List of Figures

Fig. 1.1 Possible energy absorption scenarios. ...3
Fig. 1.2 Schematic of the semicircular frame test. ..5
Fig. 1.3 Cross-section of the I-section frame showing skin bonded to the outer flange. ...5
Fig. 1.4 Fabrication technique for frame cross-section (Moas et al., 1994).6
Fig. 1.5 Displacement and rotations of the semicircular frame.8
Fig. 1.6 Nominal dimensions of the textile composite J-section frames.9
Fig. 1.7 Textile composites J-section frames displacements and rotations.............9
Fig. 1.8 Unit cell for a 2D braid (Naik, 1994c). ...11
Fig. 1.9 Unit cell model for a plain weave composite (Naik, 1994c).12
Fig. 1.10 Unit cell for a 2x2 2D triaxial braid (Naik, 1994c).12
Fig. 2.1 Analytical results for clamped and hinged boundary conditions..........20
Fig. 2.2 Analytical results for different material properties.........................23
Fig. 2.3 Analytical results of the redesigned, and the original, baseline frames....24
Fig. 2.4 A frame mounted in the test machine. ...26
Fig. 2.5 Force-displacement response of frame 2I-1..27

Fig. 2.6 Circumferential strain distributions on the flanges of frame 2I-1 at the first failure event...27

Fig. 2.7 The first major failure event of frame 2I-1 occurring at the point of load application (θ = 0°)...28

Fig. 2.8 The second major failure event of frame 2I-1 occurring near θ = 45°.29

Fig. 2.9 Frame 2I-1 at the completion of the test. ...30

Fig. 2.10 Force-displacement response of frame 6I-2..30

Fig. 2.11 Circumferential normal strain distribution on the flanges of frame 6I-2 at the first failure event...31

Fig. 2.12 Frame 6I-2 at the completion of the test. ...32

Fig. 2.13 Force-displacement response of frame 5I-2..32

Fig. 2.14 Circumferential normal strain distribution on the flanges of frame 5I-2 at the first failure event...33

Fig. 2.15 Frame 5I-2 at the completion of the test. ...34

Fig. 2.16 Analysis and test results for the response of frame 2I-1............................35

Fig. 2.17 Analysis and test results for the response of frame 5I-2............................35

Fig. 2.18 Analysis and test results for the response of frame 6I-2............................36

Fig. 2.19 Failure analysis for frame 2I-1...37

Fig. 2.20 Identification number of the plies in the cross-section of the PROFAIL model of frame 2I-1...37

Fig. 3.1 Close-up photograph of the braided composite taken from one of the coupons cut from frame A...42
Fig. 3.2 Gage locations on tensile test specimens for the $[0^\circ_{18k}/\pm 64^\circ_{6k}]$ 39.7% axial material...50

Fig. 3.3 Stress-strain curves from specimen 1. ...52

Fig. 3.4 Stress-strain curves from specimen 2. ...52

Fig. 3.5 Stress-strain curves from specimen 3. ...53

Fig. 3.6 Stress-strain curves from specimen 4. ...53

Fig. 3.7 Stress-strain curves from specimen 5. ...54

Fig. 3.8 Photograph of the five, failed tensile test specimens. From top to bottom in the photograph are specimens 1 to 5..57

Fig. 3.9 Three-point loading flexure test (Zweben et al., 1979).59

Fig. 3.10 Stress-strain curve from flexure test 1 (L/D = 18). ...62

Fig. 3.11 Stress-strain curve from flexure test 2 (L/D = 18). ...62

Fig. 3.12 Stress-strain curve from flexure test 3 (L/D = 18). ...63

Fig. 3.13 Stress-strain curve from flexure test 4 (L/D = 47). ...63

Fig. 3.14 Stress-strain curve from tension test 5 (L/D = 47).64

Fig. 3.15 Stress-strain curve from flexure test 6 (L/D = 47).64

Fig. 3.16 Photograph of the edge of a fractured flexure specimen (L/D = 47).66

Fig. 3.17 Failure modes the associated stress-strain curves obtained from graphite/epoxy short beam specimens (Hanna and Steingiser, 1969).................67

Fig. 3.18 Apparent flexural modulus as a function of span-to-thickness ratio (L/D)...70

Fig. 4.1 Dimensional nomenclature for the braided composite, J-section frames. 78

Fig. 4.2 Schematic of the apparatus in the braided frame test.79
Fig. 4.3 Braided composite frame B mounted in the load frame prior to the test...80
Fig. 4.4 The braided composite frame configuration used in PROFAIL.............81
Fig. 4.5 Top view of the machine table-beam setup showing the definition of overhang length L used in the I-beam analysis.................................83
Fig. 4.6 Configuration and load assumed for the analysis of the platen..........84
Fig. 4.7 End block..85
Fig. 4.8 Strain gage lay out on braided composite frame B..........................87
Fig. 4.9 Definition of coordinates in Tables 4.3 and 4.4.................................88
Fig. 4.10 Strain gage lay out on braided composite frame C.......................90
Fig. 5.1 Load-displacement data from the test of braided frame B...............94
Fig. 5.2 Braided composite frame B after first failure event. The crack in the web is located at the apex of the frame...94
Fig. 5.3 Circumferential strain data in the outer flange from the test of frame B...95
Fig. 5.4 Circumferential strain data in the inner flange from the test of frame B...96
Fig. 5.5 Bending strain data from the test of frame B.................................97
Fig. 5.6 Extensional strain data from the test of frame B............................98
Fig. 5.7 Shear strain data in the web from the test of frame B.......................98
Fig. 5.8 Circumferential strains from gages 16 and 17 on the outer flange at $\theta = -1^\circ$ in the test of frame B...99
Fig. 5.9 Circumferential strains from back-to-back gages 11 and 15 on the outer flange at $\theta = -2.5^\circ$ in the test of frame B.................................100
Fig. 5.10 Circumferential strains from gages 24 and 30 on the inner flange at $\theta = 0^\circ$ in the test of frame B...101
Fig. 5.11 Out-of-plane strains from gages 23 and 29 on the inner flange at $\theta = 0^\circ$ in the test of frame B.

Fig. 5.12 Load-deflection curve of braided composite frame C test.

Fig. 5.13 L-shaped crack in the web of braided composite frame C at $\theta = -5^\circ$.

Fig. 5.14 Parallel, circumferential cracks in the outer flange over the junction with the web in frame C.

Fig. 5.15 Circumferential strain distribution in the outer flange of frame C at different load levels.

Fig. 5.16 Circumferential strain distribution in the inner flange of frame C at different low levels.

Fig. 5.17 Circumferential bending strain distribution of braided composite frame C at different load levels.

Fig. 5.18 Circumferential extensional strain distribution of braided composite frame C at different load levels.

Fig. 5.19 Shear strain distribution on the back of the web of frame C at different load levels.

Fig. 5.20 Middle surface shear strain distribution in the cross-section at $\theta = 5^\circ$ of frame C.

Fig. 5.21 Shear strains due to twist in the cross-section at $\theta = 5^\circ$ from frame C.

Fig. 5.22 Out-of-plane displacement at two different locations on frame C.

Fig. 5.23 Twist of the outer flange of frame C at $\theta = -12.5^\circ$.

Fig. 5.24 Load-displacement response from the ABAQUS analysis and from the tests of frames B and C.

Fig. 5.25 Displacement distributions of frame C from ABAQUS at the first failure event.

Fig. 5.26 Distribution of the rotations of frame C from ABAQUS at the first failure event.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 5.27</td>
<td>Circumferential strain distribution at 1500 lb for frame B from ABAQUS</td>
<td>114</td>
</tr>
<tr>
<td>Fig. 5.28</td>
<td>Circumferential strain distribution at 3000 lb for frame B from ABAQUS</td>
<td>115</td>
</tr>
<tr>
<td>Fig. 5.29</td>
<td>Circumferential strain distribution at 4500 lb for frame B from ABAQUS</td>
<td>115</td>
</tr>
<tr>
<td>Fig. 5.30</td>
<td>Circumferential strain distribution at 5791.6 lb (first failure event) for frame B from ABAQUS</td>
<td>116</td>
</tr>
<tr>
<td>Fig. A1.1</td>
<td>Semicircular frame model</td>
<td>130</td>
</tr>
<tr>
<td>Fig. A1.2</td>
<td>Semicircular frame model cross-section A-A</td>
<td>130</td>
</tr>
</tbody>
</table>