Mesh scans taken around (002) and (200) reflections of PMN-0.35PT with E=2kV/cm applied along [001] at 393K and 300K in the FC condition……..57

Figure 3.10 Mesh scans taken around (002), (200), (220), and (220) reflections of PMN-0.35PT with E=2kV/cm applied along [110] at 400K in the FC condition……………………………………………………………………………………………………59

Figure 3.11 Mesh scans taken around (002), (200), (220), and (220) reflections of PMN-0.35PT with E=2kV/cm applied along [110] at 303K in the FC condition………..60

Figure 3.12 Temperature dependence of lattice parameters for PMN-0.35PT with (a) E=1kV/cm applied along [001]; and (b) E=2kV/cm applied along [110]…..62

Figure 3.13 Mesh scans of (002), (200), (220), and (220) of PMN-0.30PT with E=1kV/cm applied along [110] at 375K in FC condition…………………………..64

Figure 3.14 Mesh scans of (002), (200), (220), and (220) of PMN-0.30PT with E=1kV/cm applied along [110] at 343K in FC condition…………………………..65

Figure 3.15 Mesh scans of (002), (200), (220), and (220) of PMN-0.30PT with E=1kV/cm applied along [110] at 298K in FC condition…………………………..66

Figure 3.16 Temperature dependence of (a) lattice constants for PMN-0.30PT with E=1kV/cm along [110], in which the lattice parameters $a_o/\sqrt{2}$, $b_o/\sqrt{2}$, and c_o; and c_m, $a_m/\sqrt{2}$ and $b_m/\sqrt{2}$ are plotted, and (b) dielectric
behavior under various levels of electric field at $f=1$kHz in FC condition.

Figure 3.17 Schematic of tetragonal, orthorhombic and monoclinic M_C phases in PMN-0.30 PT with E along [110]. Arrows indicate the polar vector. Panels (a) are twin domains developed in the tetragonal phase and only two polarizations are constrained within (001) plane; panel (b) shows the single domain developed in the orthorhombic phase; and panel (c) indicates the domains developed in the M_B/M_A phase, in which the polarization vectors are constrained with the (110) plane.

Figure 3.18 (002) mesh scans with increasing fields of (a) 0kV/cm, (b) 2kV/cm, (c) 10kV/cm, and (d) after removal of field in poled condition for PMN-0.30PT.

Figure 3.19 Electric-field dependence of the lattice parameters at 298K beginning from the ZFC condition, where lattice parameters $a_{(220)}/\sqrt{2}$, $b_{(220)}/\sqrt{2}$, and $c_{(002)}$ are plotted. Solid represent data obtained on field-increasing, whereas dotted lines field-decreasing. At E=0kV/cm, $c_{(002)}=a_R$; and once E is applied $a_{(220)}/\sqrt{2}$, $b_{(220)}/\sqrt{2}$ and $c_{(002)}$ correspond to $a_m/\sqrt{2}$, $b_m/\sqrt{2}$, and c_m in the M_B phase, and to $a_o/\sqrt{2}$, $b_o/\sqrt{2}$, and c_o in the O phase, respectively.

Figure 3.20 Mesh scans taken about the pseudocubic (200), (002) and (020) reflections for [111] electric field cooled PMN-0.30PT crystal with E=2kV/cm at 393K, 353K and 323K.

Figure 3.21 Lattice parameters as a function of temperature for a [111] electric field cooled PMN-0.30PT crystal with E=2kV/cm.

Figure 3.22 Electric-field dependence of the lattice parameters for PMN-0.30PT with E//[111] beginning from the ZFC (R) phase taken at (a) 358K, and (b) 313K. These lattice parameters correspond to those of the primitive unit cell.

Figure 3.23 Lattice parameters as a function of temperature for [001] field cooled PMN-xPT crystals: (a) PMN-0.15PT, E=0.5kV/cm; (b) PMN-0.24PT, E=0.5kV/cm; (c) PMN-0.27PT, E=0.5kV/cm; and (d) PMN-0.28PT under E=0.25kV/cm.

Figure 3.24 Mesh scans taken about the pseudocubic (002), (220) and (200) reflections for [001] field cooled PMN-xPT crystals: (a) PMN-0.15PT, E=0.5kV/cm at 270K; (b) PMN-0.35PT, E=2kV/cm at 300K; and (c) PMN-0.38PT, E=3kV/cm at 243K.

Figure 3.25 Lattice parameters as a function of temperature for [110] field cooled
PMN-xPT crystals: (a) PMN-0.15PT, E=0.5kV/cm; (b) PMN-0.22PT, E=2kV/cm; and (c) PMN-0.28PT, E=0.25kV/cm.

Figure 3.26 Mesh scans taken about the pseudocubic (002), (220) and (200) reflections for [110] field cooled PMN-xPT crystals: (a) PMN-0.15PT, E=0.5kV/cm at 253K; (b) PMN-0.35PT, E=2kV/cm at 300K; and (c) PMN-0.38PT, E=3kV/cm at 243K.

Figure 3.27 Polarization vectors of the rhombohedral (R) and monoclinic M\textsubscript{C} (Cm) phases, represented with same monoclinic angle β in the HHL zone of reciprocal space. The R unit cell can be expressed in terms of a monoclinic one by: $a_m=2a\cos(\alpha/2)$, $b_m=2a\sin(\alpha/2)$, $a_m=a_r$, $\cos(\beta)=(1-2\sin^2(\alpha/2))/\cos(\alpha/2)$, where a_r and α are the $R3m$ cell parameters.

Figure 3.28 Lattice parameter as a function of temperature derived from the (002)-reflection of PMN-0.28PT under different electric field levels applied along: (a) $E//[001]$, and (b) $E//[110]$.

Figure 3.29 Electric-field dependence of the lattice parameters for PMN-0.15PT as $E=0.5kV/cm$ along (a) $E//[001]$ and (b) $E//[110]$. Solid represent data obtained on field-increasing, whereas dotted lines field-decreasing.

Figure 4.1 Phase diagram of PMN-xPT crystals in the field cooled (FC) condition under $E_{[001]}=1kV/cm$. The dashed and dotted line represents T_{max} of the dielectric maximum ($f=1kHz$) measured under zero field cooled (ZFC) condition. The solid line identifies T_C of the structural phase transition between cubic and ferroelectric phases. Some of this data was obtained from references [21] (Reprinted with permission from [21]. Copyright [2002], American Physical Society). The open circles represent the temperature at which a thermal abnormal expansion first observed on cooling, which was identified when the lattice constant of the (002) peak began to increase nonlinearity on cooling. The big open circles with errorbars stand for the onset temperature at which zone-center TO phonon recovery began, identified by a minimum in $(h\omega_0)^2$ with temperature. The black thicker line going through those large open circles with errorbars identifies the temperature at which underdamping of the zone-center mode became clearly evident.

Figure 4.2 Panel of typical constant-Q scans taken at (2, 2, 0.15) and (2, 2, 0.2) for PMN-0.32PT under $E_{[001]}=1kV/cm$ at 450K, 390K and 100K. The three temperatures represent that of the cubic (C), tetragonal (T) and monoclinic M_C phases, respectively, as identified in the figure.

Figure 4.3 Temperature dependence of the zone-center TO phonon mode for (a) PMN (zero field); (b) PMN-0.32PT ($E_{[001]}=1kV/cm$); and (c) PMN-0.60PT (zero field): where the results for PMN and PMN-0.60PT were taken along the (200) zone, and that for PMN-0.32PT along (220). The data for PMN and PMN-0.60PT were taken from Stock et al. [66] (Reprinted with permission
from [66]. Copyright [2005], The Physical Society of Japan). The closed symbols represent values obtained by extrapolation for nonzero q to the zone-center. The open circles were obtained from a direct constant-Q scan at the zone center.

Figure 4.4 (a) Dispersion of the TA and TO modes along the (220) zone for PMN-0.32PT at 600K ($E=0$ kV/cm) and 300K ($E_{[001]}=1$ kV/cm). The dotted line in the 600K data represents the fact that the TO mode becomes over-damped, and hence it was hard to observe it in constant-Q scans. (b) Extrapolation of $(\hbar \omega_0)^2$ as a function of q^2 to the zone-center $q=0$, from which the zone-center phonon energy was determined.

Figure 4.5 Temperature dependence of (a) the energy of the TA and TO phonon modes; (b) the line-width Γ of the TA and TO modes; and (c) a blow-up of the line-width of the TA mode. These data were all taken at $(2,2,0.15)$ for PMN-0.32PT under $E_{[001]}=1$ kV/cm.

Figure 4.6 Temperature dependence of (a) the inverse dielectric constant ($1/\varepsilon_r$) at different frequencies under $E_{[001]}=1$ kV/cm; (b) the lattice parameters under $E_{[001]}=1$ kV/cm; and (c) the d-spacing of the (002) under different electric fields for PMN-0.32PT with $E_{//[001]}$.

Figure 5.1 (100), (110) and (200) line scans of Fe-x at% Ga (x=14, 20, 25) measured with x-rays at room temperature after furnace cooling.

Figure 5.2 (220) line scans of Fe-x at% Ga (x=14, 20, 25) measured with x-rays at room temperature after very slow cooling. The curves are fitted to a Gaussian function.

Figure 5.3 Neutron (100) profiles for (100)/(010)/(001) oriented Fe-19at.%Ga (5x5x5mm) in as-grown and slowly cooled states, respectively.

Figure 5.4 (a) (200) line profiles, (b) lattice parameters, and (c) linewidth (FWHM) of Fe-20 at% Ga alloy as a function of temperature on furnace cooling beginning from 800°C. These data were fit to a Gaussian function.

Figure 5.5 (200) and (002) Mesh scans of Fe-x at% Ga alloys measured with neutrons in the (H0L) zone at room temperature.

Figure 5.6 Textures and grain structures of Fe-xGa alloys, (a) optical image of [110] oriented 20 at% Ga, and (b) SEM image of [001] oriented 23at%Ga, annealed at 1100°C (2 hours) and cooled as a rate of 2°C/min.

Figure 5.7 Diffuse scattering contours near the (100) zone that were taken at room temperature for (a) as-grown Fe-19at.%Ga, (b) slow-cooled Fe-19at.%Ga, and (c) as-grown Fe-25at.%Ga.

Figure 5.8 Diffuse scattering profiles around (100) along the radial [100] for the as-grown Fe-x at% Ga (x=10, 15, 19). The inset shows that the diffuse scattering intensity is zero in x=10 after putting the third HOPG filter before
Figure 5.9 Diffuse scattering profile along the radial [100] for the furnace cooled Fe-19at.%Ga.