Post Harvest Treatment Effects on Crown-Cut Broccoli Shelf life

Reddy Yettella Venkata Ramesh

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
in
Food Science and Technology

Approved:

Dr. Joseph E. Marcy, Chairman

Dr. Anthony D. Bratsch
Dr. Robert C. Williams

Blacksburg, Virginia.

Keywords: Broccoli, Shelf life, Shrink wrap packaging, Ascorbic acid, Glucosinolates, Texture, Color

Copyright 2004, Yettella V Ramesh, Reddy
Post Harvest Treatment Effects on Crown-Cut Broccoli Shelf life

Reddy Yettel Venkata Ramesh

ABSTRACT

The effects of packaging treatments, post harvest cooling delay and storage duration on color, texture, ascorbic acid content, weight loss and glucosinolate retention in crown-cut heads of broccoli were studied. Oxygen and CO$_2$ levels inside shrink wrap packages were also monitored. Shrink wrap packaging had a significant positive effect on hue angle ($p \leq 0.05$). Packaging and post harvest cooling delay had no effect on hue difference (ΔH) and total color difference (ΔE). While post harvest cooling delay had no effect on texture, crown-cut heads of broccoli stored in shrink wrap packaging retained firmness significantly better than ice packaged heads of broccoli ($p \leq 0.05$). Ascorbic acid was retained better in broccoli held in shrink wrap packages and cooling delay had a significant negative influence on ascorbic acid content ($p \leq 0.05$). Packaging and post harvest cooling delay had a significant positive effect on weight loss ($p \leq 0.05$). Broccoli stored in shrink wrap film lost about 3.7% of original weight while ice packaging resulted in about 17.4% weight loss ($p \leq 0.05$). No consistent trends were observed in the levels of O$_2$ and CO$_2$ inside shrink wrap packages. An important glucosinolate, glucoraphanin was retained significantly better in shrink wrapped heads ($p \leq 0.05$). Between two cultivars, shelf life of cv.Gypsy was better than cv.Everest with respect to color, ascorbic acid retention and weight loss. But cv.Everest retained texture (firmness) better after 35 days of storage. Overall results indicate that shrink wrap packaging and shorter post harvest cooling delays protect quality of broccoli.
Acknowledgements

There is one person above all others who deserve my deepest thanks and respect; he gave me the opportunity to jump in to food science and readily accepted to advise my research work; he fostered a stress-free working relationship which was crucial to the completion of this work, my advisor Dr. Joe Marcy. I am grateful to him for supportive supervision.

I am thankful to my committee members Dr. Tony Bratsch and Dr. Rob Williams for their support and encouragement.

I want to thank Harriet Williams for the thought provoking conversations we have had and her support and advice throughout my research. I owe a great deal to her. I am thankful for the assistance and advice i received from Dr. Hengjian Wang. I owe a special note of gratitude to John Chandler for assisting me with miscellaneous tasks.

I wish to express my warmest thanks to all my faithful friends.

I acknowledge and return love of my mom; she believed in me all these years no matter what I have chosen to do and my dad for giving me his vision of life and my sense of self.

Finally, I am thankful to the Almighty for his grace.
TABLE OF CONTENTS

TITLE
i
ABSTRACT

ii
ACKNOWLEDGMENTS

iii
TABLE OF CONTENTS

iv
LIST OF TABLES

vi
LIST OF FIGURES

vii

I. INTRODUCTION

1

II. REVIEW OF LITERATURE

A) Modified Atmosphere Packaging

3
 1) Factors affecting modified atmosphere
 4
 2) Methods of creating modified atmosphere conditions
 6
B) Films for packaging fresh produce

7
C) Yellowing in broccoli

7
D) Effects of post harvest cooling delay on post harvest storage

9
E) Ascorbic acid in broccoli

9
F) Glucosinolates in broccoli

10
LIST OF TABLES

Chapter III

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Effects of packaging, post harvest cooling delay and storage duration on percent weight loss in crown-cut broccoli</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>Effects of treatment interactions between crown-cut broccoli varieties and packaging on percent weight loss</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Color difference values of crown-cut broccoli as affected by packaging, post harvest cooling delay and storage duration</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Effects of packaging, post harvest cooling delay and storage duration on Warner-Bratzler texture values of crown-cut broccoli</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>Effects of treatment interactions between crown-cut broccoli varieties and packaging on Warner-Bratzler texture values</td>
<td>33</td>
</tr>
<tr>
<td>6</td>
<td>Effects of treatment interactions between crown-cut broccoli varieties and post harvest cooling delay on Warner-Bratzler texture values</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Effects of packaging, post harvest cooling delay and storage duration on ascorbic acid retention in crown-cut broccoli</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>Effects of packaging, post harvest cooling delay and storage duration on levels of O₂ and CO₂ inside shrink wrap packages of crown-cut broccoli</td>
<td>36</td>
</tr>
<tr>
<td>9</td>
<td>Effects of packaging on individual glucosinolate retention in crown-cut broccoli</td>
<td>37</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Chapter III

1. HPLC profile of resulfoglucosinolates in rapeseed reference material (BCR-190R) Peaks: (1) Progoitrin; (2) Gluconapin; (3) 4-hydroxy glucobrassicin; (4) Glucobrassicanapin; (5) Gluconapoleiferin; (6) Epiprogoitrin.

2. HPLC profile of desulfoglucosinolates in broccoli heads packaged in shrink wrap film. Peaks: (1) Glucoraphanin; (2) Glucobrassicin; (3) Progoitrin; (4) Gluconapin; (5) Gluconapoleiferin

3. HPLC profile of desulfoglucosinolates in broccoli heads stored in ice. Peaks: (1) Glucoraphanin; (2) Glucobrassicin; (3) Progoitrin; (4) Gluconapin; (5) Gluconapoleiferin

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HPLC profile of desulfoglucosinolates in rapeseed reference material (BCR-190R) Peaks: (1) Progoitrin; (2) Gluconapin; (3) 4-hydroxy glucobrassicin; (4) Glucobrassicanapin; (5) Gluconapoleiferin; (6) Epiprogoitrin.</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>HPLC profile of desulfoglucosinolates in broccoli heads packaged in shrink wrap film. Peaks: (1) Glucoraphanin; (2) Glucobrassicin; (3) Progoitrin; (4) Gluconapin; (5) Gluconapoleiferin</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>HPLC profile of desulfoglucosinolates in broccoli heads stored in ice. Peaks: (1) Glucoraphanin; (2) Glucobrassicin; (3) Progoitrin; (4) Gluconapin; (5) Gluconapoleiferin</td>
<td>39</td>
</tr>
</tbody>
</table>