Novel Segment Deformable Mirror Based Adaptive Attenuator Used In Wavelength Division Multiplexed Optical Communications Network

Zhengyu Huang

ABSTRACT
In wavelength division multiplexed (WDM) optical communication networks, signals are amplified periodically by optical amplifiers. Since the gain profiles of optical amplifiers are not flat, equalizers are usually used to maintain signal powers at different wavelengths in equal to avoid crosstalk and data loss. However, fixed attenuation can only compensate fixed input power and amplification. In active network, input power and amplifier gain change with time. Active level compensation at each wavelength is needed. An adaptive attenuator is a device with a chromatically variable transmissivity used to equalize channel powers in wavelength-division multiplexing (WDM) fiber-optic communication lines. In this thesis, a method of Fourier analysis of multi-beam interference is developed. It is shown that the total electric field and relative phase delay of each beam form a Fourier transform pair. Thus methods and properties of Fourier analysis are applicable in multi-beam interference analysis and design. Fourier transform based design is presented. Novel devices that apply such design principles are introduced. Principles and structures of novel adaptive attenuators based on various technologies such as segment deformable mirror, liquid crystal, phase modulation array are given. Simulation results for segment deformable mirror based adaptive attenuator are presented.
Acknowledgements

I would like to thank my academic and research advisor Dr. Anbo Wang for his valuable suggestions, information and encouragements. And I would like to express my deepest gratitude to Dr. Anbo Wang. Without his generous and constant support, I could not finish my study program in Center of Photonics Technologies.

I would like to thank Dr. Ahmad Safaai-Jazi and Dr. Ioannis M. Besieris for serving as my committee members.

I would like to thank Dr. Jiangdong Deng and Dr. Ming Han for providing me valuable information and help.

Also, I would like to thank all the people around me in Center of Photonics Technologies for their friendship and help. They made my stay a memorable one.

Finally, I would like to thank my father, Ning Sheng, my mother, Minzhong Han and my girlfriend, Hao Wang for their love and encouragement. I wouldn’t have been in this position if I hadn’t had the support and best wish from my family, especially my parents to whom I owe everything.
Table of Contents

Chapter 1 Introduction .. 1

1.1 Need for Fiber Optic Communications .. 1

1.2 WDM Lightwave Systems ... 3

1.3 Optical Amplifiers ... 6

1.4 Adaptive Equalizer/Attenuator .. 9

1.4.1 MEMS based Adaptive Equalizer ... 10

1.4.2 Optical Delay Line based Adaptive Equalizer 12

1.4.3 Phase-Shifter based Adaptive Equalizer ... 14

1.5 Existing Deformable Mirror Technologies ... 16

1.5.1 Conventional Deformable Mirrors .. 16

1.5.2 Liquid Crystals ... 17

1.5.3 Micromachined Deformable Mirrors ... 18

1.5.3.1 Surface Micromaching... 18

1.5.3.2 Bulk Micromaching... 19

Chapter 2 Fourier Analysis of Multi-Beam Interference 21

2.1 Introduction to Multi-Beam Interference .. 21

2.2 Fourier Transform Analysis of Multi-Beam Interference 22

2.3 Properties of Multi-Beam Interference ... 25

Chapter 3 Principles of Multi-Beam Interference Design.................... 32

Chapter 4 Novel Adaptive Attenuator ... 39

4.1 Liquid Crystal Phase Modulator Array based Adaptive Attenuator 40

4.2 Mach-Zender Interferometer based Adaptive Attenuator 41
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Phase Mask based Adaptive Attenuator</td>
<td>42</td>
</tr>
<tr>
<td>4.4 Phase Modulation Stack based Adaptive Attenuator</td>
<td>43</td>
</tr>
<tr>
<td>Chapter 5 Segment Deformable Mirror based Adaptive Attenuator</td>
<td>46</td>
</tr>
<tr>
<td>5.1 Device Principles and Configuration</td>
<td>46</td>
</tr>
<tr>
<td>5.2 Realization of Real {E(\omega)} and Negative {A(T)}</td>
<td>49</td>
</tr>
<tr>
<td>5.3 Alternative Explanation of Variable Transmisitivity</td>
<td>51</td>
</tr>
<tr>
<td>5.4 Discrete Relative Delay Spectrum Design</td>
<td>52</td>
</tr>
<tr>
<td>5.5 Simulation Results for SDM based Adaptive Attenuator Performance</td>
<td>53</td>
</tr>
<tr>
<td>Chapter 6 Conclusion and Future Work</td>
<td>58</td>
</tr>
<tr>
<td>Reference</td>
<td>59</td>
</tr>
<tr>
<td>Appendix A Matlab Program for Spectrum vs. Bits</td>
<td>62</td>
</tr>
<tr>
<td>Appendix B Matlab Program for Spectrum vs. Phase Range</td>
<td>64</td>
</tr>
<tr>
<td>Appendix C Matlab Program for Spectrum vs. Mirror Number</td>
<td>67</td>
</tr>
<tr>
<td>Appendix D Matlab Program for Gaussian Incident Beam</td>
<td>70</td>
</tr>
<tr>
<td>Vita</td>
<td>73</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Fig 1.1</td>
<td>Increase in bit rate-distance product BL</td>
</tr>
<tr>
<td>Fig 1.2</td>
<td>Progress in lightwave communication technology</td>
</tr>
<tr>
<td>Fig 1.3</td>
<td>Generic optical communication system</td>
</tr>
<tr>
<td>Fig 1.4</td>
<td>Low-loss transmission windows of silica fibers in the wavelength regions near 1.3 and 1.55um</td>
</tr>
<tr>
<td>Fig 1.5</td>
<td>Multichannel point-to-point fiber link</td>
</tr>
<tr>
<td>Fig 1.6</td>
<td>Four possible applications of optical amplifiers in lightwave systems</td>
</tr>
<tr>
<td>Fig 1.7</td>
<td>Amplifier gain versus signal wavelength</td>
</tr>
<tr>
<td>Fig 1.8</td>
<td>MARS micromechanical modulator</td>
</tr>
<tr>
<td>Fig 1.9</td>
<td>MARS variable reflectivity strip mirror</td>
</tr>
<tr>
<td>Fig 1.10</td>
<td>Picture of MARS system</td>
</tr>
<tr>
<td>Fig 1.11</td>
<td>Equalized erbium fiber amplifier ASE</td>
</tr>
<tr>
<td>Fig 1.12</td>
<td>RC layout of 2 stages</td>
</tr>
<tr>
<td>Fig 1.13</td>
<td>Channel equalizer response showing the individual attenuation of 8 channels</td>
</tr>
<tr>
<td>Fig 1.14</td>
<td>Gain flattened filter response</td>
</tr>
<tr>
<td>Fig 1.15</td>
<td>Diagram of the equalizer</td>
</tr>
<tr>
<td>Fig 1.16</td>
<td>Layout of the equalizer</td>
</tr>
<tr>
<td>Fig 1.17</td>
<td>Measured fiber-to-fiber transmissivity of the equalizer versus wavelength</td>
</tr>
<tr>
<td>Fig 1.18</td>
<td>Summary of Existing Deformable Mirror Technology</td>
</tr>
<tr>
<td>Fig 2.1</td>
<td>Reflection and transition of a plane wave in a plane-parallel plate</td>
</tr>
<tr>
<td>Fig</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>2.2</td>
<td>Fourier transform of a time domain signal f(t)</td>
</tr>
<tr>
<td>2.3</td>
<td>Example of ideal mirror reflection</td>
</tr>
<tr>
<td>2.4</td>
<td>Relation between A(T) and I(w)</td>
</tr>
<tr>
<td>2.5</td>
<td>Transmission spectrum of the Fabry-Perot cavity due to different R</td>
</tr>
<tr>
<td>2.6</td>
<td>Relation of bandwidth and reconstructed signal</td>
</tr>
<tr>
<td>2.7</td>
<td>Relation of bandwidth and reconstructed spectrum</td>
</tr>
<tr>
<td>3.1</td>
<td>Reconstruction of optical spectrum</td>
</tr>
<tr>
<td>4.1</td>
<td>Phase-LCD array based adaptive attenuator</td>
</tr>
<tr>
<td>4.2</td>
<td>Mach-Zender interferometer based adaptive attenuator</td>
</tr>
<tr>
<td>4.3</td>
<td>Phase mask based adaptive attenuator</td>
</tr>
<tr>
<td>4.4</td>
<td>Structure of phase mask and shifter</td>
</tr>
<tr>
<td>4.5</td>
<td>Phase modulation stack based adaptive attenuator</td>
</tr>
<tr>
<td>4.6</td>
<td>Unit structure of phase modulation stack</td>
</tr>
<tr>
<td>5.1</td>
<td>Outlook of deformable mirror and actuators</td>
</tr>
<tr>
<td>5.2</td>
<td>Basic unit of deformable mirror</td>
</tr>
<tr>
<td>5.3</td>
<td>Deformable mirror as multi-beam interference device</td>
</tr>
<tr>
<td>5.4</td>
<td>Deformable mirror as phase modulation device</td>
</tr>
<tr>
<td>5.5</td>
<td>Deformable mirror as magnitude modulation device</td>
</tr>
<tr>
<td>5.6</td>
<td>Structure of deformable mirror based adaptive equalizer</td>
</tr>
<tr>
<td>5.7</td>
<td>Symmetrically distributed mirrors</td>
</tr>
<tr>
<td>5.8</td>
<td>Realize of negative A(T)</td>
</tr>
<tr>
<td>5.9</td>
<td>Two-slot interference experiment</td>
</tr>
<tr>
<td>5.10</td>
<td>Time signal and its spectrum</td>
</tr>
<tr>
<td>5.11</td>
<td>Optical spectrum and its relative delay spectrum</td>
</tr>
</tbody>
</table>
Fig 5.12 Simulation results of segment deformable mirror based adaptive attenuator performance ... 56

Fig 5.13 Simulation results of segment deformable mirror based adaptive attenuator performance ... 56