
Deborah Elspeth Young

Dissertation

submitted to the Faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

In

Industrial and Systems Engineering

Maury A. Nussbaum, PhD: Chair
Brian M. Kleiner, PhD
Richard Stratton, PhD
Woodrow W. Winchester III, PhD

August 3, 2007
Blacksburg, Virginia

Keywords: occupational respiratory disease, drywall, silica, construction industry, usability, risk perception, Health Belief Model, dust control

Copyright 2007, Deborah E. Young

Deborah Elspeth Young

ABSTRACT

Drywall finishing operations have been associated with worker exposure to dust that contains known particulate respiratory health hazards, such as silica, talc, and mica. Despite the existence of engineering, work-practice, and personal-protective-equipment (PPE) control technologies for the mitigation of this hazard, worker exposures persist in the drywall finishing industry. This research employed a macroergonomic framework to evaluate this problem and identify barriers to dust control technology adoption in the key subsystems: personnel, technological, and organizational.

In the first study, the organizational subsystem was evaluated through a telephone interview of 264 drywall finishing firm owners. This study found the most commonly used dust control technology was respiratory protection. Cost, usability, environmental factors, and productivity were barriers identified in preventing adoption of other technologies.

In the second study, of the technological subsystem, 16 participants performed simulated drywall finishing tasks with each of four methods, in a laboratory setting. Dust particles were monitored and compared among the technologies used. Participants performed usability evaluations of the
four tools. The ventilated sander produced less respirable-size class dust than did the other three tools. The block sander produced more dust than the other three tools. Usability evaluations revealed that the block sander was easiest to learn, easiest to use, and perceived to be the best overall, while the wet method and pole sander were considered to have poor usability in terms of ease of use and productivity. Usability problems associated with perceived comfort and ease of use were identified for the ventilated sander, but it was tied for “overall best” with the block sander.

The third study, of drywall finishing worker perceptions, employed the Health Belief Model to assess barriers to technology adoption, risk, susceptibility, and benefits. Results showed that workers have a high perception of the risk associated with drywall dust, but a lower perception of individual susceptibility to disease as a result of occupational exposure. Barriers to the use of dust control technologies were identified as being associated with organizational and usability factors. Most participants indicated having access only to respiratory protection, among the available dust control methods.
Table of Contents

ABSTRACT ... ii

Table of Contents .. iv

List of Tables ... v

List of Figures ... vi

Dedication .. viii

Acknowledgements .. ix

Chapter 1. Introduction .. 1

Chapter 2: Use of Dust Control Technologies within the Drywall Finishing Industry ... 34

Chapter 3: Evaluation of Drywall Sanding Technologies ... 60

Chapter 4: Evaluation of Worker Perceptions .. 91

Chapter 5: Macroergonomic Evaluation .. 109

References .. 124

Appendix A: Institutional Review Board Documentation ... 131

Appendix B: Study 1 Survey Instrument .. 135

Appendix C: In-depth Interview Guide .. 137

Appendix D: Usability Evaluation Instrument – Individual Technology .. 138

Appendix E: Usability Evaluation Instrument – Technologies Comparison .. 140

Appendix F: Study 1 Responses to Open-Ended Questions .. 142

Appendix G: Study 3 Content Analysis Code Definitions .. 168

Appendix H: Study 3 Coded User Responses .. 169

Vita .. 182
List of Tables

Table 1: Firm Owner Perception of Risk ... 40
Table 2: Comments Pertaining to Perception of Risk .. 43
Table 3: Percent of firm owner responses to questions 4 through 8: 44
Table 4: Summary Open-ended Responses for Wet Methods 46
Table 5: Summary Open-ended Responses for Respiratory Protection: 47
Table 6: Summary Open-ended Responses for Pole Sanders 47
Table 7: Summary Open-ended Responses for Ventilated Sanders 47
Table 8: Summary Open-ended Responses for Low Dust Compounds 48
Table 9: Firm Responses to the Question: “Other Methods” 49
Table 10: Summary Open-ended Responses for “Other Methods” 49
Table 11: Summary of Findings ... 50
Table 12: Code Definitions for Content Analysis .. 72
Table 13: Mean Usability Rankings by Tool Type .. 77
Table 14: Number of Written Comments for Each Code and Category 81
Table 15: Summary of Findings ... 83
Table 16: Design Guidelines for Powered Ventilated Drywall Sander 88
Table 17: Code Definitions for Content Analysis .. 99
Table 18: Sub-categories resulting from content analysis 99
Table 19: Barriers to Adopting Technologies .. 115
Table 20: Design Guidelines for Powered Ventilated Drywall Sander 121
List of Figures

Figure 1: Subsystems of Drywall Finishing Work System ... 2
Figure 2: Collection Efficiency Thoracic Fraction ... 8
Figure 3: Collection Efficiency Respirable Fraction .. 9
Figure 4: The Health Belief Model (adapted from Rosenstock, 1960) ... 31
Figure 5: Firm owner perception of risk associated with drywall dust .. 41
Figure 6: Firm size effects on perception of risk to worker health .. 42
Figure 7: Mean score frequency of use per technology type ... 44
Figure 8: Percent of firms reporting “always” or “often” on use of tools ... 45
Figure 9: Laboratory enclosure and joint-compound on wall board .. 66
Figure 10: Sanding technologies .. 67
Figure 11: Dual Sampling Trains .. 68
Figure 12: Usability Metrics and Questionnaire Items ... 69
Figure 13: Respirable Dust Concentration by Tool ... 73
Figure 14: Thoracic Dust Concentration by Tool .. 74
Figure 15: Mean score for question #2 .. 75
Figure 16: Mean score for question #3 .. 75
Figure 17: Mean score for question #7 .. 76
Figure 18: Mean score for question #8 .. 76
Figure 19: Ranking scores for “Easiest to Learn” ... 78
Figure 20: Ranking scores for “Overall Best” ... 78
Figure 21: Positive and Negative “Ease of Use” ... 82
Figure 22: Positive and negative “Productivity” comments ...82

Figure 23: Positive and negative “Perceived Comfort” ..82

Figure 24: The Health Belief Model (adapted from Rosenstock, 1960)..............................95

Figure 25: Format of Semi-structured Interview. ..98

Figure 26: Health Belief Model to Describe Drywall Dust Control....................................105

Figure 27: Subsystems of Drywall Finishing Work System...111

Figure 28: Problem Factor Tree ...116

Figure 29: Objectives/Activities Tree (OAT)...117

Figure 30: Input-Output Flow Diagram...118
Dedication

This work is dedicated to those personally impacted by the tragic events of April 16, 2007 on the Virginia Tech campus and to the fortitude evidenced by all of our academic community.
Acknowledgements

This work was made possible through grant funding received from the Johns Hopkins University National Institute for Occupational Safety and Health (NIOSH) Education and Research Center and from the Center for Innovation in Construction Safety and Health in the Industrial and Systems Engineering Department at Virginia Tech. Additionally, my final year of doctoral study was funded by a fellowship grant from the Training Grant Program of NIOSH.

I would like to express my appreciation to the members of my graduate advisory committee for their support and guidance. I am especially appreciative of the consistent mentorship and wisdom I received from my major advisor, Maury Nussbaum. His guidance not only supported my research efforts, but also my growth as an academic professional. Similarly, Brian Kleiner’s career mentorship and guidance throughout my years in ISE have been pivotal in my success. I will be forever grateful of the support these two colleagues have given to my career development.

I would like to give a special note of appreciation to Randy Waldron, departmental research support technician, for his expert skill and diligent support throughout the laboratory phase of this research. Not only did he design and build an exceptionally well-crafted laboratory, but he offered advice and guidance on many logistical aspects of the overall research. Monique Sno and Sarah Goerke worked alongside me during the laboratory experiment phase, as undergraduate student researchers. They lent their organizational abilities to the project and enabled it to run efficiently and smoothly. I would also like to thank all the students and drywall finishers who volunteered to serve as participants.

One of the most wonderful aspects of the graduate program in human factors engineering at Virginia Tech is the collaborative and collegial community of students. These wonderful people have made my graduate experience one of shared growth and accomplishment. It is because of them, that I will always recall my years of doctoral study with great fondness. Specifically, I want to thank Enid Nicole Headen Montague, for her stalwart support, friendship and guidance. In many a stressful moment, she was there with a valuable suggestion, calm listening ear, or supportive companionship. It was an honor to move along this path beside her. Finally, I know I would not have gotten to this point, had it not been for the moral support given by George Probst, when I most needed it.

Lastly, it was the loving support of many friends and family members that made this arduous journey more pleasant. It has been an exciting and growth-filled period of my life and I know I could not have met success, without a loving social support network.
Chapter 1. Introduction

Statement of Problem

Respiratory disease among construction workers in general, and plasterers and wall finishers in particular, is a major public health concern. Workers in these trades suffer from disproportionately high rates of respiratory disease and disability. Drywall finishing operations have been associated with worker over-exposure to dust that contains known particulate respiratory health hazards, such as silica, talc, and mica (NIOSH, 1997). Despite the existence of engineering, work-practice, and personal-protective-equipment (PPE) control technologies for the mitigation of this hazard, worker exposures persist in the construction industry (Carlton et al., 2003).

There are important gaps in the existing knowledge regarding this occupational health problem. Aside from a pilot project conducted by the National Institutes for Occupational Safety and Health (NIOSH, 2000), there has been no thorough evaluation of the effectiveness of the different dust control technologies. Additionally, investigation is needed to identify the causes of substandard controls usage. Once probable causes are identified, intervention strategies can be developed and deployed in order to improve controls usage rates in drywall finishing operations. The following research was conducted to address these gaps.
Summary of Research

Three studies were conducted as distinct parts of a collective project concept that employed a macroergonomic framework to evaluate this problem. The macroergonomic approach defines a work system as one in which two or more people work together in interaction with technology within an organizational context (Kleiner, 2006). This definition identifies three key subsystems of any work system: organizational, technological, and personnel. The organizational subsystem can be further described as having internal and external influences: physical, cultural, legal and political. According to the macroergonomic approach, all subsystems should be included in system analysis, design, and improvement (Hendrick, 2001). In the drywall finishing work system, it can therefore be assumed that organizational, human, and technological factors are important considerations when considering work designs to improve worker health. Therefore, all three subsystems were evaluated for potential barriers to the control of dust in drywall finishing operations (Figure 1).

Figure 1: Subsystems of Drywall Finishing Work System
The organizational subsystem was evaluated in the first project. In this study, drywall finishing management opinion was sought via telephone survey. The technological subsystem was evaluated in the second study. Dust control effectiveness of the four main technologies in current use was compared in a laboratory study. Also in this study, a usability evaluation was performed to identify potential usability problems with the technologies. The worker subsystem was evaluated in the third study, where in-depth interviews of drywall finishing workers were conducted to elicit their attitudes toward dust control technologies and also their perceptions of the risks associated with the dust, the benefits of reducing the dust, and the barriers to using dust control technologies. Main findings of each of these studies were employed as inputs in this macroergonomic system analysis, which employed the Systems Analysis Tool (SAT: Mosard, 1982) to design and evaluate alternatives for potential system improvements.

The research employed a synthesis of techniques and models from several disparate scientific disciplines, including industrial hygiene, public health promotion, and human factors engineering. A three-fold agenda was proposed: description of industry usage trends, evaluation of technology usability and effectiveness, and evaluation of worker health behavior and attitudes as they relate to worker use of the controls technology. The construction work system, in its dynamic, informal, and decentralized nature, presents challenges to the successful completion of field research. Therefore, mixed methods were employed for data collection, consisting of both quantitative and qualitative techniques.
Study 1.
A telephone survey was administered to a target sample of 1,000 drywall-finishing contractor firms listed in the two major trade organizations in that field. This survey was constructed to measure the frequency of use of four primary and contemporary dust control technologies and respiratory protection. For each technology, firms were asked about barriers to implementation.

Study 2
In this study, problems inherent to the technology-user interface were examined. In a laboratory setting, participants performed simulated drywall finishing tasks using each of the four most common methods: plain sanding block, pole sander, wet method, and vacuum sander. Resulting dust concentrations and usability metrics were the outcomes of interest.

Study 3
Drywall finishing worker attitudes toward four technologies were explored through in-depth personal interviews. Attitudes and perceptions toward the technologies were solicited, and emergent themes were explored. The Health Belief Model, a health promotion model used to describe individual perceptions of risk, benefits, and barriers associated with a given health behavior change, served as the framework for understanding workers’ readiness to adopt the control technology. Information obtained in this study can facilitate future development of interventions to improve control implementation.
The long-range goal of this research is to develop an intervention strategy that addresses those aspects of the construction work system that contribute to worker exposure to particulate respiratory hazards. These contributing factors may be any combination of work operations, tool design, health behavior, work culture, and psychosocial and organizational barriers to controls implementation. Therefore, the final chapter of this work describes a macroergonomics system analysis process employed to develop and evaluate intervention alternatives.

Literature Review

Overview

A review of the literature was undertaken and is summarized here to describe the nature of particulate respiratory hazards in general, the importance of size-selective sampling and size classes of importance in this project, the evidence of respiratory disease in construction and in drywall finishing workers, and the theoretical frameworks employed in the present studies of organizational, technological, and personnel aspects of the work system. For the organizational subsystem, the concept of risk perception, and its application to occupational safety and health, is examined. Usability is the theoretical framework employed in the study of the technological subsystem. Its application to evaluation and redesign of hand tools is reviewed. The health promotion model, Health Belief Model (HBM), provides the theoretical underpinning of the study of the personnel subsystem. Its major constructs, and the literature demonstrating their applicability to occupational health, are also reviewed.
Particulate Health Hazards: General

Drywall, or sheetrock or wallboard as it is sometimes called, consists of a non-combustible core, primarily of gypsum, with paper or vinyl covering on the sides and planar surfaces. Drywall installers fit these boards to the wall studs or ceiling joists and secure them with screws. After installation, drywall finishers prepare the surfaces for painting. The joints between the drywall sheets are taped and then pasted over with joint compound, commonly called mud, to fill the joints and any defects and screw holes in the face of the drywall board. Drywall joint compound is applied as a wet paste, which is troweled into the drywall joints. Once the compound has dried, it is firm and has the consistency and texture of chalk. The joint compound is then sanded or finished to create a smooth uniform surface. Drywall finishers typically use dry sanding techniques to create the desired surface. Dry sanding involves rubbing a coarse sand paper over the dried joint compound. Depending on the location of the work, the finishers may use pole-mounted swivel-head pad sanders and occasionally they hand sand surfaces using a sanding block. These work activities can generate substantial amounts of fine airborne particulate matter.

Particles, also known as particulates or particulate matter, are aggregate assemblages of matter in the liquid or solid states that are small enough to remain suspended in a gaseous medium (Vincent, 1999). The size range for particulates is from 10 nanometers to 100 micrometers in aerodynamic diameter. Particles with aerodynamic diameters greater than 100 micrometers have not been thoroughly studied, although recent publications indicate they may have health implications in the nasopharyngeal region (Vincent, 1999). Aerodynamic diameter, the diameter of a sphere of unit density and equivalent mass to the
particle in question, is an important determinant in the regional deposition of particles in the human respiratory tract.

Particles are divided into three size classes, based on their depositional trends: inhalable, thoracic, and respirable. Inhalable particulate matter is the fraction of particles, defined in terms of a probability as a function of particle aerodynamic diameter, which is aspirated through the nose and mouth during breathing. Thoracic particulate matter is that fraction of inhalable particles that, in terms of a probability function, will deposit into the regions of the respiratory tract below the larynx. Respirable particulate matter is that fraction of inhalable particles that, again defined by a probability function, will pass into the alveolar, or gas-exchange, region of the lung. In the laboratory experiment conducted here, size-selective sampling of the drywall dust generated during the sanding task was conducted. Thoracic and respirable size classes were monitored during the simulated drywall sanding task sessions and were compared across tool types used. These size classes were chosen based upon the previously described health symptoms experienced by drywall workers (NIOSH, 1997) and the regions of the respiratory tract most likely impacted by the drywall dust exposure.

The American Conference of Governmental Hygienists defines the classes according to several probability functions (ACGIH, 2005). These functions are based on collection efficiencies of air sampling devices that model aspiration efficiency of the human respiratory system. Each size class is referred to by its median cut point, or the particle size for which there is a 50% probability of capture/inspiration. For example, the thoracic class is said to have a cut point of 10 µm (Figure 2). There is a 50% chance that particles
with an aerodynamic diameter of 10 µm will be inspired into the human head and reach the regions of the respiratory system below the larynx (or captured by the air sampling device that models this respiratory function). This size class of dust particles is of interest in the present research, because exposure to drywall dust has been associated with symptomology of the middle and upper airways.

\[
\text{TPM} (d_{ae}) = \text{IPM} (d_{ae}) \left[1 - F(x) \right]
\]

where:

\[
F(x) = \text{cumulative probability function of the standardized normal variable, } x
\]

\[
X = \ln(d_{ae}/\delta) / \ln(\Gamma)
\]

\[
\ln = \text{natural logarithm}
\]

\[
\delta = 11.64 \text{ :m}
\]

\[
\Gamma = 1.5
\]

\[
d_{ae} = \text{aerodynamic diameter (median cut points listed in bold)}
\]

<table>
<thead>
<tr>
<th>Particle Aerodynamic Diameter (:m)</th>
<th>Thoracic Particulate Mass (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>94</td>
</tr>
<tr>
<td>4</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>80.5</td>
</tr>
<tr>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>9.5</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>25</td>
<td>2</td>
</tr>
</tbody>
</table>

Figure 2: Collection Efficiency Thoracic Fraction

The respirable class (Figure 3) has a cut point of 4.0 :m, meaning that there is a 50% chance that particles of this size will be inspired and will reach the alveolar region of the lung. This size class of dust particles is of interest in the present research because exposure to drywall dust has been implicated in the development of pneumoconioses and other lung diseases.
\[
\text{RPM} (d_{ae}) = \text{IPM} (d_{ae}) \left[1 - F(x) \right]
\]

where:

\[F(x) = \text{cumulative probability function of the standardized normal variable, } x \]

\[X = \ln\left(\frac{d_{ae}}{\varnothing}\right) / \ln(\Gamma) \]

\[\ln = \text{natural logarithm} \]

\[\varnothing = 4.25 \, \text{\(\mu\)m} \]

\[\Gamma = 1.5 \]

\[d_{ae} = \text{aerodynamic diameter} \]

<table>
<thead>
<tr>
<th>Particle Aerodynamic Diameter ((\mu)m)</th>
<th>Respirable Particulate Mass (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>74</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
</tr>
</tbody>
</table>

(median cut points in bold)

Figure 3: Collection Efficiency Respirable Fraction

During inspiration, air enters the human respiratory tract via the nares (nostrils) and flows posteriorly toward the nasopharynx through nasal hairs and circuitous passages known as the turbinates. Some particles entering the respiratory tract are intercepted in this region due to electrostatic forces between the particles and hairs or due to impaction of the particles on mucous-lined surfaces due to inertial forces, or sedimentation due to gravitational force. From the nasopharynx, air moves into the tracheobronchial tree, a system of continuously branching airways of decreasing diameter. Some particles that deposit in the nasopharyngeal region exert deleterious effects on these tissues and are associated with inflammatory and malignant disease processes.

The fate of inspired particles depends upon deposition and solubility. Particle deposition is dependent on flow rate, particle diameter, particle concentration, and air flow patterns in respiratory tract. The three principal mechanisms of deposition are inertial impaction,
gravitational sedimentation, and radial diffusion. Deposition of particles larger than 10 micrometers will occur in the nasopharyngeal regions via impaction. Thoracic particles, less than 10 micrometers, will reach regions beyond the larynx, and will deposit on the mucociliary elevator for removal. Respirable particles, less than 4 micrometers in diameter, will reach the alveolar regions for deposition. Fine particles, from 0.1 to 2.5 micrometers, will remain entrained in the air stream and fail to deposit in the respiratory tract. Ultrafine particles, less than 0.1 micrometers, have been demonstrated to deposit via diffusion throughout the respiratory tract (Feron et al., 2001).

Respiratory Disease in the Construction Industry

Construction work is associated with an increased prevalence of diseases of all regions of the human respiratory system. Several recent large-scale epidemiologic studies have found associations between construction work and the morbidity and mortality of respiratory disease, and are summarized here.

In a study of proportionate mortality patterns for male construction workers in North Carolina, Wang et al. (1999) employed proportionate mortality ratios (PMRs) and proportionate cancer mortality ratios (PCMRs) to compare the number of deaths among male construction workers with those of the entire state population in the period spanning 1988-1994. The data set for this study included death certificate information from 21,617 European-American, 7,483 African-American, and 454 Other-ethnicity male construction workers. The proportionate mortality ratio (PMR) compares an observed number of deaths
from a specific cause to a total number of deaths in the same time period in a referent population:

\[
PMR = \frac{\text{(number of deaths from specific cause in specified time period)}}{\text{(total number of deaths during specified time period)}} \times 100
\]

In this study, the number of observed deaths by cause in the study population of construction workers was compared with the number of deaths expected, based on the gender, race, and cause-specific mortality experience of the entire North Carolina population by five-year age groups for the same years of study.

Among construction workers overall, elevated mortality was observed for malignant neoplasm of the buccal cavity, pharynx, and lung. Also significant was mortality related to pneumoconiosis. When examining the data by construction trade, Wang et al. (1999) found a significant cancer risk for painters, plasterers, paperhangers, and drywall workers. This group had significantly elevated PMR’s for malignant neoplasm of the pharynx (PMR = 178), of the trachea and bronchus (PMR = 118), and pneumoconiosis/other respiratory disease (PMR = 152). Specifically, drywall finishers and laborers were found to have a statistically elevated risk of death from cancer of the pharynx (PMR = 133) and lung (PMR = 110), and respiratory tuberculosis (PMR = 675). Since occupational exposure to inorganic dusts, most notably crystalline silica, has been associated with increased incidence of respiratory tuberculosis, there exists a possible explanation to the link between occupational dust exposure and this last finding.

In a 2001 epidemiologic study specific to the plastering trade, PMRs and PCMRs were calculated, using United States death rate information, for all 99 causes of death listed for
the 12,873 members of the Operative Plasterers’ and Cement Masons’ International Association who died between 1972 and 1996 (Stern et al., 2001). Members of the plasterer subgroup of this trade union perform a variety of tasks, including interior and exterior plastering of drywall, cement, stucco, and stone imitation; preparation, installation, and repair of all insulation systems; and the fireproofing of steel beams and columns. Some of the potential occupational health hazards to which this group was exposed included calcite, gypsum, mica, talc, silica, fiberglass, and asbestos. Among plasterers, significant elevated mortality was observed for lung cancer and for benign neoplasm.

Workers in the construction industry were found to possess an increased risk of pharyngeal and laryngeal neoplasms in a case-control study (Maier et al., 1999). It suggests that male construction workers are at an extremely high risk for head and neck cancer. The study also suggests a synergy between inorganic dust exposure and tobacco and alcohol usage patterns on the part of the workers.

Rothenbacher et al. (1997) examined chronic respiratory morbidity among construction workers in the German construction industry. The subjects were males between the ages of 40 and 64, who were examined by the occupational health service between August 1986 and December 1988. Prevalence of respiratory disorders, as determined by chest examination, spirometry, and diagnosis of respiratory disease, was assessed in the target population and compared with the prevalence of the same indicators in a population of men not employed in the construction trades. A prospective component of this study evaluated the prognostic value of these health indicators in predicting future impairment or disability. The same participants were evaluated in 1992-1994 to determine work and life status. A
non-statistically significant trend was seen toward higher prevalence of respiratory health indicators in the construction-trade workers. However, the more important finding of this study was that there was a higher rate of disability and morbidity among the construction workers in the active follow-up phase of the study. These findings correlated with signs of chronic obstructive pulmonary disease (COPD) during the chest examination of the first phase of the project. Painters and plasterers were found to have a higher prevalence of these signs upon exam, although smoking behavior was a confounding element of this study.

In a study employing Standardized Mortality Ratios (SMR) to evaluate mortality risk for construction workers from various causes, it was found that these workers have a higher risk of dying from non-transport accident and from pneumoconiosis, but not from other factors (Arndt et al., 2004). Pneumoconiosis, a lung disease resulting from exposure to inorganic particulates, was the greatest risk factor identified in this large epidemiologic study of 19,943 male German construction workers.

Another recent epidemiologic study demonstrates a link between occupation and chronic obstructive pulmonary disease (Hnizdo et al., 2002). Since COPD is the fourth leading cause of death among persons over the age of 45 in the United States and since the contribution of occupational exposures to the risk of COPD had not been quantified, these authors evaluated data from the Third National Health and Nutrition Examination Survey, conducted in the United States from 1988 to 1994, to calculate the prevalence and prevalence odds ratios for the association between chronic obstructive pulmonary disease (COPD) and occupation. Of the 9,823 subjects aged 30-75 for whom lung function tests
were valid, 7.1% were identified as having COPD. The overall analysis identified 14 industries with increased adjusted odds ratios for COPD. Odds ratios were increased for the construction trades (3.5 for never-smoked population). In the list of 14 industries, construction was ranked third, behind Utilities (27.7) and the Armed Forces (4.4). The study found that the fraction of COPD attributable to work was 19.2% overall and 31.1% among those who have never smoked tobacco products.

In a retrospective cross-sectional study of Finnish construction painters, a dose-response relationship was found between painting years and chronic bronchitis, prolonged rhinitis, and irritative eye symptoms, as compared with a carefully matched control group (Kaukiainen et al., 2005). Painters with more than 30 years of experience had odds ratios (OR) of 2.2, 2.0, and 1.8, respectively, for the symptoms. Asthma, cough, and wheezing, however were common in painters regardless of tenure in occupation, when compared to the control group. ORs were 3.1, 2.5, and 2.7 for these respiratory symptoms. Chronic bronchitis was significantly more prevalent in the painter population. The painters reported exposure to considerable levels of dust, in addition to the chemicals in paints and solvents. The authors discuss that dust from “putty and filler” was a significant risk factor for these workers. Putty and filler would be chemically similar to the drywall joint compounds under study in the proposed research.

Historically, the scientific community has focused attention on construction-related diseases of the lung and small airways, as in the cases of fibrogenic and carcinogenic mineral dusts. The bulk of the work on the occupational relatedness of upper airway disease has been in the agricultural and other organic-dust exposed work populations.
However, recent attention has been directed at possible connections between construction work and disease of the upper airways. Construction work involving high exposures to mineral dusts was associated with an elevated risk of asthma in a retrospective cohort study in Finland (Sauni et al., 2003). These authors suggested that irritant mineral dusts are the etiologic agents in the reactive airway symptoms and suggest further investigation to identify specific agents.

Arif et al. (2003) found an association between asthma and construction work in a review of the data from the Third National Health and Nutrition Examination Survey 1988-1994. In this study, the prevalence of work related asthma and work related wheezing in United States workers was estimated and high-risk industries were targeted for future research and intervention. The authors found a prevalence of work related asthma of 3.70% and of work related wheezing of 11.46%. There were eight industries identified as having high risk for occupational asthma and wheezing and construction work was one asthma-risk occupation targeted by these authors as requiring additional investigation.

A study of occupational exacerbation of asthma symptoms was conducted on adult asthma patients who had been enrolled in an Health Management Organization (Henneberger et al., 2002). Approximately 25% of the 1,461 participants responded positively to the questionnaire statement, “Does your current work environment make your asthma worse?” Percentages with workplace exacerbation of asthma were highest for mining and construction (36%), wholesale and retail trade (33%), and public administration (33%).
In a study of how asthma symptoms impact worker ability to perform construction work, it was found that construction workers had a higher rate of job change due to work conditions, than did the control group (Sauni et al., 2001). This study found that construction worker quality of work life was greatly diminished by the exacerbation of asthma symptoms by the working conditions. The main asthma-inducing work conditions identified were the presence of dust, cold air, and physical exertion. Building renovation and insulation installation were two of the work tasks that were most problematic for the asthmatic. Drywall dust was implicated as an agent of concern.

A recent prevalence analysis was performed on 20,991 adults to estimate the United States prevalence of asthma in adults by industry of employment and to identify industries with elevated risk of asthma (Bang et al., 2005). The authors used National Health Interview survey data to calculate odds ratios for asthma and industry adjusted for age, sex, race, and smoking status. Among European-Americans, the ORs were significantly elevated for printing, publishing, and allied industries and health care. Among African-Americans, the ORs were elevated for furniture, lumber, and wood and entertainment industries. Other industries with elevated ORs were construction, gasoline retail, eating and drinking places, and sanitary services.

Kaukianen et al (2005) found that construction painters experience a high prevalence of symptoms of upper-airway disease and that this prevalence was significantly higher than that of other construction-related trades workers. These authors indicated that exposure to drywall compound dust may be a significant contributing factor in this trend.
Occupational Exposure to Dust in the Construction Industry

In the most exhaustive industrial hygiene assessment to date of construction worker chemical exposures, Verma et al. (2003) found that airborne particulate matter was the most prevalent hazard class. In this study of 1,265 task-based assessments, the authors found that dust affects not only the workers involved in direct exposure-causing tasks, but also those performing ancillary activities. While this study evaluated exposures in many branches of the construction industry, residential construction tasks evaluated included framing, bricklaying, excavating, foundation building, interior carpentry, insulating, drywalling, painting, and plumbing. Residential construction tasks found to be associated with high dust generation were drywall and concrete operations. The authors note that, while it was beyond the scope of their study to measure it, wood dust appeared to be a major exposure factor in residential construction activities and they suggest future exploration. The highest particulate levels were observed during abrasive blasting, concrete grinding, cutting, chipping and concrete mixing activities. High total dusts levels were also recorded during cleanup and demolition.

A study of exposure to silica dust in the United States construction industry found that “silica exposures are grossly unacceptable in the US construction industry” (Rappaport et al., 2003). Personal sampling was performed for workers in the following trades: bricklayers, painters, and laborers. Mixed models were fitted to the log-transformed air levels to estimate the means and variance components of the distributions in each trade. Probabilities of over-exposure were estimated to be between 64.5 and 100% for silica and between 8.2 and 89.2% for other dust. The authors stated that engineering and administrative controls are needed to reduce worker exposures. The study also found that
silica exposures were significantly reduced by wet methods of dust suppression (300% reduction in concentrations) and ventilated enclosures (600% reduction in exposure concentration). The authors concluded that urgent action is needed to address silica over-exposure in the construction industry.

Drywall Finishing Operations and Dust Exposure

The National Institute for Occupational Safety and Health (NIOSH) conducted an evaluation of worker exposure to drywall dust and potential health effects associated with drywall finishing work during renovation activities (NIOSH, 1997). In this study of 10 workers performing drywall-sanding tasks, the main constituents of drywall joint compound, worker respiratory symptoms, and dust exposure levels were evaluated.

The construction renovation task of drywall installation was the work process of interest in this NIOSH evaluation. Personal breathing zone sampling was used to characterize exposures to total and respirable particulates. Each of the 10 workers wore two sampling devices – one for respirable and one for total dust. Respirable particulates were collected using a tared 37 mm, 5-micrometer pore PVC membrane filter in a closed-face cassette, mounted in a 10 mm nylon Dorr-Oliver cyclone and attached to a Gillian personal sampling pump. Total particulates were collected using a tared 37 mm, 5-micrometer pore PVC filter mounted in a closed-face cassette. The sampling rate for respirable particulates was 1.7 liters per minute and for total was 2 liters per minute. Cassettes were positioned in the worker breathing zone. Samples were analyzed gravimetrically for total weight according to NIOSH Method 0600. Respirable dust samples were also analyzed for the
presence of crystalline silica (quartz and cristobalite) using x-ray diffraction analysis, according to NIOSH Method 7500.

Joint compound constituents were identified through collection of bulk samples from six different products purchased from a retail store. The product names are not identified in the NIOSH HEE report. Bulk samples were analyzed by x-ray diffraction and polarized light microscopy. The former permits analysis of silica and the latter permits a quantitative analysis of silicates. The joint compound constituents were identified as calcite, quartz (silica), talc, mica, gypsum, clays (attapulgite and kaolinite), and perlite. Calcite (calcium carbonate) was the primary constituent and was found in all joint compound samples, regardless of product manufacturer. Other constituents varied according to product source.

Quartz (crystalline silica) has well documented effects on the human respiratory system and has been associated with silicosis, a fibrotic disease of the lung (Merchant, 1986), and malignant neoplasm of the lung. The International Agency for Research on Cancer (IARC) has classified quartz as a “group I human carcinogen”: a classification indicating that sufficient evidence of causality exists in the scientific literature.

Calcite is a form of calcium carbonate (CaCO$_3$) that is found in limestone, chalk, and marble. Calcite is selected for investigation in this study based on the fact that it is the primary constituent of joint compound and because it has been implicated in airway obstruction in a recent study (Bohadana et al., 1996). This study found significant across-shift declines in all parameters associated with airway obstruction in chalk powder manufacturing workers. Chalk powder (calcium carbonate, or calcite) exposure levels
correlated with airway function decrement. Although the American Conference of Governmental Hygienists (ACGIH) reports in its Documentation of Threshold Limit Values (2005) that no adverse health effects have been reported in the literature for calcite, all previous studies had examined its role in the causation of pneumoconioses. While there is no evidence to link calcite to the formation of constrictive respiratory diseases such as pneumoconioses, the Bohadana et al. (1996) study implicates it in the etiology of obstructive disease patterns.

The term mica refers to a family of minerals of similar chemical composition and physical properties. These are potassium aluminum silicates with variable amounts of iron and magnesium. Historically, mica was used as a thermal window in stoves and oil lamps and in early electrical appliances. Mica has been associated with pneumoconiosis (Gibbs et al., 1992).

The 1997 NIOSH HHE found that respiratory symptoms were common among drywall finishers and tended to improve when workers were away from the workplace. Workers were overexposed to total dust, respirable-fraction dust, and crystalline silica. Phlegm production (63%), morning or day cough (50%), and shortness of breath (50%) were the most common. Irritated eyes (38%) and stuffy nose (25%) were reported by smaller percentages of the workers, however all who reported these symptoms also reported their resolution when away from the work setting. The upper respiratory tract symptoms associated with the “stuffy nose” symptom category is similar to reversible upper respiratory tract symptoms reported by Bohadana et al. (1996) in association with excessive calcite exposures.
In the NIOSH HHE, exposure levels to total and respirable dust were determined by full-shift breathing zone sampling. Concentrations were compared to the Occupational Safety and Health Administration (OSHA) permissible exposure limits (PEL) of 15 mg/m\(^3\) for total dust and 5 mg/m\(^3\) for the respirable fraction of the dust. NIOSH found that 8 of 9 total dust samples exceeded the PEL and 2 of 13 exceeded the respirable PEL. Respirable silica (quartz) was detected in 17 of the 22 samples analyzed, albeit in trace amounts. That is, the levels of silica fell between the limit of detection and limit of quantitation for all but two samples. Two samples were found to contain silica concentrations above the limit of detection and the concentrations were reported as 0.04 mg/m\(^3\) and 0.08 mg/m\(^3\) as quartz. These values exceeded the NIOSH recommended exposure limit (REL) of 0.05 mg/m\(^3\). Together, the findings of the NIOSH HHE (1997) and the Bohadana study (1996) point to the need for additional research to evaluate worker exposure to drywall dust and attendant respiratory symptomatology.

Control Technologies for Drywall Dust

To control occupational health hazards, there are three categories of controls: engineering, administrative, and personal protective equipment. It is considered best practice to select controls according to the hierarchy published by the American Conference of Governmental Industrial Hygienists (2005). Engineering controls are preferred because they eliminate or reduce the hazard and do not burden the worker. Administrative controls can be considered as a second tier option, if engineering controls are infeasible. Personal protective equipment is the least preferred, because of the burden it places on the worker.
Engineering and personal protective equipment technologies exist for the control of worker exposure to dust from construction drywall finishing operations. These controls are primarily vacuum sanding, wet sanding, pole sanding, and respiratory protection. Vacuum sanding technology involves a vacuum system attached to the sanding surface. Dust is collected at the point of generation and pulled into a collection basin. Wet sanding is accomplished in one of two methods. In one method, the drywall compound is allowed to cure and then re-wetted. Re-wetting is accomplished either by misting or wiping a damp sponge or cloth over the surface. A second method involves a combination of wet sponge and sand block. In pole sanding, the sanding surface is attached to the end of a pole and the worker holds the other end while performing the operation. This reduces worker exposure to the dust by removing the worker from the point of dust generation.

Respiratory protection is a type of personal protective equipment that is worn by the worker. Particles are intercepted on the equipment’s filters before entering the worker’s respiratory system. There are three general types of air-purifying respiratory protective equipment, varying in levels of effectiveness and cost. The NIOSH-approved mask is a polymer fabric filtering face-piece. A second class of respiratory protection, the negative pressure mask, is a polymer mask with replaceable filtering cartridges. The third class, positive pressure respirator, is the most protective and the most expensive. It is a battery-powered unit that provides full-face coverage and replaceable filtering cartridges.

Respiratory protection is not the preferred method of controlling worker exposure to inhalation hazards, because it places an additional burden on the worker and requires medical clearance, fitting, and training. Engineering or work practice controls are
preferred, for these reasons. A NIOSH Hazard Control Study (NIOSH, 2000) found that vacuum sanding systems reduce drywall dust levels by 80 to 97 percent. Also, pole-sanding systems were found to reduce worker exposure levels by removing the sanding task from the worker breathing-zone. Work practice controls, such as wet-sanding, were effective in reducing dust levels. Respiratory protective devices, if fitted and worn properly, did reduce worker exposure to dust up to 99.99%. Despite the efficacy of these technologies, implementation by residential construction firms is not widespread. A review of the literature found no studies quantifying the implementation rates of control technologies among drywall finishing construction firms.

Perception of Risk

The present investigation of the organizational subsystem explored firm owner perception of risk associated with the drywall dust, because this construct has been found to have an impact on management decision to implement safety controls (Diaz and Resnick, 2000). Additionally, in the study of worker perceptions within a Health Belief Model framework, perceptions of the risk to individual health and susceptibility to disease were explored. Here, the chosen theoretical approach to risk perception is discussed, along with its application to the study of an occupational health problem.

The field of risk perception research is multidisciplinary, arising from diverse academic disciplines, such as psychology, decision theory, economics, anthropology, geography, and sociology and, therefore, is marked by considerable variability in its theoretical and methodological approaches. Psychological
studies, which initially defined the field, beginning with Starr’s article on social benefits and technological risk (Starr, 1969), have addressed the cognitive and attitudinal processes through which risks are interpreted and represented at the individual level, the evolution of opinion regarding degree of risk, and the factors that influence the acceptability of particular risks (Pidgeon and Beatie, 1998).

More recent history has seen the emergence of additional perspectives on the study of risk and human perceptions of risk. A trend in socio-cultural approaches to the study of risk perception has arisen from the fields of anthropology, sociology, and geography, where they interface with the field of risk perception. This socio-cultural approach incorporates into an understanding of risk perception the context of a range of social, cultural and political factors that frame the individual or societal understanding of risk. The socio-cultural movement in risk perception research can be said to have found its genesis in the landmark report issued by the Royal Society Study Group on Risk Analysis, Perception, and Management (Pidgeon, 1992). The years following the Royal Society report have seen a proliferation of research on such topics as geographical situation, demographic characteristics, agency and power, and trust and communication as they relate to perception of risk. Most recently, integration of the psychological and the socio-cultural perspectives has facilitated a more holistic view of the subject. These different frameworks have influenced definitions and measurement of risk perception. Recent research has approached the problem from a broader
perspective, incorporating elements of the psychological framework, but also of more sociological and anthropological traditions: examining the range of social factors, such as: values, gender, race, emotions, trust, and stigma in the shaping of perceptions of risk (Finucane et al, 2000).

Since the publication of the influential Pidgeon report, the field has experienced growth in new realms. First, there has been an increasing emphasis and consolidation of research from a socio-cultural perspective. Also, the wider acknowledgement that perception is inherently related to broader social factors and processes, alongside the accumulated empirical evidence from the psychological studies, have supported the view that a purely psychological individual-based analysis of public attitudes can account for only a part of the perception of risk. The traditional approach that conceptualized the lay-public as a homogeneous risk-perceiving entity is no longer supported by most researchers in the field. Current conceptualization is of a lay public composed of various, diverse sectors and sub-groups, each with a unique set of attitudes and values that are relevant to risk perception and decision making (Pidgeon and Beattie, 1998).

In summary, the socio-cultural approach to risk perception research encompasses both the more traditional psychological perspectives and the broader contextual framework of social and cultural factors that impact risk perception, such as demographic parameters, power, agency, and trust in authority. In this new tradition, research does not focus on the individual as a stand-alone entity of a homogeneous society, but rather focuses on the
individual as a member of a societal sub-culture with inherent values and beliefs that impact perception of risk.

Relevance to Occupational Health

The most appropriate theoretical and methodological framework for the study of perception of occupational health hazard risks would be the socio-cultural tradition. The study of occupational perceptions must be performed with consideration for the various social contexts associated with the organization. The work system is a culture with values and belief structures that impact worker and manager perceptions. The personnel in that system also belong to social and cultural sub-groups of the larger population, and these influences must be taken into account. Aspects of socio-cultural theoretical framework are particularly apt in studies in an occupational context. Power distance, personal agency, trust in authority, and demographics are all key factors in how workers will respond to risk information received in the context of the work system.

Risk perception is likely important in many aspects of the occupational health field: from the study of supervisory/management decision making regarding the implementation of control strategies or compliance initiatives, to the adoption by workers of personal protective equipment, to the adoption by workers of lifestyle factors that create additive or synergistic levels of health risk. An analysis of the perception of risk on the part of workers and managers could conceivably contribute to the development of intervention strategies to improve compliance and health outcomes.
Risk perception has been examined in its association with occupational health exposures. In a study of amosite abatement worker exposure to asbestos fibers, risk perception was assessed via traditional questionnaire methods (Stewart-Taylor & Cherrie, 1998). Associations between risk perception and asbestos-fiber-minimization-behaviors were evaluated. The authors found a clear association between risk perception and adoption of safe behaviors. More qualitative methods were employed in a study of risk perception and pesticide safety behaviors (Perry et al., 1999). In a study that employed socio-cultural frameworks and methodologies more fully, Hispanic adolescent farm worker perceptions of pesticide risk were explored (Salazar et al., 2004). In this project, migrant farm worker youth involved in agriculture work were assessed for attitudes toward farm work, influence of bosses, and knowledge of hazards. Additionally, the researchers assessed the microenvironment, organizational environment, and social/community environment. Qualitative methods: focus groups and observation; were employed. Cultural influences on occupational health were discussed.

Since this present research was an evaluation of multiple work system facets with the intent of identifying barriers to the adoption of health-promoting behaviors, a socio-cultural approach to the perception of risk was deemed most appropriate. In order to obtain an understanding of this construct within the organizational context, the perception of the risks to health associated with drywall dust were explored from both the management and worker perspectives. Additionally, knowledge of hazards, organizational factors, and social factors were explored in the study of workers beliefs. Both qualitative and quantitative methods were employed in the research, to allow for a more comprehensive exploration of themes.
Usability

To evaluate the technological subsystem and its impact on the decision to use dust controls, a usability evaluation of the available technology types was performed. Usability is the degree to which the design of a device or system may be used effectively and efficiently by a human (Charlton, 2002). Usability is the sub-field of human factors engineering that evaluates a technology to assess the degree to which the design may be used effectively and efficiently by a human (Charlton, 2002). Usability is defined as a composite of several attributes: learnability, efficiency, memorability, error rate, and satisfaction (Hix, 1993). A summative usability evaluation was performed in order to identify any tool-related factors that might prevent adoption and regular use by end-users. Since the sanding technologies being evaluated in this study are hand tools, usability metrics previously designed to evaluate hand tools were employed. Miller (2001) published a paper entitled “Development of a Methodology and Hardware To Conduct Usability Evaluations of Hand Tools”, which contained guidelines for conducting usability evaluations of hand tools. In that document, metrics recommended for evaluating hand tool usability are: ease of use, force required, comfort levels, likelihood to drop parts, and physical characteristics of the hand tools. In another study that defined relevant usability metrics for the evaluation of hand tools, Johnson (1999) described the usefulness of subjective usability evaluations of hand tools for comfort, productivity, and ease of use. In a directly relevant study of the usability of orbital sanders, a user-reaction survey evaluated the metrics hand/arm discomfort, force required, productivity, and comfort (Spielholtz, 2001). The Spielholtz (2001) study also contained an instrument that had users rank-order the different sanders. Therefore, in the current research, a survey of user reactions was
used to evaluate the following aspects of usability: ease of learning, ease of use, perceived productivity and comfort.

Health Behavior

The field of health promotion, a sub-discipline of public health, is concerned with patterns of volitional behaviors that impact overall health. Overriding goals of health promotion include the primary and secondary prevention of disease and health-compromising conditions. A central concern of health promotion is health behavior. In the broadest sense, health behavior refers to the actions of individuals, groups, and organizations, as well as their determinants, correlates, and consequences. This definition would encompass, in addition to improved individual health, such outcomes as social change, policy development, improved coping skills and enhanced quality of life (Parkerson et al., 1993). A more individually-based working definition of health behavior was proposed by Gochman (1997) as: “personal attributes, beliefs, expectations, motives, values, perceptions, cognitive elements, personality, affective states, and overt behavior patterns that relate to health maintenance, health restoration, and to health improvement”. Kasl and Cobb (1966) defined three categories of health behavior in their seminal work:

Preventive health behavior:

Any activity undertaken by an individual who believes himself [sic] to be healthy, for the purpose of preventing or detecting illness in an asymptomatic state;

Illness behavior:
Any activity undertaken by an individual who perceives himself [sic] to be ill, to define the state of health, and to discover a suitable remedy;

Sick-role behavior:

Any activity undertaken by an individual who considers himself [sic] to be ill, for the purpose of getting well. It includes receiving treatment from medical providers, generally involves a whole range of dependent behaviors, and leads to some degree of exemption from one’s usual responsibilities (Kasl, 1966).

Following the Kasl and Cobb (1997) definition structure, the present research evaluated drywall worker preventive health behavior: the use or non-use of technology to reduce exposure to potentially harmful dust. According to Gochman’s (2000) definition, the proposed work will evaluate those attributes that contribute to health maintenance behaviors.

Several theoretical frameworks have been developed to describe the diverse behavioral processes related to volitional health behavior: the decision to engage in health-risk, health-compromising, or health-protective behaviors. Also important is an understanding of the various individual, familial, social and cultural factors that influence the adoption and maintenance of health-compromising or health-protective behavior. These models have been applied to personal health behaviors, such as condom use, smoking cessation, dietary changes, and adoption of exercise regimens. A review of the literature reveals few instances of application of health promotion models to occupational health problems.
The proposed research aims to apply a health promotion theoretical framework to evaluate the health behavior of drywall finishing workers. The findings of this analysis can be fed forward into future research endeavors aimed at the development of interventions to influence the health-protective behavior rates among these workers.

The Health Belief Model

For five decades, the Health Belief Model (HBM) has been one of the most widely used conceptual frameworks in health behavior. The HBM has been used to explain both adoption (compliance) and maintenance (adherence) of behavior change. It has been employed in various configurations of the original model developed by social psychologists in the U.S. Public Health Service in the 1950’s (Hochbaum, 1958) (Rosenstock, 1960). The components that have been most robust in this model are depicted in figure 4.

Figure 4: The Health Belief Model (adapted from Rosenstock, 1960)
Due to the complexity of the model, it has typically been tested at the level of the individual construct, rather than at the whole-model level. There is substantial empirical support for the constructs of the model and their performance in predicting health behavior. “Perceived barriers” has been found to be the strongest single predictor in the model (Janz, 1984). Therefore, the study of worker perceptions of risk associated with drywall dust aimed to identify worker perceptions of barriers to dust control technology adoption.

This conceptual framework has been employed in studies of occupational health. A study of volitional health behaviors to prevent exposure to severe acute respiratory syndrome (SARS), the Health Belief Model was used to describe perceived barriers and benefits to the use of a facemask during the performance of high-risk occupational tasks (Wong & Tang, 2005). An evaluation of Mexican workers’ use of hearing protective devices found that self efficacy and perceived health status were directly influencing the decision to use the devices (Kerr et al., 2002). Another study used the model to design an intervention to improve the rates of use of hearing protection devices among agricultural workers (McCullagh et al., 2002). This study found that interpersonal and situation factors were primary barriers to use and were targeted in the intervention strategy.

Summary of Literature Review

This literature review reveals that workers in the construction industry suffer from disproportionate rates of respiratory disease and that particulate respiratory health hazard exposures are a significant risk factor. There is evidence that the dust generated from drywall finishing operations exceeds published occupational exposure limits for those dust constituents that have published limits, and that there are additional unregulated
constituents that are suspected of having negative respiratory health impacts. Despite these findings, little study has been devoted to industry use of dust control technologies and factors leading to low usage rates.

To ensure that all facets of the work system are considered in this evaluation of barriers to the adoption of dust control technologies, the research was formulated according to a macroergonomic framework. Three studies were designed to identify barriers associated with the three key subsystems of the drywall finishing work system. The organizational subsystem was evaluated using a socio-cultural approach to risk perception analysis and technologies use. The technological subsystem was scanned through a summative usability evaluation of the technology-human interface. The personnel subsystem was explored using the Health Belief Model as a conceptual framework.
Chapter 2: Use of Dust Control Technologies within the Drywall Finishing Industry

Abstract

Objective: Quantify drywall finishing industry usage rates of dust control technology: wet methods, respiratory protection, pole sanders, ventilated sanders, and low-dust joint compound. Identify barriers to technology adoption and explore firm owner perception of risk.

Methods: A survey instrument composed of both Likert-type scaled items and open-ended items was developed and administered by telephone to the census population of the owners of member firms of trade associations: Finishing Contractors Association (FCA) and Association of the Wall and Ceiling Industries (AWCI). Of a population of 857 firms, 264 interviews were completed. Along with descriptive statistics, results were analyzed using MANOVA to examine effects of firm size and union affiliation on responses. Responses to open-ended items were analyzed using content analysis procedures.

Results: Firm owners rated the risk of dust to productivity and customer satisfaction as low-moderate. Half rated the dust as having some impact on worker health, with higher impacts indicated by owners of small firms. Among the available control technologies, respiratory protection was used most frequently. Several barriers to implementation of the more effective control technologies were identified.
Conclusions: Barriers associated with technology usability, productivity, and cost, as well as misperceptions of risk, should be addressed to improve dust control in the drywall finishing industry.

Keywords: drywall, dust, construction work, dust control

Introduction

Workers in the drywall finishing industry suffer from disproportionate rates of respiratory disease (Wang, 1999). Particulate respiratory health hazard exposures are a major risk factor. There is evidence that the dust generated from drywall finishing operations exceeds published occupational exposure limits for those dust constituents that have published limits, and that there are additional unregulated constituents that are suspected of having negative impacts on respiratory health (NIOSH, 1997). Despite the existence of engineering and work-practice control technologies for the mitigation of the dust hazard, worker exposures persist in the construction industry (Carlton et al., 2003).

Methods currently available to control drywall dust include vacuum sanding, wet sanding, pole sanding, respiratory protection, and a recently developed low-dust joint compound. Vacuum sanding technology involves a vacuum system with a collection hood near the sanding surface. Dust is collected at the point of generation and pulled into a collection basin. Wet sanding is accomplished using two different methods. In one method, the drywall compound is allowed to cure and then re-wetted. Re-wetting is accomplished either by misting or wiping a damp sponge or cloth over the surface. A second method involves a combination of wet sponge and sanding block. In pole sanding, the sanding
surface is attached to the end of a pole and the worker holds the other end while performing the operation. This reduces worker exposure to the dust by removing the worker from the point of dust generation. While sanding poles were originally designed for the purpose of reaching distant surfaces, NIOSH (1997) recognized that they have some value in preventing worker dust exposure. Respiratory protection is a type of personal protective equipment that is worn by the worker. Particles are intercepted on the equipment’s filters before entering the worker’s respiratory system. Low dust joint compound, which was patented by the 3M Company in 1998, contains a dust reducing additive, such as an oil, surfactant, wax, or petroleum derivative that purportedly reduces the amount of dust resulting from sanding hardened joint compound. This compound entered the marketplace in October 2006.

Respiratory protection is not the preferred method of controlling worker exposure to inhalation hazards, because it places an additional burden on the worker and requires medical clearance, fitting, and training. Engineering or work practice controls are preferred, for these reasons. A NIOSH Hazard Control Study (NIOSH, 2000) found that vacuum sanding systems reduce drywall dust levels by 80 to 97 percent. Also, pole sanding systems were found to reduce worker exposure levels by removing the sanding task from the worker breathing-zone. Work practice controls, such as wet sanding, were effective in reducing dust levels. Respiratory protective devices, if fitted and worn properly, did reduce worker exposure to dust up to 99.99%. In terms of reducing dust in the thoracic and respirable size classes, the ventilated sander appeared superior to wet methods and pole sanders, and wet and pole methods superior to ordinary block sanding (Chapter 3).
There are important gaps in the existing knowledge base regarding this occupational health problem. A clear picture of industry usage trends for the various available technologies is needed. Also, information about drywall firm owners’ and managers’ perceptions of the risks associated with the dust and barriers to adoption of dust control measures, is needed in order to develop interventions to improve usage rates.

The objective of the current study was to quantify industry usage rates of the commercially available dust control technologies: vacuum sanders, wet methods, respiratory protection, pole sanders, and low-dust joint compound. Also evaluated were firm owner perceptions of risks associated with drywall dust and potential barriers to the use of controls.

Methods

Sampling Design

The study population consisted of the owners of member firms of two professional trade organizations: the Finishing Contractors Association (FCA) and the Association of the Wall and Ceiling Industries (AWCI). The FCA is the international trade association of U.S. and Canadian contractors in the drywall finishing, glass and glazing, floor covering, painting and decorating, and signs and display trades. All FCA members are signatory to collective bargaining agreements with the International Union of Painters and Allied Trades (IUPAT). AWCI represents contracting firms for acoustics systems, ceiling systems, drywall systems, exterior insulation and finishing systems, fireproofing, flooring systems, insulation, and stucco contractors, and those in allied trades. As of April 2007, the FCA had 1,400 contractor members, including 342 drywall finishing firms and the AWCI had 515 drywall finishing firm members.
Survey Instrument Design

A survey instrument (Appendix B) was designed to gather information about dust control practices and dust control technologies used in the drywall industry. Survey items regarding the negative impacts of drywall dust on productivity, customer satisfaction, and human health were included. Responses were made using a four-point Likert-type scale, with the following possible answers: great impact (1), some impact (2), not much of an impact (3), and no impact (4). The instrument also contained items about use of wet methods, respiratory protection, pole sanders, ventilated/vacuum sanders, and low-dust joint compound. These latter responses were made on a 5-point Likert-type scale with possible answers: always (1), often (2), sometimes (3), rarely (4), and never (5). Respondents answering “rarely” or “never” on these items were subsequently asked “why not?” Survey respondents were also asked to list any additional methods for controlling dust employed by their firms and to share any additional information about their experience with dust and dust control. Responses to open-ended questions were transcribed verbatim. A final set of questions addressed key demographic information of interest: number of employees, and union affiliation. All survey items were constructed by experts in survey instrument design at the Virginia Tech Center for Survey Research (VT-CSR), with content provided by the researcher.

Data Collection Procedures

The survey was conducted by phone, by interviewers at the VT-CSR. All telephone calls were made in a standardized manner, using a computer assisted telephone interviewing software system, in April, 2007. Each interviewer collecting data for the survey participated in a project-specific training session prior to participation. Interviews began
with a brief summary of project objectives, a review of informed consent information, and an assurance that firm identity would never be linked to responses and that only aggregate data would be published. All calls were monitored by a phone bank supervisor to ensure data accuracy and adherence to proper interviewing protocol. Each of the 857 drywall finishing firms was contacted until reached, or to a maximum of nine attempts. These attempts were made at different times of day and on different days of the week. Firms reporting no drywall finishing work were excluded from the survey (N=217). Non-working telephone numbers, out-of-service/disconnected numbers, and answering services were excluded (N=109). The remaining pool of eligible firms was 531, with a total of 264 interviews completed, representing a response rate of 50 percent.

Analysis

Results of the scaled survey items were analyzed descriptively by percent response, means and standard deviations. Multivariate analysis of variance (MANOVA) was used to test for differences in risk perception and technology use survey responses based on firm union status (union or non-union) and firm size. Firm size was categorized into four size classes: small (1-10), medium (11-100), large (101-1,000) and very large (1,001-10,000). Subsequent univariate analyses of variance and Tukey’s HSD multiple comparisons tests were performed on significant MANOVA findings, to examine individual responses. All statistical analyses were performed using JMP® 6.0.2 (SAS Institute Inc., Cary, NC).

The open-ended survey items were analyzed using content analysis procedures. Codes that were both exhaustive and mutually exclusive were established for each set of open-ended responses, by the researcher. These codes were then assigned to responses by two
independent coders with education in conducting human factors research, who had been trained by the researcher on the particular coding definitions and process. Inter-rater reliability was calculated for each set of codes, using Krippendorff’s alpha, with significance set at $\alpha = 0.8$ (Krippendorff, 2005). Items that did not have adequate rater agreement were not included in the frequency counts.

Results

Perception of Risk

Descriptive statistics. Of the three types of potential risks involved with dust exposure, the highest likelihood was associated with risk to worker health (Table 1).

<table>
<thead>
<tr>
<th>Impact</th>
<th>Q1: Productivity</th>
<th>Q2: Customer Satisfaction</th>
<th>Q3: Worker Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great</td>
<td>3.8</td>
<td>9.5</td>
<td>5.7</td>
</tr>
<tr>
<td>Some</td>
<td>34.1</td>
<td>31.8</td>
<td>44.7</td>
</tr>
<tr>
<td>Not Much</td>
<td>46.6</td>
<td>36.0</td>
<td>29.5</td>
</tr>
<tr>
<td>None</td>
<td>15.2</td>
<td>20.8</td>
<td>16.3</td>
</tr>
</tbody>
</table>

Percent of firm owner responses to questions regarding risks to productivity (Q1), customer satisfaction (Q2), and worker health (Q3) (scale anchors: 1 = great, 4 = none)

Mean (SD) scores for these scaled items were 2.67 (0.94) for perceived risk to worker health, 2.74 (0.77) for perceived risk to firm productivity, and 2.74 (0.96) for perceived risk to customer satisfaction. Slightly more than half of the firm owners reported a perceived threat to worker health (combining “great” and “some” responses), whereas less than 40% perceived an impact on work productivity resulting from the dust and less than
50% perceived an impact to customer satisfaction. Customer satisfaction received the largest score in both the “great impact” (9.5%) and the “no impact” (20.8%) categories. Fifteen percent of firm owners perceived no impact to productivity and 16% no impact to worker health (Figure X).

Figure 5: Firm owner perception of risk associated with drywall dust

Effects of firm size and union affiliation. Initial MANOVA of the effect of firm size and union affiliation on responses to the three risk perception questions revealed a significant effect of firm size on the perception of risk to worker health ($F(3, 260) = 3.77, p = 0.011$). Subsequent Tukey’s HSD all pair comparison of the means found that owners of small firms rated the risk to worker health as greater than did the owners of other size-class firms (Figure X). No other significant effects were found.
Open-ended responses. Content analysis of responses to the open-ended questions yielded 10 comments pertaining to worker health, four pertaining to customer satisfaction, and two pertaining to productivity (Krippendorff’s alpha = 0.86). Of the 10 comments pertaining to health, two indicated that there is a risk to health and eight indicated a minimal perception of the risk to worker health (Table 2). All comments pertaining to customer satisfaction (4) and productivity (2) indicated a perceived risk.
Table 2: Comments Pertaining to Perception of Risk

<table>
<thead>
<tr>
<th>Response Code/Category</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health</td>
<td>“Makes you turn white. Necessary evil of job”</td>
</tr>
<tr>
<td></td>
<td>“Have been in business for 30 years. See dust as just part of the job”</td>
</tr>
<tr>
<td></td>
<td>“Wives are concerned”</td>
</tr>
<tr>
<td></td>
<td>“Part of the job”</td>
</tr>
<tr>
<td></td>
<td>“Safer since the asbestos has been removed from it”</td>
</tr>
<tr>
<td></td>
<td>“We have never had a Worker’s Compensation claim from drywall dust exposure”</td>
</tr>
<tr>
<td></td>
<td>“They need to wear their respirators”</td>
</tr>
<tr>
<td></td>
<td>“Up to the workers to wear protection”</td>
</tr>
<tr>
<td></td>
<td>“Silica might be a problem in the dust”</td>
</tr>
<tr>
<td></td>
<td>“The dust is a big problem. Glad this study is being done”</td>
</tr>
<tr>
<td>Customer Satisfaction</td>
<td>“Electric sanders have been our best customer satisfier”</td>
</tr>
<tr>
<td></td>
<td>“Dust goes EVERYWHERE and is hard to control, even with visqueen barriers”</td>
</tr>
<tr>
<td></td>
<td>“Worst part of the job. Clean up time is needed to make customer happy – dust is a pain in the butt”</td>
</tr>
<tr>
<td></td>
<td>“We are trying to control it because we want our customers back”</td>
</tr>
<tr>
<td>Productivity</td>
<td>“Dust ruins productivity”</td>
</tr>
<tr>
<td></td>
<td>“Have to have a separate crew for cleaning dust”</td>
</tr>
</tbody>
</table>

Use of Dust Control Technologies

Descriptive statistics. Among the dust control technologies, respiratory protection was the most commonly used, with a mean (SD) score of 1.35 (0.87). Pole sanders were also reportedly used at a high frequency, with a mean score of 1.96 (1.16), while firm owners reported that ventilated sanders are used sometimes, with a mean score of 2.88 (1.29). Mean scores for the wet methods was 3.67 (1.05) and for the low-dust joint compound was
3.6 (1.45), indicating the lowest usage rates among the technologies of interest. Summary frequencies for use of the dust control technologies are presented in Table 3 and Figure 7.

Table 3: Percent of firm owner responses to questions 4 through 8: use of dust control technologies

<table>
<thead>
<tr>
<th>Response</th>
<th>Q4: Wet Methods</th>
<th>Q5: Respiratory Protection</th>
<th>Q6: Pole Sander</th>
<th>Q7: Ventilated Sander</th>
<th>Q8: Low-Dust Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Always</td>
<td>2.7</td>
<td>80.3</td>
<td>45.8</td>
<td>15.9</td>
<td>11.4</td>
</tr>
<tr>
<td>2. Often</td>
<td>7.2</td>
<td>11.7</td>
<td>28.0</td>
<td>24.2</td>
<td>9.8</td>
</tr>
<tr>
<td>3. Sometimes</td>
<td>38.6</td>
<td>3.8</td>
<td>16.7</td>
<td>33.0</td>
<td>28.2</td>
</tr>
<tr>
<td>4. Rarely</td>
<td>23.5</td>
<td>0.8</td>
<td>3.4</td>
<td>10.6</td>
<td>14.4</td>
</tr>
<tr>
<td>5. Never</td>
<td>27.3</td>
<td>3.4</td>
<td>5.7</td>
<td>15.2</td>
<td>29.9</td>
</tr>
</tbody>
</table>

Figure 7: Mean score frequency of use per technology type (scale anchors: 1= always, 5 = never)

The technology with the greatest response in the “always” category was respiratory protection (80.3%), a score that was substantially higher than that of any of the other...
technologies. Combined responses for the “rarely” and “never” categories reveal that half the firm owners report very low usage rates for wet methods (50.8%) and low-dust compound (45.1%). Combined responses for the “always” and “often” ratings reveal that nearly all the firms use respiratory protection on a frequent basis (92%) and that a substantial number use pole sanders (73.8%) and ventilated sanders (40.1%). Less than ten percent of firms report using the wet methods on an “often” or “always” basis (9.9%). These findings are summarized in figure 8.

![Figure 8: Percent of firms reporting “always” or “often” on use of tools](image)

Effects of firm size and union affiliation. Initial MANOVA of the effect of firm size and union affiliation on responses to the five dust control technology use questions revealed a significant effect of union affiliation on the frequency of use of respiratory protection (F(1, 262) = 7.46, p = 0.007). Subsequent Student’s t test for means comparison found that owners of union-affiliated firms have their workers use respiratory protection significantly
more frequently than do the owners of non-union-affiliated firms. No other significant
effects were found.

Open-ended responses analysis. Content analysis of responses to the open-ended
questions soliciting information from those firm owners answering “rarely” or “never” to
are summarized in Tables 4 through 8 (Krippendorff’s alpha = 0.90). Emergent themes
were that quality and productivity are primary barriers associated with the wet methods.
Barriers to the use of ventilated sanders are usability and environmental factors. The use
of low-dust joint compound is primarily impacted by product availability. The emergent
themes associated with the pole sander and ventilated sander were that firm owners were
not considering their utility as worker protection tools. Many comments stated that pole
sanders are not useful in reducing worker exposure to dust. Comments pertaining to the
ventilated sander indicated confusion between ventilated sanding tools and general room
ventilation or shop vacuum tools. There were very few comments associated with
respiratory protection, since most firms use that technology on a frequent basis.

| Table 4: Summary Open-ended Responses for Those Answering “Rarely” or
<table>
<thead>
<tr>
<th>“Never” Regarding Use of Wet Methods: Why Not Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Code/Category</td>
</tr>
<tr>
<td>Quality</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Productivity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mess</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Total responding to this item</td>
</tr>
</tbody>
</table>

Table 5: Summary Open-ended Responses for Those Answering “Rarely” or “Never” Use of Respiratory Protection: Why Not Used

<table>
<thead>
<tr>
<th>Response Code/Category</th>
<th>Frequency</th>
<th>Sub-categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference</td>
<td>1</td>
<td>“Just Preference”</td>
</tr>
<tr>
<td>Risk</td>
<td>4</td>
<td>“Perceived Risk”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“At worker’s discretion. People who have been in the industry long don’t see the need.”</td>
</tr>
<tr>
<td></td>
<td></td>
<td>“Equipment always available, but use not mandated. Up to the individual to use the equipment.”</td>
</tr>
<tr>
<td>Total responding to this item</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Summary Open-ended Responses for Those Answering “Rarely” or “Never” Regarding Use of Pole Sanders: Why Not Used

<table>
<thead>
<tr>
<th>Response Code/Category</th>
<th>Frequency</th>
<th>Definition of Code/Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote</td>
<td>8</td>
<td>Poles are used, but as a means of reaching remote areas to be sanded, mainly overhead</td>
</tr>
<tr>
<td>No Control</td>
<td>9</td>
<td>Poles do not provide dust control, dust is still generated, workers are still covered with dust</td>
</tr>
<tr>
<td>Total Responding to Item</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Summary Open-ended Responses for Those Answering “Rarely” or “Never” Regarding Use of Ventilated or Vacuum Sanders: Why Not Used

<table>
<thead>
<tr>
<th>Response Code/Category</th>
<th>Frequency</th>
<th>Sub-categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupants</td>
<td>21</td>
<td>Perceived usefulness in protecting building occupants or equipment, rather than for workers. Comments such as new construction only, no occupied spaces. Comments also about usefulness in particular building types: hospitals, schools, electronic equipment spaces</td>
</tr>
<tr>
<td>Use</td>
<td>9</td>
<td>Comments about problems associated with use. Not able to achieve desired surface. Workers not able to learn to use. Clogs and vacuum emptying</td>
</tr>
</tbody>
</table>
| Productivity | 13 | Takes longer to do job
| | | Cost
| | | Loss due to theft

Total responding to Item: 45

Table 8: Summary Open-ended Responses for Those Answering “Rarely” or “Never” Regarding Use of Low Dust Compounds: Why Not Used

<table>
<thead>
<tr>
<th>Response Code/Category</th>
<th>Frequency</th>
<th>Sub-categories</th>
</tr>
</thead>
</table>
| New | 43 | So new to market that firm hasn’t tried yet
| | | Too new to be found effective
| | | Have heard of it – thinking of using it
| | | Would rather stick with familiar product
| | | Not yet available in local market
| | | Trying it now
| Unfamiliar | 24 | Not aware of product
| Cost | 7 | Costs more than regular mud
| | | No incentive to buy more expensive product
| Quality | 9 | Failure to achieve desired surface
| | | Doesn’t seem to really work at reducing dust
| | | Doesn’t sand as easily
| Total Responding to Item | 83 | |

Results of the scaled item and content analysis of responses to the open-ended question about other methods of dust control are summarized in Tables 9 and 10. (Krippendorff’s alpha = 0.83). These comments were coded into the categories “barriers”, “general ventilation” and “dust clean-up”. All of these comments identified methods of controlling ambient dust levels and were not methods of controlling worker exposure to dust. A summary of all findings is provided in Table 11.
Table 9: Firm Responses to the Question: “Does your firm use any other methods of controlling dust generation, other than those I've mentioned?”

<table>
<thead>
<tr>
<th>Response</th>
<th>Frequency</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>75</td>
<td>28.4</td>
</tr>
<tr>
<td>No</td>
<td>188</td>
<td>71.2</td>
</tr>
<tr>
<td>Don’t Know</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Total</td>
<td>264</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 10: Summary Open-ended Responses for Question 9: “Does your firm use any other methods of controlling dust generation, other than those I've mentioned?”

<table>
<thead>
<tr>
<th>Response Code/Category</th>
<th>Frequency</th>
<th>Sub-categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barriers and Containment systems</td>
<td>33</td>
<td>Tarps
Visqueen Ecomembrane
Polyvinyl sheeting
Barricades
Zipwall systems
Mask off doors
Negative air pressure with HEPA filter</td>
</tr>
<tr>
<td>General, Ambient, or Dilution Ventilation</td>
<td>22</td>
<td>Open-air projects
Open windows
Fans
Fans with HEPA filters
Negative air machines</td>
</tr>
<tr>
<td>Dust Clean-up Post Sanding</td>
<td>4</td>
<td>Sweeping
Sponging areas (mentioned around computer equipment)
Shop vacuum</td>
</tr>
<tr>
<td>Other</td>
<td>4</td>
<td>Skill
Special system: “dry towels”</td>
</tr>
</tbody>
</table>
Table 11: Summary of Findings

1. **Respiratory protection is used more often than other dust control methods.**
 - More firms reported “always” using respiratory protection equipment, as compared to the other dust control technologies.
 - More firms reported any frequency of use of respiratory protection as compared to the other methods of dust control.

2. **Barriers to the use of ventilated sanders include:**
 - Environmental factors: no power source on new construction jobs, cord limitations on larger-area jobs, difficult to maneuver in smaller-area jobs.
 - Usability factors: more difficult for workers to learn to use effectively and efficiently
 - Cost: more expense equipment, productivity concerns, theft concerns

3. **Barriers to the use of low-dust joint compound include:**
 - Cost: lack of incentive to purchase product that costs more than conventional joint compound
 - Availability: product is not available in all markets.

4. **Barriers to the use of wet methods.**
 - Quality: not possible to achieve desired result.
 - Productivity: much less efficient than other methods
 - Mess: wet compound drips and creates additional clean-up work. Water can penetrate wall board and damage it.

5. **Firm owner misconceptions serving as barriers to dust control.**
 - A belief that dust control is aimed at preventing building occupant or equipment exposure, rather than worker exposure.
 - Half of firm owners did not perceive a risk to worker health.
 - A belief that dilution ventilation is adequate for dust control.
Discussion

The present work is part of a larger effort to identify barriers inherent to the drywall finishing work system that are preventing the use of available dust control technologies. In this larger project, each subsystem of the work system is evaluated to identify key causal factors. In the present study, the organizational subsystem was evaluated through interviews of firm owners to identify management perspectives on the available technologies and also on the risks associated with the drywall dust, with the intent of identifying barriers to technology adoption. Through a questionnaire with both scaled and open-ended questions, firm owner perception of the dust risk to productivity, customer satisfaction and worker health were explored, as were reports of frequency of use of the five technologies: respiratory protection, wet methods, pole sanders, ventilated sanders, and low-dust joint compound.

Firm Owner Perceptions of Risk

Perception of risk was evaluated in this study, because it has been identified as a powerful antecedent of risk mitigation decisions (Diaz and Resnick, 2000). Previous research has demonstrated that an intervention designed to alter manager perception of risk can increase the adoption of engineering control technology (Arezes and Miguel, 2005). In a study of the control of worker exposure to asbestos fibers, an association between risk perception and adoption of hazard controls was found (Stewart-Taylor and Cherrie, 1998). However, a large-scale study of the associations between risk perception and risk behavior found that there is no causal relationship between the two, but that they are highly correlated and both influenced by the causal factors of job stress and working conditions (Rundmo, 1996). Rundmo (1996) suggested that measures of risk perception are valuable in their ability to
predict the overall level of safety in a work system, but that interventions designed to alter safe practices needed to address the antecedent factors of job stress and working conditions, rather than attempting to alter perception of risk. Therefore, in the present study, a simplified measure of firm owner risk perception was designed to provide a single datum about the current safety status of the drywall finishing industry, regarding dust control. Further research would be necessary to fully characterize the risk perceptions and risk behaviors associated with this industry.

Less than half of the firm owner respondents perceived a serious threat to customer service or productivity, and roughly half perceived a risk to worker health. This figure indicates that owners are not accurately assessing the objective risk to workers. Drywall joint compound has been found to contain crystalline quartz (silica), talc and mica and a previous case study found worker exposures exceeded occupational exposure limits (NIOSH, 2000). Silica, talc and mica are regulated by the Occupational Safety and Health Administration (OSHA) in its standards for the construction industry (OSHA, 29 CFR 1926.55). Considerable educational material regarding the health effects associated with silica has been published by OSHA and NIOSH and targeted to the construction industry audience. In light of this, the firm owner risk perception to worker health is considered to be lower than what would be expected.

An effect of firm size on the reported perceived risk was found, with owners of small firms rating the risk to worker health as more significant than those of larger firms. This finding might be indicative of a power-distance effect, as has been found in previous research on the perception of risk. Social power distribution has been found to impact perception of
risk, in that those with less power and control tend to perceive themselves more vulnerable to the risks (Vaughan and Nordenstram, 1991). Agency, or the individual’s perception of personal ability to effect change through individual behavior, has been strongly associated with perceptions of risk (Walker et al, 1998). And the number of layers of organizational hierarchy in a work setting has been found to have an impact (Slovic et al, 1993). These studies suggest that those in lower levels of an organizational structure, or those in a work system with a more flattened structure with fewer tiers, will tend to have a higher perception of risks associated with the front-line work of that organization. Therefore, it is possible that in this present study, owners of smaller firms, which were defined as having fewer than 10 employees, are closer to the actual work and the people who perform the work. And, this might lead them to estimate the risk to worker health as being higher than do those who own larger organizations and are more removed from the work. This finding also corresponds to that of another study (Chapter 4), in which worker perceptions of the health risk from drywall dust was high. These workers identified management lack of concern for health protection as a major barrier to the adoption of engineering controls.

Additional research is recommended to more fully characterize these patterns among workers and managers of the drywall finishing industry.

Responses to the open-ended questions did reveal that there is an understanding among some in the industry that drywall dust contains silica. Several comments did indicate an understanding of the health risks associated with the dust. Some respondents expressed a desire to reduce the dust and a need for improved methods of control. However, more frequent were responses that indicated a tacit acceptance of the risk as being inherent to the work and, thus, unavoidable. Therefore, the findings of this portion of the study indicate a
need to address firm owner perceptions of the risk to worker health associated with drywall dust exposure.

Technology Usage Rates

Respiratory protection is notably the most commonly used method of controlling worker exposure to drywall dust. Firms with union affiliation reported using respiratory protection more frequently than did non-union firms. This is not surprising, since collective bargaining agreements typically contain worker protection requirements. The results for the frequency of use of pole sanders were also high, but are likely artificially inflated, since responses to open-ended questions indicated that the poles are used for reaching overhead areas, and not for the purpose of controlling dust. Many firm owners questioned the effectiveness of the pole sander as a means of protecting workers. NIOSH (2000) has recommended the use of pole sanders for this purpose. And, a recent study found them to significantly reduce the thoracic and respirable dust concentrations in the worker breathing zone, over those generated from basic block sanders (Chapter 3). The ventilated vacuum sanders and low-dust joint compound are used by 40 and 20 percent, respectively, of the firms responding; however this figure is likely inflated, as well. Responses to open-ended questions indicated that some respondents were referring to shop vacuums for post-work clean up or whole-room ventilation, in their affirmative answers. Wet methods were the least preferred, with only 10 percent reporting use, though this is the method suggested by the Association of the Wall and Ceiling Industries in its published guide for finishing gypsum board (AWCI, 1995). These results indicate an over-reliance on the least preferred class of hazard control, personal protective equipment. There is a clear need to
increase the use of more effective controls, such as the ventilated sander or low-dust joint compound that do not place the onus of hazard control on the worker.

Content analysis of the comments revealed that many firm owners misunderstand the difference between ambient dust control and dust control to protect workers from exposure. Many comments were made about general dilution ventilation and dust containment systems. Such systems serve to reduce ambient dust levels rather than worker breathing zone concentrations. Several comments indicated that firms take dust control precautions in particular construction settings, such as public schools, hospitals, or buildings containing sensitive electronic equipment. Responses to open-ended questions indicated a belief that new construction situations, with open windows and walls, or with room fans, would not present an exposure risk. When asked about additional methods of controlling dust, respondents mentioned the use of barriers and containment systems, which are designed to prevent dust migration from the work area into other building spaces, but which have no value in protecting workers from over exposure. The emphasis of the respondents making these comments was placed upon protecting building occupants and equipment from dust exposure, rather than protecting workers. These findings indicate a need for educational interventions to increase knowledge of appropriate controls and awareness of the need for effective worker protection controls.

Open-ended responses also indicated that workers were provided respiratory protective equipment, but that its use was not consistent. There was a prevailing theme that owners considered it the responsibility of the worker to choose to wear the respiratory protection.
The firm owners did not seem to perceive their own role in the establishment of policies and protocols to improve safety and health of the workforce.

Barriers to adoption

Analysis of the open-ended comments revealed key barriers to the adoption of dust control technologies. For the ventilated sanders, found to be highly effective at reducing worker exposure to dust (Chapter 3), the firm owners identified issues associated with usability, productivity, and the work environment. Usability concerns identified were that the workers would take longer to learn to use the technology and that it would be more difficult to attain the desired surface texture. Also noted were problems associated with the size of the technology and how that would limit maneuverability in small spaces. Also, the power cord was a noted limitation to use of the device for sanding large areas, since it would constrain and limit worker movement. Productivity issues identified were that the workers currently have a level of proficiency with the block sanders and that the more complicated ventilated sanders would require time for learning and skill development. Also, the need to empty dust collection containers and lines was perceived as a hindrance to productivity. Cost issues were also mentioned as barriers; not only for initial purchase, but the mention of equipment theft arose in several comments. A key work environmental factor was mentioned by several respondents, in that the technology requires a power source and this is not always available in locations close enough to the work.

The primary barriers to the use of the low-dust joint compound were that the product is not available in all markets and that it is not familiar to firm owners. Firm owners expressed a need to have more information about the product and the quality of surface and ease of
sanding, before committing to switch to its use. The cost of the product was also an issue for the respondents. There were frequent mentions of a lack of incentive to switch to a product that would be more costly.

Pole sanders are currently in use in the industry, but not for the purpose of protecting workers. Respondents questioned their effectiveness as dust control measures, stating that workers are “still covered in dust” after their use.

Comments pertaining to wet methods illustrated a pervasive dissatisfaction with this technology. Most comments pertained to quality of finished surface, productivity, and mess created by the method. The productivity issues centered on the need for frequent re-wetting and rinsing of sponges. Respondents overwhelmingly communicated that this method is infeasible for large-scale finishing work.

Limitations and Future Direction

Several limitations were inherent to the present study. Since this study relies on self-report on a topic with some legal and regulatory risk, there is a possibility of response bias in the data. To control for this, the survey protocol began with an explanation of the study objective and an assurance that only aggregate data would be published. A second limitation stems from the fact that the census population was limited to firms that had membership in large trade organizations, with an associated potential for reduced external validity. Firms that opt to join trade organizations tend to be larger than those without membership. For this reason, the present study included analyses to test for the effects of firm size on findings. Since there was a significant effect of firm size, future research is
needed into the trends associated with smaller firms without trade organization affiliation. Finally, there has been considerable discussion in the risk perception literature regarding the reliance on scaled questionnaire instruments for the assessment of risk perception, as summarized by Kristensen (2005). The main arguments have been that a scaled response provides an overly simplistic measure of a highly complex cognitive process. While the present study did employ qualitative measures, in addition to the scaled items, it is understood that the metrics might still lack a degree of depth that would have been obtained through a more holistic and unified approach.

Conclusions

The goal of this research is to provide inputs into the design of an effective intervention strategy to improve drywall finishing worker protection from dust. Inputs of particular importance are the key root causes of the current low adoption rates of the most effective dust control technologies. These barriers will be key inputs into the intervention design (Chapter 5). The primary barriers to the use of the ventilated sanders were concerns over tool usability and productivity. Firm owners expressed concern that workers would not be able to produce the quality work with the efficiency necessary, with the more complicated tool. Additional barriers noted pertained to the work environment. Most importantly, perhaps, is the absence of a power source on many new construction sites. Also, the tool’s size could prevent its use in either very small or very large spaces, due to its length and the limitations of the power cord, respectively. The primary barriers to the use of the low-dust mud are the lack of availability and cost issues. Firm owners noted a lack of incentive to switch to a higher cost product. Pole sanders are currently in common use in the industry. They are not used for the specific purpose of worker protection; however that would be an
indirect effect. Wet methods, while offering some degree of protection, rated very poorly in this study and in other recent studies of worker perceptions and tool usability (Chapters 3 and 4). Therefore, this method is not recommended by the author as the targeted preferred control method. Ventilated sanders and material substitution with lower-dust-yield joint compound are more promising solutions to this occupational health problem.

To improve industry usage rates of these products, primary recommendations are the redesign of the ventilated sanders to address concerns and increase adjustability and an increase in product availability and effectiveness data for the low-dust mud.
Chapter 3: Evaluation of Drywall Sanding Technologies
Dust Control and Human-tool Interface

Abstract

Objective: This study evaluated four commercially available drywall sanding tools (block, wet sponge, pole, and ventilated) for dust generation rates and usability and generated tool re-design specifications to improve usage rates.

Methods: Sixteen participants performed simulated drywall finishing tasks with each of the four tools. Outcome measures of interest were thoracic and respirable breathing-zone dust concentrations and the usability metrics of ease of use, ease of learning, perceived productivity, and comfort.

Results: The ventilated, powered drywall sanding tool produced significantly less dust than did the other three tools. The pole sander and wet method produced significantly less dust than the block sander. The block sander performed best in usability evaluations of “ease of learning”, “ease of use”, and “overall best”. Although it was also rated highly in the “overall best” ranking, the ventilated sander performed poorly on the usability metrics, “ease of use” and “perceived comfort”. Findings from content analysis were employed in development of re-design recommendations.

Conclusions: Ventilated sanding technology can significantly reduce worker exposure to drywall dust; however, usability problems might be preventing widespread adoption of this technology. Re-design is recommended to improve comfort and ease of use.
Keywords: drywall, dust, construction work, usability, dust control

Introduction

Respiratory disease among plasterers and wall finishers is a public health concern, due to the disproportionately high rates of respiratory disease and disability that these workers experience. Drywall finishing operations have been associated with worker over-exposure to dust that contains known particulate respiratory health hazards, such as silica, talc, and mica (NIOSH, 1997). Despite the existence of engineering, work-practice, and personal-protective-equipment (PPE) control technologies for the mitigation of this hazard, worker exposures persist in the construction industry (Carlton et al., 2003). A recent study found that drywall finishing contractor firms primarily rely upon respiratory protection, rather than more effective methods, to control worker exposure to drywall dust (Chapter 2). In that study, firm owners indicated that workers were supplied with respiratory protection equipment, but that its use was not consistent. The present study aimed to explore, within a Health Belief Model conceptual framework, worker perceptions of the hazards and controls for this occupational dust with the ultimate objective of designing interventions to improve worker protection in this industry.

The National Institute for Occupational Safety and Health (NIOSH) conducted an evaluation of worker exposure to drywall dust and potential health effects associated with drywall finishing work during renovation activities (NIOSH, 1997). Respiratory symptoms were found to be common among drywall finishers and tended to improve when workers were away from the workplace. Workers were overexposed to total dust, respirable-fraction dust, and crystalline silica.
There are important gaps in the existing knowledge regarding this occupational health problem. Aside from a pilot project conducted by the National Institutes for Occupational Safety and Health (NIOSH, 2000), there has been no published evaluation of the effectiveness of the different dust control technologies. Additionally, there is a need to identify the causal factors leading to the persistence of worker exposure, despite availability of effective controls. In a separate study, a survey of drywall finishing contractors determined that dust controls are not commonly used in practice (Chapter 2). Once probable causes of low usage rates are identified, intervention strategies can be developed and deployed in order to improve controls usage rates in drywall finishing operations.

One potential explanation of low use of dust control technology lies in a faulty user-tool interface. This study was designed to evaluate issues in the human-technology interface. It also aimed to substantiate the differences in dust generation among the commercially available sanding tools.

Usability is the sub-field of human factors engineering that evaluates a technology to assess the degree to which the design may be used effectively and efficiently by a human (Charlton, 2002). Usability is defined as a composite of several attributes: learnability, efficiency, memorability, error rate, and satisfaction (Hix, 1993). A summative usability evaluation was performed here in order to identify any tool-related factors that might prevent adoption and regular use by end-users. Since the sanding technologies being evaluated in this study are hand-tools, usability metrics previously designed to evaluate hand-tools were employed. In 2001, Miller published guidelines for conducting usability
evaluations of hand-tools. Several metrics were identified for assessing hand-tool usability: ease of use, force required, comfort levels, likelihood to drop parts, and physical characteristics of the hand tools. Johnson (1999) described the usefulness of subjective usability evaluations of hand tools for comfort, productivity, and ease of use. In a directly relevant study of usability of orbital sanders, a user-reaction survey evaluated the metrics hand/arm discomfort, force required, productivity, and comfort (Spielholtz, 2001). Therefore, in the current study, a survey of user reactions was used to evaluate the aspects of usability: ease of learning, ease of use, perceived productivity and comfort.

Methods

Participants performed a simulated drywall finishing task in a laboratory setting, with each participant performing the task four times, once with each sanding technology of interest. Dust concentrations, thoracic and respirable size fractions, were measured continuously throughout each sanding session. Following each session, participants completed a usability questionnaire. Following the entire experimental set of four task sessions, participants were asked to complete a questionnaire that assigned a ranking to all four technologies.

Experimental Design:

This experiment was conducted as a mixed-factor design, with one between-subjects factor (gender) and one repeated-measures factor (sanding tool type). The four sanding tools were: block, ventilated, pole, and wet. The dependent variables of interest were time-weighted average breathing-zone particulate concentrations and usability metrics. Six dependent variables were measured: thoracic particulate concentration, respirable particulate concentration, ease of learning, ease of use, perceived productivity, and
perceived comfort. Presentation order the tools was balanced using a 4 x 4 Latin square design, with two Latin squares for each gender. A total of 16 participants completed the experiment, with equal numbers of males and females.

Apart from the treatment factors, the following sources of potential variation were identified: environmental factors, such as air currents, humidity, and temperature; ambient dust concentration at the start of the experiment; participant prior experience with one or more of the technologies; learning, or carry-over, effects between sanding technology; and individual participant skill differences. To control for environmental factors, the laboratory had fixed levels of temperature, humidity and air currents. To control for ambient dust concentration, a value of dust concentration change, which subtracted the starting concentration from the data-logged concentration values, was used as the outcome measurement of interest. To control for participant prior experience, only novice users were used as participants in the study. To control for individual differences in skill, a randomized complete block design was employed, using participants as blocks. Counterbalancing of treatment condition orders, using Latin Squares was used to control for carry-over effects. The repeated measures design was also chosen in order to allow for the collection of meaningful usability testing data. Having a participant experience all four technologies and evaluate the usability of each, allowed for enhanced usability comparisons.

Participants:

The 16 were recruited from a population of university students. All were above the age of 18 and had no prior experience with drywall sanding tools. Age, ethnic group affiliation,
and other demographic factors were not recorded, as they were not factors of consideration in this study. Since all pairwise comparisons among the four sanding technologies were of interest, calculation of the required number of participants was based upon the Scheffé method of multiple comparisons at an overall confidence level of 95%. The confidence interval was selected with the intent of indicating a difference in a pair of treatment combinations, if the true difference in respirable dust concentration levels is at least 3 mg/m3. This value is 20% of the Occupational Exposure Limit (OEL) established for particulates-not-otherwise-classified, a category that includes the dusts in this study. This is also the mean concentration found in the only existing prior study of drywall dust exposure assessments (NIOSH, 1997). In the NIOSH (1997) study, the standard deviation was found to be 1.98 for drywall finisher dust exposures. From statistical power tables (Kutner et al, 2004), with $\alpha = 0.05$ and $\beta = 0.20$, the number of required blocks (participants) was found to be 16.

Simulated Drywall Finishing Task:

A four-foot-square piece of drywall board was prepared for each research participant. To each board were applied four strips of drywall joint compound (Sheetrock Brand, Lightweight All Purpose Joint Compound, United States Gypsum Company, Chicago, IL). These were applied and allowed to cure, per manufacturer’s instructions, by a trained drywall finisher. The board was attached to the wall inside a laboratory enclosure (Fig. 9).
Participants were instructed on the use of one of the four drywall sanding tools and asked to sand one joint compound strip for a five minute period of time. They were given the goal of removing as much of the joint compound as possible during the five minute period.

Independent Variables:

Four drywall sanding tools were employed in this study (Figure 10): a block hand sander, a wet sponge sander, a pole sander, and a powered vacuum sander (model 7800, Porter Cable Inc., Cleveland, OH). All four sanding tools had the same level of abrasiveness of the sanding surface (180 grit). It was anticipated that gender differences might exist in the tool usability metrics and that these differences might be important considerations in design recommendations for tool improvement, therefore this variable was used in the experimental design as a between-subject factor.
Dependent Variable: Dust Concentration (Thoracic and Respirable).

Drywall joint compound dust concentrations were measured throughout the duration of each drywall sanding task session, using two Dusttrak Sidepak AM510 Personal Aerosol Monitors (TSI Inc, Shoreview, MN). The AM510 is a miniature, battery-operated, laser photometer that measures airborne particulate matter in terms of mass concentration in units of milligrams per cubic meter of air sampled (mg/m3). Each participant wore two sampling trains involving the AM510 monitors: one that employed a 10-mm Nylon Dorr-
Oliver Cyclone inlet that had a median cut-point of 4.0 micrometers aerodynamic diameter, and one that employed a PM10 Impactor that had median cut-point of 10 micrometer aerodynamic diameter (Figure 11.). These two size classes were chosen because they represent the respirable and thoracic particulate size classes, respectively. These size classes are implicated in the respiratory diseases associated with this occupational task.

The sampling train air inlet orifices were attached within a one-foot radius of the participants’ mouth and nose (i.e. the breathing zone). The sampling trains were mounted to a waist-belt with suspenders, so that the positioning of the air inlets and AM510’s would be consistent on all participants.

Flow rates of 1.7 L/min were used in both sampling trains and were calibrated before and after each experimental session, using a DryCal DC-Lite Primary Flow Meter (BIOS Inc, Butler, NJ). A 10 second logging interval was chosen and a calibration factor of 0.90 was used, since that is the recommended factor (TSI, 2005) for the sampling of silica dust, a primary constituent of drywall joint compound. Ambient dust concentrations at the beginning of each sanding task session were measured and subtracted from any following
measurements made during the sanding task sessions. The resulting delta concentrations were averaged across the five minute sampling period, to provide a 5-minute-time-weighted-average-delta-concentration (average concentration). This average concentration was the outcome measure used in the statistical analyses.

Dependent Variables:

Usability was evaluated through four metrics: easy of learning, ease of use, perceived productivity and perceived comfort. Each metric had several associated items in a questionnaire (Appendix D). Each questionnaire item had a corresponding Likert-type scale, with relevant verbal anchors (1 = strongly disagree, 5 = strongly agree). Additionally, responses to open-ended questions were analyzed through content analysis procedures, using appropriate coding categories. The metrics, and associated questionnaire items, are listed below (Figure 12):

<table>
<thead>
<tr>
<th>Ease of learning</th>
<th>1. I felt that this was easy to learn.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. It did not take long for me to feel like I was using it correctly.</td>
</tr>
<tr>
<td></td>
<td>3. Anyone could learn to use this quickly.</td>
</tr>
<tr>
<td>Ease of use</td>
<td>4. I felt that this was easy to use to do this sanding.</td>
</tr>
<tr>
<td></td>
<td>5. I did not feel frustrated while using this technology.</td>
</tr>
<tr>
<td></td>
<td>6. I would choose to use this sanding tool, if I had to perform this task in real life.</td>
</tr>
<tr>
<td></td>
<td>7. I didn’t have any problems while using it.</td>
</tr>
<tr>
<td>Perceived productivity</td>
<td>8. I felt like I could get the sanding done quickly with this technology.</td>
</tr>
<tr>
<td></td>
<td>9. I felt like I could get the sanding done correctly while using this technology.</td>
</tr>
<tr>
<td>Ease of use</td>
<td>10. I felt comfortable while using this technology.</td>
</tr>
<tr>
<td></td>
<td>11. I did not have to apply a lot of force to accomplish the sanding task.</td>
</tr>
<tr>
<td></td>
<td>12. My hand/arm felt comfortable during this task.</td>
</tr>
</tbody>
</table>

Figure 12: Usability Metrics and Questionnaire Items

After the four sanding sessions, participants completed another questionnaire that asked them to rank-order the tools according to the following scale: 1 = Best, 2 = Second Best, 3
= Third Best, and 4 = Worst. This ranking was done separately, based on three criteria: “Easiest to Use”, “Easiest to Learn”, and “Overall Best”. Open-ended questions solicited input on the tools selected as “overall best” and “overall worst”.

Procedures

Before participants entered the lab, several preparatory actions were undertaken. The AM510’s were calibrated to ensure an air flow rate of 1.7 L/min and were zeroed. The wallboard panels were placed on the wall mount in the experimental enclosure. Fresh sanding screens were installed on sanding tools. Upon arriving at the lab, participants reviewed and completed informed consent forms, received brief training on the use of protective equipment and an overview of the project methods. They were then fitted with a NIOSH-approved N-100 filtering facepiece, goggles, gloves, ear muffs, and the sampling train harness. After reviewing task parameters for the trial, the participants entered the sanding chamber with the first sanding tool, the AM510’s recording session was initiated, and a timer was set for five minutes. Participants sanded for the five-minute period and then the AM510’s recording was paused, while the participants completed the usability questionnaire for that tool just used. Four sessions proceeded according to this protocol, until all tools had been used. Then, a final ranking questionnaire was completed and the participants were compensated $10/hour for their time.

Analysis

A mixed-factor MANOVA was used, with one between-subjects factor (gender) and one repeated-measures factor (tool type) and all six dependent variables. Student’s t test or Tukey’s HSD were used to perform all post-hoc comparisons of means. To further
investigate simple effects, subsequent to a finding of a significant MANOVA effect, repeated-measures univariate ANOVA was used to test for differences in respirable and thoracic dust concentrations across tool types. Similarly, repeated-measures univariate ANOVA was used to test for differences among tool usability scores, across tool type. Ranking scores for each usability metric were analyzed using a one-way analysis of variance (ANOVA) repeated-measures design. All statistical analyses were performed using JMP® 6.0.2 (SAS Institute Inc., Cary, NC), with significance determined when p < 0.05.

Open-ended question responses were analyzed using content analysis methods (Krippendorff, 2004). Codes that were both exhaustive and mutually exclusive were established for the set of open-ended responses, by the researcher. Codes were created that mapped back to the research questions pertaining to usability metrics (Table 12). An additional code was assigned to denote whether the coding unit was positive or negative. For example, a comment about comfort might have indicated the equipment was comfortable (positive) or that it was uncomfortable (negative). Written responses to open-ended questions on the questionnaires were unitized by the researcher. Coding units were defined as sentences or groups of sentences connected on a unifying thought. The entire set of coding units and assigned codes is included in Appendix G. Codes were assigned to responses by two independent coders with education in conducting human factors research, and who had been trained by the researcher on the particular coding definitions and process. Inter-rater reliability was calculated for each set of codes, using Krippendorff’s alpha, with significance set at α = 0.8 (Krippendorff, 2005). Only coding units with rater
agreement were included in the analysis. Frequencies of occurrences of codes were the main metrics of interest.

<table>
<thead>
<tr>
<th>Table 12: Code Definitions for Content Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Code Definition</td>
</tr>
<tr>
<td>Ease of Learning (EL)</td>
</tr>
<tr>
<td>Ease of Use (EU)</td>
</tr>
<tr>
<td>Perceived Productivity (PP)</td>
</tr>
<tr>
<td>Perceived Comfort (PC)</td>
</tr>
</tbody>
</table>

Results

Gender

In a mixed-factor analysis containing all dependent variables (dust concentrations and usability scores) the Gender x Tool interaction was significant (F(13, 50) = 2.594, p = 0.0079). The main effect of tool type was significant (F(13,50) = 26.99, p < 0.0001), but the main effect of gender was not (F(1,62) = 2.02, p = 0.160).

Dust Concentration

The mixed-factor MANOVA with all dependent variables revealed a significant multivariate effect for type of tool (Wilk’s lambda = 0.104, F(42,140), p< 0.0001). Subsequent univariate ANOVA indicated significant differences between tool types for respirable dust concentration (F(3, 60) = 23.53, p <0.0001) and thoracic dust concentration.
(F(3,60) = 14.93, p <0.0001), as illustrated in Figures 13 and 14. The ventilated, powered drywall sanding tool produced significantly less dust than did the other three tools. The pole sander and wet method produced significantly less dust than the block sander.

Figure 13: Respirable Dust Concentration by Tool. Tukey’s HSD Means Comparisons for All Pairs (Tools not assigned same letter are significantly different)
Usability:

The mixed-factor MANOVA with all dependent variables revealed a significant multivariate effect for type of tool (Wilk’s lambda = 0.104, F(42,140), p< 0.0001). Subsequent univariate ANOVA showed significant differences between tool types for ease of learning question #2 (F(3, 60) = 4.21, p = 0.009), ease of learning question #3 (F(3, 60) = 3.90, p = 0.012), ease of use question #7 (F(3,60) = 3.76, p = 0.015), and perceived productivity question #8 (F(3, 60) = 9.39, p < 0.0001). These findings are depicted in Figures 15 – 18. There were no other significant differences found. Notably, therefore,
none of the perceived comfort scores were found to be different across tool types.

Figure 15: Mean score for question #2: “It did not take long for me to feel like I was using it correctly.”
Likert scale anchors: 1 = strongly disagree, 5 = strongly agree.
(Tukey’s HSD all pair wise comparison of means. Bars not assigned same letter are significantly different)

Figure 16: Mean score for question #3: “Anyone could learn to use this quickly.”
Likert scale anchors: 1 = strongly disagree, 5 = strongly agree.
(Tukey’s HSD all pair wise comparison of means. Bars not assigned same letter are significantly different)
Figure 17: Mean score for question #7: “I didn’t have any problems while using it.”
Likert scale anchors: 1 = strongly disagree, 5 = strongly agree.
(Tukey’s HSD all pair wise comparison of means. Bars not assigned same letter are significantly different)

Figure 18: Mean score for question #8: “I felt I could get the sanding done quickly with this technology.”
Likert scale anchors: 1 = strongly disagree, 5 = strongly agree.
(Tukey’s HSD all pair wise comparison of means. Bars not assigned same letter are significantly different)
Usability Rankings

Mean ranking scores are summarized in Table 13. ANOVA revealed a significant effect of tool type on rankings of “easiest to learn” (F(3, 45) = 7.59; p = 0.0003), and a significantly better ranking for the block sander, when compared to all other tool types (Figure 19). There were no significant differences found among “easiest to use” rankings. ANOVA of the “overall ranking” scores did reveal a significant effect of tool type (F(3, 45) = 6.007; p = 0.0016); scores for the block sander and ventilated sander were significantly higher than those of the wet method and pole sander (Figure 20). There were no discernable differences between the block sander and ventilated sander in terms of their scores in the “overall best” ranking.

<table>
<thead>
<tr>
<th>Tool</th>
<th>Mean Score (SD) “Easiest to Learn”</th>
<th>Mean Score (SD) “Easiest to Use”</th>
<th>Mean Score (SD) “Best Overall”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>1.43 (0.63)</td>
<td>1.94 (0.93)</td>
<td>2.00 (0.81)</td>
</tr>
<tr>
<td>Ventilated</td>
<td>3.18 (0.98)</td>
<td>2.65 (1.32)</td>
<td>1.81 (1.11)</td>
</tr>
<tr>
<td>Pole</td>
<td>2.75 (0.93)</td>
<td>2.88 (0.96)</td>
<td>3.06 (0.93)</td>
</tr>
<tr>
<td>Wet</td>
<td>2.63 (1.15)</td>
<td>2.63 (1.15)</td>
<td>3.12 (1.02)</td>
</tr>
</tbody>
</table>
Usability Open-Ended Content Analysis

Frequency counts of positive and negative coded units are summarized in Table X, according to usability metric, tool, and gender of respondent. Positive and negative comment for each usability metric are also depicted graphically, in Figures X – X.
For the Ease of Use metric, the block sander received more positive comments than did the other three technologies, and fewest negative comments. Participants noted that there was more manual control of the device, in terms of maneuverability and degree of pressure applied to the joint compound surface. Also, it was noted that participants were closer to the work and could examine the progress of the sanding task, as compared to the pole and ventilated tool. The pole and wet method received substantially more negative comments on this metric than did the other two tools. In fact, with 21 and 25 comments, respectively, negative feedback on the ease of use of the pole and wet method were the most commented upon categories in the entire set of open-ended questions. For the pole, several comments were made regarding the swivel-joint at the connection between the sanding pad and the pole. This made the tool difficult to maneuver, for several of the respondents. Also, the work surface was removed from the participants’ visual field, which made it difficult for them to monitor quality and progress. The wet method received several unfavorable comments about the moisture causing the joint compound to clump. Also, that it was more difficult to obtain a smooth surface with this method. Participants also commented on the mess resulting from the dripping water/dust slurry.

Ease of Learning received few written comments, overall. Comments indicated that participants struggled with the ventilated sander in the beginning of the task. Comments indicated that the amount of water used in the wet method and the frequency of rinsing were confusing to participants. The ventilated sander and the pole performed poorly on the construct of “perceived comfort”, especially among female participants. Of 17 negative comments made about the ventilated sander, 16 of them were made by female participants. Most had to do with the weight of the device and overall length. Several female
participants noted that the tool was too large for a person their size to use effectively or for any period of time. Many mentioned hand/arm comfort associated with the ventilated sander. Several participants noted that it was difficult to change positioning of their hands during the task and that this contributed to fatigue. The pole sander also received many negative comments concerning comfort. Participants noted that it was difficult to apply the necessary pressure to the sanding surface, given the pole length and angle. The block sander had the most positive comments about comfort. Many mentioned it’s light weight and handle. Many favorable comments were made about the ability to apply appropriate pressure to the sanding surface and switch hand positions to avoid fatigue.

On “perceived productivity”, the ventilated sander performed best, receiving more positive comments in the open-ended questions. Many noted that it took far less time to accomplish the task with the powered, ventilated sander. Several comments noted that this tool would make large-scale sanding jobs more efficient. The wet method had the greatest number of negative comments pertaining to this metric. Many comments noted that this method would make a large-scale sanding project highly inefficient. The need for frequent rinsing of the sponge was the most commonly listed complaint regarding productivity. The pole sander received no positive comments. Female participants assigned low scores to the pole sander and wet method on the question of speed of task accomplishment.

Table 14 provides a summary of all units and codes assigned. A summary of all findings for this study is provided in Table 15, below.
<table>
<thead>
<tr>
<th>Code</th>
<th>Category</th>
<th>Description</th>
<th>Frequency of Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Block</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>EU</td>
<td>Ease of Use Positive</td>
<td>Comments that pertain to the user’s ability to begin using the technology. Comments that pertain to the user’s ability to arrive at a feeling of proficiency while using the technology.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Ease of Use Negative</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>EL</td>
<td>Ease of Learning Positive</td>
<td>Comments that pertain to the user’s ability to accomplish the task as instructed, once familiar with the technology.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ease of Learning Negative</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>PC</td>
<td>Perceived Comfort Positive</td>
<td>Comments that pertain to the user’s perceived ability to employ the technology to accomplish a set amount of work in a given unit of time. Comments that pertain to the user’s perceived ability to employ the technology to accomplish a desired quality level of work in a given unit of time.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Perceived Comfort Negative</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>PP</td>
<td>Perceived Productivity Positive</td>
<td>Comments that pertain to the user’s observations of physical sensation: pain, fatigue, muscle stress or strain, or lack thereof.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Perceived Productivity Negative</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

81
Figure 21: Positive and negative “Ease of Use” comments from open-ended questionnaire items

Figure 22: Positive and negative “Productivity” comments from open-ended questionnaire items

Figure 23: Positive and negative “Perceived Comfort” comments from open-ended questionnaire items
Table 15: Summary of Findings

1. **The powered, ventilated sander produces less dust than other methods.**
 a. The powered, ventilated sander produced less thoracic-size-class dust than the other three methods.
 b. The ventilated sander produced less respirable-size-class dust than the pole sander and the block sander methods.

2. **The block sander produces more dust than other methods.**
 a. The block sander, the current industry standard tool for drywall finishing work, produced more dust in the worker breathing zone than the other three methods.
 b. The block sander produced more dust in both respirable and thoracic size classes.

3. **The wet method and the pole sander offer some degree of worker protection, compared to the block sander.**
 a. The wet method, recommended by AWCI, produced less dust in the worker breathing zone, in both respirable and thoracic size classes, than did the traditional block sander.
 b. The pole sander, recommended by NIOSH to reduce breathing zone concentrations, did produce less dust in the breathing zone in both size classes, than did the traditional block sander.

4. **The block sander performs best in usability analysis.**
 a. The block sander performed best in the usability metric “ease of learning”.
 b. The block sander and ventilated sander tied for top rank in the usability metric “overall best”.
 c. On the usability construct “ease of use” analysis, the block sander received more positive comments and fewer negative comments than did the other three methods.

5. **The powered, ventilated sander performs poorly in usability analysis.**
 a. On the usability construct “perceived comfort” analysis, the ventilated sander received considerably more negative comments and fewer positive comments than did the other methods, especially from the female study participants.
 b. On the “ease of use” usability construct, the ventilated sander received lower scores than did the block sander or the wet method and received fewer positive comments than did the other three methods.
 c. Barriers to industry adoption of this technology may lie in interface problems associated with comfort and ease of use.
Discussion

The present work is part of a larger effort to identify barriers inherent to the drywall finishing work system that are preventing the use of available dust control technologies. In this larger project, each subsystem of the work system is evaluated to identify key causal factors. In this study, the technological subsystem was evaluated through a lab-based experiment of technology effectiveness and usability, with the objective of identifying the best method of reducing breathing-zone dust concentration and barriers to adoption of that technology.

The ventilated sander produced significantly less dust in the thoracic size class than did all the other sanding technologies and less dust in the respirable size class than did the pole and block sander. These findings are consistent with previously published case study data that reported that ventilated sanders reduced worker exposure by 80% and 97%, on separate trials (NIOSH, 2000). In the present study, the ventilated sander reduced participant dust exposure by 89% in the respirable size class and 85% in the thoracic size class, when compared to the block sander. Since the block sander is the current industry standard tool for drywall finishing, it can be said that use of ventilated sanders could reduce occupational exposure by 85% to 89%.

The wet method produced significantly less dust in the respirable size class than did the block and pole technologies. And, it produced significantly less thoracic sized dust than did the block sander. This finding is also consistent with the previous NIOSH (2000) Health Hazard Evaluation that indicated wet methods reduced worker exposure. Also, it supports the AWCI (1995) recommendation of this method for dust control purposes.
The pole sander produced significantly less dust in both size classes than did the block sander. This finding is consistent with a previous study by NIOSH (2000) that stated that pole sanders reduce breathing zone concentrations of dust.

The block sander, the tool used most commonly in drywall finishing industrial practice, produced significantly more dust in both size classes compared to the other three technologies. Therefore, worker exposure to drywall dust can likely be substantially reduced if ventilated, pole, or wet method techniques were used in practice.

Based on the present results, a ventilated sander is the tool recommended by the author for use in the drywall finishing industry. The pole sander and wet method, despite findings of their effectiveness in reducing dust concentrations, are not recommended. While the wet method did reduce dust in the respirable size class, it was not as effective in the thoracic size class. The pole sander was less effective in both particle size classes than was the ventilated sander. Also, both performed very poorly in the usability portion of the study.

A recent study of industry usage rates of these technologies (Chapter 2) found that 15.9% of firms reported using ventilated sanders always and 24.2 percent reported using them often. This finding indicates that nearly 60% of firms are not using the technology on a regular basis. Furthermore, these usage rate findings were likely artificially inflated. Open-ended follow-up questions found that some respondents were referring to the use of shop vacuum cleaners for post-sanding dust removal, or to room ventilation fans, in
answering that question. So, in all likelihood, far fewer than 40% of firms are using ventilated sanders on a regular basis.

The purpose of this study was to identify potential problems with the tool-human interface that might be serving as barriers to technology adoption in the industry. In fact, the usability portion of the study did find several key factors associated with the ventilated sander that made use more difficult or less comfortable.

Issues with the size, weight and configuration of the tool were noted frequently in the open-ended portion of the usability study. The sanding unit is mounted at the end of a long pole. This configuration effectively creates a large moment arm, which in turn creates a moment about the shoulder of the worker. Responses to open-ended questions about comfort indicated that participants were experiencing discomfort in the shoulder after a five-minute sanding task. Further study is recommended into the biomechanics associated with this technology and specific parameters for redesign. The pole is not removable and the length is not adjustable. This pole would serve a purpose when the worker needed an extended reach to accomplish a sanding task, however, much sanding is done within arm’s length of the worker. Adjustability is recommended in this feature of the technology. The pole length could be made adjustable through a telescoping feature or it could be entirely removable and attached only when needed. Further, the sanding head weight could be reduced to reduce the moment about the shoulder.
Issues associated with the design of the orbital sanding interface were also noted. The orbital disc’s rotation and circular shape were mentioned by participants. There was concern that the rotation would create grooves in the finished surface and make maneuverability difficult in certain situations. There were also comments that the circular sanding face would not be useful in corners or along straight edges. Therefore, a suggestion for redesign with a rectangular oscillating sanding pad, rather than an orbital disc, is recommended.

A related complaint concerned the human ability to have a good visual field of the work surface. Participants commented that the long pole and the large orbital sanding face created barriers to task accomplishment. It was difficult to see the quality of the sanding task in the current tool configuration, because of these factors.

All of these findings are supported by those of the earlier study of firm owner perceptions to the barriers associated with this technology (Chapter 2). In that project, firm owners stated as a major barrier their concerns over tool usability and its effect on finished work quality. Several of the same themes emerged from the open-ended portion of that project, as well.

Based on the findings of this summative usability evaluation, the following guidelines have been developed for the re-design of this technology for improved use in the drywall finishing industry (Table 16.). Future research is recommended to develop and conduct iterative usability analysis of prototypes for new configurations of this sanding technology.
Table 16: Design Guidelines for Powered Ventilated Drywall Sander

<table>
<thead>
<tr>
<th>Usability Construct</th>
<th>Study Findings</th>
<th>Design Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of Use</td>
<td>Awkward</td>
<td>Make pole removable or adjustable in length</td>
</tr>
<tr>
<td></td>
<td>Rotation of sanding head created problems with</td>
<td>Oscillating sanding surface</td>
</tr>
<tr>
<td></td>
<td>maneuverability</td>
<td>Add adjustability to pole length; Removable pole to be used</td>
</tr>
<tr>
<td></td>
<td>Long pole made it difficult to sand at head-height,</td>
<td>Removable pole to be used only when needed</td>
</tr>
<tr>
<td></td>
<td>or below</td>
<td>Sanding unit as a hand-held device; add adjustability to pole</td>
</tr>
<tr>
<td></td>
<td>Could not see work area</td>
<td>length; Removable pole to be used only when needed</td>
</tr>
<tr>
<td></td>
<td>Could not maneuver in small spaces</td>
<td>Sanding unit as a hand-held device; add adjustability to pole</td>
</tr>
<tr>
<td></td>
<td>Cord/vacuum hose got in way</td>
<td>length; Removable pole to be used only when needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Coiled, retractable hose</td>
</tr>
<tr>
<td>Perceived Comfort</td>
<td>Too heavy</td>
<td>Sanding unit as a hand-held device; add adjustability to pole</td>
</tr>
<tr>
<td></td>
<td>Fatigued arms, shoulders, chest</td>
<td>length; Removable pole to be used only when needed; Use of</td>
</tr>
<tr>
<td></td>
<td></td>
<td>light—weight polymeric materials; reduce size of sanding head</td>
</tr>
<tr>
<td></td>
<td>Difficult to grip</td>
<td>Change diameter of pole to accommodate twenty-fifth percentil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>e male anthropometry</td>
</tr>
<tr>
<td></td>
<td>Difficult to change hand position</td>
<td>Add adjustability to pole length; Removable pole to be used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>only when needed; Change position of controls on pole to allow for movement of hands along pole</td>
</tr>
<tr>
<td></td>
<td>Loud</td>
<td>Dampen vibration in sanding head; use polymeric materials; muffle vacuum</td>
</tr>
</tbody>
</table>
Limitations

One primary limitation stems from the laboratory nature of this study. While such studies are more robust regarding internal validity, they are weaker in terms of external validity. Additionally, in order to control for prior experience with drywall sanding technology, novice users served as study participants. Again, this will yield results that are less externally generalizable. However, since the purpose of this study is to evaluate the technological subsystem, then the choice to avoid the use of skilled drywall finishers served to reduce confounding error that might arise from mixing the worker subsystem into this study. Additionally, it was the author’s intention to use the results of this study to in future research that will involve actual construction field worksites. These highly controlled data will provide a foundation for future field research.

While the standard method of conducting usability testing is to use participants who most closely represent the target user population, this study used participants who did not meet this criterion. Participants were recruited from a university student population, while the target user population for drywall sanding technology would be people who are employed in construction trades. The decision to use non-representative participants was carefully considered and deemed appropriate because of the importance of minimizing any confounding error arising from previous experience with drywall sanding technology. Another limitation arose from the selection of participants. While participants were required to have no prior experience with drywall sanding, it had not been required that they have no knowledge of usability or human factors engineering. Several of the study participants were students of human factors engineering and, therefore, had knowledge of
several of the underlying principles of the study. This might have led to more expert
analysis of the equipment usability constructs than was desired and might have contributed
to some bias in the usability results.

Conclusions
A ventilated sander is recommended for the control of worker exposure to dust during
drywall finishing operations. This recommendation is made based on the significantly
better performance in terms of reducing dust concentrations in the worker breathing zone.
Important usability issues were revealed pertaining to “ease of use” and “perceived
comfort” in this study and should be addressed by tool manufacturers. Improved tool
design would remove the usability barriers that might be preventing consistent use of this
technology in the drywall finishing industry.
Chapter 4: Evaluation of Worker Perceptions

Dust Risk and Dust Control Associated with Drywall Finishing Operations

Abstract

Objective: Explore worker perceptions of risk associated with drywall dust exposure and perspectives on dust control options and barriers to their adoption.

Methods: Drywall finishing workers participated in semi-structured, in-depth personal interviews. Interviews were transcribed and analyzed using content analysis procedures. Attitudes and perceptions toward dust control technologies were solicited, and emergent themes were explored. The Health Belief Model, a health promotion model to describe individual perceptions of risk, benefits, and barriers associated with a given health behavior change, served as the framework for understanding workers’ readiness to adopt control technology.

Results: Workers tended to perceive a risk to health associated with the dust; however assessments of personal susceptibility to disease were low. Barriers associated with ventilated sanders were identified as being associated with organizational and cost factors. Participants overwhelmingly commented that pole sanders and wet methods are not practical methods for drywall finishing or dust reduction. Participants noted several barriers to the use of respiratory protection equipment, primarily related to comfort and usability.
Conclusions: Future interventions to improve use of effective dust control technologies in the drywall finishing work system could be aimed at increasing individual perception of susceptibility and also at addressing organizational factors that lead to low use of ventilated sander technology.

Keywords: drywall, dust, construction work, dust control, Health Belief Model, perception of risk

Introduction

Drywall finishing operations have been associated with worker exposures that exceed published occupational exposure limits for dust that contains known particulate respiratory health hazards, such as silica, talc, and mica (NIOSH, 1997). Despite the existence of engineering and work-practice control technologies for the mitigation of this hazard, these controls are not in frequent use and worker exposures persist in the construction industry (Carlton et al., 2003). A recent study of frequency of dust controls usage in drywall finishing operations revealed an overreliance upon personal protective equipment and an underutilization of pole sanders, wet methods, and ventilated sanders (Chapter 2).

Occupational exposure to dust is a public health concern, because workers in the drywall finishing trade suffer from disproportionately high rates of respiratory disease. Several recent large-scale epidemiologic studies have found associations between drywall finishing work and the morbidity and mortality of respiratory disease. In a study of proportionate mortality patterns for male construction workers in North Carolina, Wang et al. (Wang et
al., 1999) found a significant cancer risk for painters, plasterers, paperhangers, and drywall workers. This group had significantly elevated proportionate mortality ratios (PMRs) for malignant neoplasm of the pharynx (PMR = 178), of the trachea and bronchus (PMR = 118), and pneumoconiosis/other respiratory disease (PMR = 152). Specifically, drywall finishers and laborers were found to have a statistically elevated risk of death from cancer of the pharynx (PMR = 133) and lung (PMR = 110), and respiratory tuberculosis (PMR = 675). In an epidemiologic study specific to the plastering trade, PMRs and PCMRs were calculated, using United States death rate information, for all 99 causes of death listed for the 12,873 members of the Operative Plasterers’ and Cement Masons’ International Association who died between 1972 and 1996 (Stern et al., 2001). Among plasterers, significant elevated mortality was observed for lung cancer and for benign neoplasm. Kaukianen et al. (2005) found that construction painters experience a high prevalence of symptoms of upper-airway disease and that this prevalence was significantly higher than that of other construction-related trades’ workers. These authors indicated that exposure to drywall compound dust may be a significant contributing factor in this trend. In the most exhaustive industrial hygiene assessment to date of construction worker chemical exposures, Verma et al. (2003) found that airborne particulate matter was the most prevalent hazard class.

The National Institute for Occupational Safety and Health (NIOSH) published a case study of worker exposure to drywall dust and potential health effects associated with drywall finishing work during renovation activities (NIOSH, 1997). The HHE found that respiratory symptoms were common among drywall finishers and tended to improve when
workers were away from the workplace. Workers were overexposed to total dust,
respirable-fraction dust, and crystalline silica.

To control occupational health hazards, there are three categories of controls: engineering,
administrative, and personal protective equipment. Engineering controls are preferred
because they eliminate or reduce the hazard and do not burden the worker. Personal
protective equipment is the least preferred, because of the physiological burden it places on
the worker. Engineering and personal protective equipment technologies exist for the
control of worker exposure to dust from construction drywall finishing operations. These
controls are primarily vacuum sanding, wet sanding, pole sanding, low-dust joint
compound and respiratory protection.

Previous studies found that the ventilated sanding technology is highly effective, capable
of reducing worker exposure by 85 to 89% (Chapter 3), but that the of the usage rate of
these technologies in the drywall finishing industry is currently low (Chapter 2). Drywall
firm owners reported in this study that they rely primarily on respiratory protection to
prevent worker exposure to dust. In those previous studies, barriers to technology adoption
were described, as identified by firm owners and by usability study participants.

The perspective of drywall finishing workers regarding barriers to technology adoption is
the subject of the current study. In order to identify barrier to the use of the effective
control technology, it is essential to evaluate the personnel subsystem of the work system.
Of particular interest are the worker’s perceptions of risk to health associated with
occupational exposure to drywall dust, as well as their understanding of the barriers that are preventing widespread adoption of controls in their industry. To evaluate these questions, the Health Belief Model (HBM: Figure 24) served as a theoretical framework. The HBM (Rosenstock, 1960) was developed to describe the cognitive and behavioral processes related to volitional health behavior: the decision to engage in health-risk, health-compromising, or health-protective behaviors. Also important is an understanding of the various individual, familial, social and cultural factors that influence the adoption and maintenance of health-compromising or health-protective behavior.

Figure 24: The Health Belief Model (adapted from Rosenstock, 1960)
For five decades, the HBM has been one of the most widely used conceptual frameworks in the study of health behavior. The HBM has been used to explain both adoption (compliance) and maintenance (adherence) of behavior change. It has been employed in various configurations of the original model developed by social psychologists in the U.S. Public Health Service in the 1950’s (Hochbaum, 1958; Rosenstock, 1960). There is substantial empirical support for the constructs of the model and their performance in predicting health behavior. “Perceived barriers” has been found to be the strongest single predictor in the model (Janz, 1984). Therefore, the HBM was chosen as an apt model for describing the barriers to the adoption of dust control technologies in this study.

This conceptual framework has been employed in studies of occupational health. A study of volitional health behaviors to prevent exposure to severe acute respiratory syndrome (SARS), the Health Belief Model was used to describe perceived barriers and benefits to the use of a facemask during the performance of high-risk occupational tasks (Wong & Tang, 2005). An evaluation of Mexican workers’ use of hearing protective devices found that self efficacy and perceived health status were directly influencing the decision to use the devices (Kerr et al., 2002). Another study used the model to design an intervention to improve the rates of use of hearing protection devices among agricultural workers (McCullagh et al., 2002), and found that interpersonal and situation factors were primary barriers to use and were targeted in the intervention strategy.
This study employs qualitative methods to explore worker perceptions and attitudes regarding the hazards of the dust associated with their work, the available dust control technologies, and constructs of the HBM as they apply to this situation.

Methods

Participants were recruited from firms in the local (Southwest Virginia) drywall finishing industry. Potential participants were required to have a minimum of six months of work experience in the trade, and be employees of a contracting firm, rather than subcontractors or sole proprietors. This was a requirement for inclusion, since *employee* perceptions were of interest in this study (firm owner perceptions were addressed in Chapter 2). Participants were included until saturation of themes was reached. Specifically, saturation occurs when new in-depth interviews do not produce any new themes or codes, but rather repeat themes and codes of previous interviews (Cottrell, 2005). All included participants (n = 10) were Caucasian males, aged 26-53, and are thereby representative of the workforce in this region.

The interviewer (the author) met participants at their worksites and interviews occurred in a location that was removed from construction noise and that ensured privacy. Prior to the actual interview, participants completed an approved informed consent process. Interviews followed a semi-structured format using a consistent interview guide (Figure 25).
publish the results. As I mentioned on the phone, I’ll need for you to review and sign the informed consent form.

Purpose
For my graduate work, I’m investigating the dust generated from drywall sanding operations and am needing to get the opinions of experts in the field. My long-range goal is to improve dust control techniques.

Procedure
This interview will last about 30 minutes. I will be recording it and also taking some notes. There are no right or wrong answers, I am just seeking your opinion as an expert on drywall operations. You may end the interview at any time.

1. Can you tell me about your work as a drywall finisher? How long have you been doing it?
2. What is your opinion of the dust? Is it a problem? (probes: do you think it is a health problem? Do you think it is a nuisance? Is it worth controlling?)
3. In your work experience, what types of dust control have you seen used? (probes: why or why not?)
4. Have you used a vacuum system? (shows picture) (probe if answer negative: why not?)
5. Have you used wet methods? (shows picture) (probe if answer negative: why not?)
6. Have you used a pole sander? (shows picture) (probe if answer negative: why not?)
7. Have you used respiratory protection? (shows picture) (probe if answer negative: why not?)
8. If you’ve never used anything to control the dust, why not? (probe if answer negative: why not?)
9. What do you think would motivate you to use something?

Figure 25: Format of Semi-structure Interview.

Interviews lasted from 10 to 44 minutes, with a median of 23 minutes. During the interview, participants were shown photos of the technologies in question, to ensure consistent understanding of what was being discussed. Participants were compensated for their time at a rate of $15 per hour. Interviews were audio recorded and later transcribed verbatim by the author. Transcripts were analyzed using content analysis methods. Codes that were both exhaustive and mutually exclusive were established for the set of open-ended responses, by the researcher. Codes were created that mapped back to the research questions pertaining to constructs of the Health Belief Model. The code definitions are presented below (Table 17). Transcript texts were unitized by the researcher. Text was
divided into discrete passages that were unified on a content theme. Units were defined as phrases, sentences, or groups of sentences that were connected in context. Coding units were defined as sentences or groups of sentences connected on a unifying thought. Codes for perceived barriers were grouped by type of control technology. Frequencies of occurrences of codes were the main metric of interest.

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Threat of Disease (PT)</td>
<td>Comments that pertain to the participant’s perceptions of severity or susceptibility of disease associated with drywall dust.</td>
</tr>
<tr>
<td>Perceived Benefits of Control (BEN)</td>
<td>Comments that pertain to the participant’s perceptions of benefits associated with using dust control technology in question.</td>
</tr>
<tr>
<td>Perceived Barriers to Control (BAR)</td>
<td>Comments that pertain to the participant’s perceptions of barriers associated with using dust control technology in question.</td>
</tr>
<tr>
<td>Cues to Action (CA)</td>
<td>Comments that pertain to motivations to adoption of the use of one or more of the technologies.</td>
</tr>
</tbody>
</table>

Results

The content analysis procedures yielded 532 coded units that were further grouped into several subcategories. These are summarized, below, along with representative quotes (Table 18).

<table>
<thead>
<tr>
<th>Code</th>
<th>Sub-categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Threat of Disease (PT)</td>
<td>1. Negligible Risk (NR) Comments that indicate that the drywall dust is not a health concern or poses very little risk to personal health. Examples: “Everything causes cancer, or so they say.” “It’s just a part of the job, I’m not too concerned about it”. “Can’t be any worse than this cigarette.”</td>
</tr>
<tr>
<td></td>
<td>2. Perceived Risk (PR) Comments that indicate that the drywall dust is perceived to have</td>
</tr>
</tbody>
</table>
some risk to the participant’s health. Examples: “I know it has silica in it and that isn’t good. Who knows, maybe someday it’ll be like asbestos and they’ll have OSHA all over it” or “I know it’s a problem, because I can feel it”.

<table>
<thead>
<tr>
<th>Perceived Benefits of Control (BEN)</th>
<th>25</th>
<th>Examples: “It’d be nice to not get into my truck and go home to my family all covered in that dust” or “It’s the worst part of the job. Cleaning up that is a total pain in the butt. We should do something” or “It gets in my eyes, makes my throat scratch, I would want to use something to keep it down”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived Barriers to Control (BAR)</td>
<td>82</td>
<td>Ventilated Sander Cost (45) Organizational Barriers (32) Usability Barriers (5) Pole Doesn’t reduce dust (56) Wet Usability Barriers (43) Example: “Anyone who tells you wet methods work is lying to you!”</td>
</tr>
<tr>
<td>Cues to Action (CA)</td>
<td>95</td>
<td>Regulatory (23) Comments pertaining to a lack of regulatory driver. Example: “I bet you if OSHA was to start cracking down on it, we’d see it (controls being adopted)” Organizational (60) Comments pertaining to owners/managers and fellow workers and the patterns of use in that work system. Example: “If they was to buy it and make it mandatory, we’d use it” or “They won’t spend on that. That’d cut into the bottom line. We’d use it if they’d buy it” Usability (12) Comments that pertain to the methods perceived usability issues – that if these issues were to be resolved, then use of the methods would improve.</td>
</tr>
</tbody>
</table>
Perceived Threat

The majority of coded comments pertaining to the perception of risk to health associated with the drywall dust did indicate that participants perceive an inherent health risk. More than twice the number of coded comments indicated a perceived risk to health (N=64), than did comments indicate a negligible risk to health (N=31). This finding is of interest, when compared to a recent study of firm owner perceptions that found that just half of the firm owners perceived any risk to worker health and only six percent rated the risk as high (Chapter 2). It would appear from these findings that workers and owners have differing evaluations of the risk to worker health. This finding might be key in understanding why dust controls are used infrequently by drywall finishing firms.

Although the majority of comments indicated that participants perceive a high risk to health, very few comments indicated a personal susceptibility to disease. It would seem, from these comment trends, that workers do understand that mineral dust poses a risk to health, however they do not perceive themselves to be at personal risk of developing negative health outcomes. Therefore, the overall perception of threat associated with the dust is lower, as in the Health Belief Model, perception of threat is a combination of perception of seriousness and perception of susceptibility. This finding might serve to elucidate a causal factor in the low adoption rates of respiratory protection devices by workers.
Barriers

A primary concern of this project was the barriers that exist that prevent the use of various dust control technologies. Workers identified several barriers, for each technology type. The ventilated sander, which has been found in other studies to be the most effective dust control technology of the group studied here (Chapter 3), was not used by any of the participants interviewed. All were familiar with the technology, with one having seen it in use. The one who had seen this technology in use mentioned that it seemed to increase productivity, in that the worker was able to cover more area in a shorter period of time. The majority of comments described barriers associated with organizational factors or cost of the equipment. Many comments pertained to the participants’ perception that the owners of the firms would not expend the resources on this type of equipment. Several of the comments indicated that owners passed the burden of control on to the workers. This finding is in agreement with a similar finding of a recent study of firm owner perceptions (Chapter 2). In that study, firm owners indicated that they believed it was the workers’ responsibility to protect themselves. A few of the comments in the current study indicated that the participants perceived there to be usability barriers associated with the ventilated sander equipment. Some mentioned that it would be too difficult to maneuver or to use on new construction sites, due to the lack of a power source. These findings are in agreement with previous studies of firm owner perceptions and a laboratory-based usability study (Chapter 2).

For both the pole sander and the wet methods, participants overwhelmingly indicated that these methods would not be acceptable means of dust reduction. The participants all stated
that they had used pole sanders in their work, but that they did not believe that pole sanders would effectively reduce the dust. Many mentioned that they have experienced being “covered with dust” following the use of a pole sander. A recent laboratory study did find that the pole sander produced less breathing-zone dust than did the regular block sanding tool. However, it did not eliminate the dust from the work environment (Chapter 3). The participants in this study expressed familiarity with the wet method of sanding, but only one third stated that they had tried this method. All comments pertaining to this method stated that it was not a practical means of performing drywall sanding. The Association of the Wall and Ceiling Industries, however, recommends this method in its technical publication, “Guide for the Finishing of Gypsum Board” (AWCI, 1995). And, a recent laboratory study did find that this method produces less dust than does the standard dry block method (Chapter 3). However, this finding is in agreement with findings of a recent survey of firm owner opinions on the wet method, in which they stated its impracticality (Chapter 2).

Respiratory protection equipment was available to all participants interviewed in this study. All reported having used the technology at some point in their drywall work. Barriers to its consistent use were mostly related to the usability of the technology. Most comments pertained to comfort factors associated with prolonged use of respiratory protection. Many comments indicated that the equipment made breathing more difficult. Many reported that too much moisture accumulates inside the respirator. Several comments indicated that the masks don’t seem to function properly. For example, participants noted a sensation of dust in their mouths or a visible deposition of dust on their
faces, once the masks were removed. Some of the comments noted the discomfort of the masks pressing against the skin of the face.

Factors associated with interpersonal or organizational barriers were noted in the comments pertaining to the barriers associated with the use of respiratory protection equipment. Some indicated that managers/owners did not encourage their use or that co-workers actively discouraged their use, through negative comments directed at those using them.

Cues to Action
In response to the question about what factors might motivate increased use of dust control technologies, a majority of the response comments were concerned with organizational factors. Primarily, the participants indicated that owners/managers needed to take responsibility for acquiring and implementing dust control technologies. Some comments indicated that increase regulatory drivers would increase implementation of dust control in this industry. Several comments were made about the Occupational Safety and Health Administration (OSHA) that indicated a belief that firm owners respond to a fear of regulatory oversight.

Discussion
The present work is part of a larger effort to identify barriers inherent to the drywall finishing work system that are preventing the use of available dust control technologies. In this larger project, each subsystem of the work system is evaluated to identify key causal
factors. In this study, the personnel subsystem was evaluated through in-depth personal interviews of workers in the drywall finishing trade, with the objective of identifying barriers to technology adoption. The results of this study were used, along with findings of studies of the organizational subsystem and technological subsystem, in a macroergonomics evaluation of the drywall finishing work system. Recommendations were made to improve dust control in the industry, as a result (Chapter 5).

The findings of this study concerning the constructs of the Health Belief Model are depicted graphically in a modified version of the model, specific to this occupational health problem (Figure 26.).

Figure 26: Health Belief Model to Describe Drywall Dust Control (adapted from Rosenstock, 1960)
The present study found that workers had a high perception of the risk associated with the dust, but a low perception of individual susceptibility to respiratory disease. These findings were consistent with those of an earlier study on worker perception of risk and the use of hearing protection devices (Arezes and Miguel, 2005). That study found that individual risk perception was an important predictor of safety behavior, but that workers had low estimates of personal susceptibility to hearing loss and that their assessments of objective risk were faulty.

Findings here indicate that few dust controls are currently in use in the subject population. While the drywall finishers did indicate having access to respiratory protection equipment, that technology is seldom used in practice. The low usage rates were attributed, in large part, to usability barriers associated with the personal protective devices.

Participants indicated that other, more effective, dust control technologies are not in use in their work organizations. The main barriers identified to explain this were organizational and cost. Cost barriers were perceived by the participants as the underlying causal factors to explain manager/owner reluctance to make control technologies available. Organizational barriers included issues such as management/worker relations and interpersonal influences. Management/worker relations were inclusive of comments about management support for the use of controls and management willingness to provide access to control technologies. Interpersonal influences included comments about the influence of co-worker opinion and behavior on the interviewee’s use of controls technologies. These findings are similar to those of a related study of factors influencing worker use of hearing
protection in the agricultural industry (McCullagh, et al., 2002). In that study, it was found that interpersonal influences and perceived barriers were the strongest predictors of use of hearing protection. Similarly, a study employing structural equation modeling of factors associated with factory worker decision to use hearing protection equipment found that benefits of use, barriers to use, and gender were significant predictors of adoption of protective devices (Lusk, et al. 1994).

Limitations

A primary limitation of this study was associated with the narrow set of demographic parameters associated with the participant sample. Since this was a convenience sample of workers from the drywall finishing industry local to Southwest Virginia, the generalizability of the results is limited. However, the results are consistent with many findings of related projects by the authors. An expansion of this project, with a sample that ensures representativeness of the industry-wide demographics, would enhance our understanding of worker perceptions in this field. An additional limitation arises from the qualitative nature of the study, which prevents direct comparison of results to similar studies employing quantitative methods.

Conclusions

Workers perceive a health risk associated with drywall dust; however their individual perceptions of susceptibility to disease are low, which might impact their health behavior outcomes in choosing to protect themselves from the dust on the job. Several key barriers to the use of dust control technology were identified. Organizational and cost barriers
were of primary note, mentioned for the ventilated sanders. Pole and wet methods were not perceived to have much practical use in the control of dust or in task accomplishment. Respiratory protection barriers were mainly in the realm of comfort, interpersonal influences, and usability. These identified barriers were used in a further evaluation of the work system and recommendations for improvement were made.
Chapter 5: Macroergonomic Evaluation
Drywall Finishing Operations and Intervention Design

Abstract

Objective:
To perform a macroergonomic evaluation of the drywall finishing work system, using the System Analysis Tool (SAT), with the purpose of developing several intervention alternatives to reduce worker exposure to drywall dust.

Methods:
Findings from three separate studies of the subsystems of the drywall finishing work system were used as inputs into the Systems Analysis Tool (SAT). A Problem Factor Tree (PFT), Objectives/Activities Tree (OAT), and Input-Output Flow Diagram were developed to describe the barriers inherent to the current drywall finishing industry use of dust control technologies.

Results:
Educational, health promotion, tool redesign, and regulatory interventions are proposed as strategies to improve dust control and worker protection in the drywall finishing industry.

Keywords: macroergonomics, drywall, dust, construction work, usability, dust control
Introduction

Respiratory disease among construction workers in general, and plasterers and wall finishers in particular, is a major public health concern. Workers in these trades suffer from disproportionately high rates of respiratory disease and disability (Wang, 1999). Drywall finishing operations have been associated with worker over-exposure to dust that contains known particulate respiratory health hazards, such as silica, talc, and mica (NIOSH, 1997). Despite the existence of engineering and work-practice control technologies for the mitigation of this hazard, worker exposures persist in the construction industry (Carlton et al., 2003).

Three studies (Chapters 2 - 4) were conducted as distinct parts of a collective project concept that employed a macroergonomic framework to evaluate the drywall finishing work system with the intent of designing interventions to improve industry-wide dust control. The main findings of each were employed as inputs in this macroergonomic system analysis.

The macroergonomic approach defines a work system as one in which two or more people work together in interaction with technology within an organizational context (Kleiner, 2006). This definition identifies three key subsystems of any work system: personnel, technological, and organizational. The organizational subsystem can be further described as having internal and external influences: physical, cultural, legal and political. According to the macroergonomic approach, all subsystems should be included in system analysis, design, and improvement (Hendrick, 2001). In the drywall finishing work
system, it can therefore be assumed that organizational, human, and technological factors are important considerations when planning work designs to improve worker health. Therefore, all three subsystems were evaluated for potential barriers to the control of dust in drywall finishing operations (Figure 27). To perform the macroergonomic evaluation, three studies were designed to solicit information about barriers inherent to each of the major subsystems. Information regarding these identified barriers is then employed in the System Analysis Tool (SAT), to develop recommended alternatives for system improvement.
Study 1.

An evaluation of the organizational subsystem was performed in this study of drywall finishing firm owner perspectives. A telephone survey was administered to a target sample of 1000 drywall-finishing contractor firms listed in the two major trade organizations in that field. This survey was constructed to measure the frequency of use of four primary and contemporary dust control technologies and respiratory protection. For each technology, firms were asked about barriers to implementation.

Study 2

In this study, problems inherent to the technological subsystem, especially the technology-user interface was examined. In a laboratory setting, participants performed simulated drywall finishing tasks using each of the four most common methods: plain sanding block, pole sander, wet method, and vacuum sander. Resulting dust concentrations and usability metrics were the outcomes of interest. Barriers to use associated with usability metrics were identified.

Study 3

The personnel subsystem was evaluated in the third study of worker perspectives on drywall dust control technologies. Drywall finishing worker attitudes toward the four technologies were explored through in-depth personal interviews. Attitudes and perceptions toward the technologies were solicited, and emergent themes were explored. Workers described perceived barriers to the adoption of the various dust control technologies.
Methods

Systems Analysis Tool (SAT)

The Systems Analysis Tool (SAT) is the macroergonomics work system assessment methodology employed in this study. The SAT has roots in systems engineering theory (Hall, 1969) and a system analysis framework for policy decision making (Mosard, 1982). It is restated as a formal tool in the Handbook of Human Factors and Ergonomics Methods (Stanton et al, 2005). This tool consists of a seven step process for identifying work system problems and causal factors and developing strategic solutions:

1. Define the problem: create a problem factor tree (PFT)
2. Develop an objectives/activities tree (OAT)
3. Model alternatives: the input-output flow diagram (IOFD)
4. Evaluate alternatives: evaluation scorecard table (EST)
5. Select an alternative: decision criteria table (DCT)
6. Plan for implementation: scheduling and management of project flow
7. Evaluation, feedback, and modification process

The current research employs the first three steps of this process to analyze the diverse problem factors associated with the drywall finishing industry low usage of dust control measures and then to develop several intervention alternatives.
1. Problem Factor Tree (PFT)

From the system performance data collected in previous work by the authors, the problem factor tree (Figure 28) was constructed to assess problems and causal factors of the breakdown in use of drywall sanding operations dust control technologies. This tool incorporated inputs from the three main subsystems of the drywall finishing industry: organizational, technological and personnel. Additionally, external environmental and interface factors were included in the analysis.

The problem under consideration is the fact that dust control technologies are not being used during drywall finishing operations. Root causal factors contributing to this problem were identified as arising from the technology, the interface between the technology and the human users, the work environment, the organizational system, the worker system, and the external environment and are shown across the base of the PFT diagram. Studies of each of these subsystems found the main themes identified and are shown as problem factors in the body of the PFT. These are the main problem elements, constraints, and barriers that contribute to the sub-problem elements: tendency to choose sub-optimal sanding technology, reliance on personal protective equipment as a means of control, failure to use respiratory protection when it is provided, failure of the workers and managers to accurately assess the risk to human health associated with drywall dust, and failure of the workers and managers to accurately assess the benefits that would be derived from the use of dust control technologies.
The ventilated sander and the low-dust joint compound are the two dust control technologies recommended by the authors of this study. This decision is based upon the laboratory study findings, which indicated that the ventilated sander offers the greatest degree of worker protection, as compared to the dry block sander, the wet methods and the pole sander. The survey of firm owners and interviews of workers, which indicated significant barriers to the use of wet methods and the results of the firm owner survey, which indicated a high degree of interest in using the low-dust joint compound, are also key factors in the selection of these technologies. And, lastly, important were the results of the usability study, in which the ventilated sander performed well overall.

With that objective in mind, the following table (Table 19) summarizes the barriers that have been identified that stand in the way of industry-wide adoption of either of these technologies. These barriers are then used in the subsequent steps of the SAT evaluation.

<table>
<thead>
<tr>
<th></th>
<th>Ventilated Sander</th>
<th>Low-dust Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational</td>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td>Usability</td>
<td>Availability</td>
</tr>
<tr>
<td></td>
<td>Environmental Factors</td>
<td>Effectiveness</td>
</tr>
<tr>
<td></td>
<td>Productivity</td>
<td></td>
</tr>
<tr>
<td>Technological</td>
<td>Usability</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Perceived Comfort</td>
<td></td>
</tr>
<tr>
<td>Personnel</td>
<td>Cost</td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td>Organizational Factors</td>
<td>Effectiveness</td>
</tr>
<tr>
<td></td>
<td>Environmental Factors</td>
<td></td>
</tr>
</tbody>
</table>

Table 19: Barriers to Adopting Technologies, as Identified in Studies of the Organizational, Technological, and Personnel Subsystems of the Drywall Finishing Work System
Most effective dust control technology (vacuum sander) is poorest performer at usability metrics of “ease of use”, “ease of learning”, “comfort”.

Most effective tool (vacuum sander) creates moment about the shoulder of the worker, creating potential for musculoskeletal disorder.

Sanding tool without dust control (block sander) is best performer at usability metrics of “ease of use”, “ease of learning” and “comfort”.

Firm owners report that vacuum sanders require too much skill on part of worker.

Workers report vacuum sanders difficult to use on edges and corners.

Powered vacuum sander with long pole and heavy sanding head. Pole only needed for hard-to-reach areas.

Powered sander creates noise hazard.

Respiratory Protection creates burden on worker and requires medical clearance.

Wet methods rated poorly in laboratory study, by drywall finishing workers, and by firm owners in terms of effectiveness and productivity.

Pole sanders only used for accessing hard-to-reach areas and not for worker removal from dust.

All report a lack of familiarity with low-dust joint compound.

Firm owners and workers report that vacuum sanders require electricity and not always available or easily accessible.

Firm owners perceive that open-air projects are lower risk in terms of employee dust exposures, mistaking general ventilation with local ventilation.

Workers report expectation that powered vacuum sander would increase productivity in larger work spaces.

Owners report concern for dust control tied to type of facility under construction: control for hospitals or schools, no control for commercial or residential.

Firm owners report cost a factor in decision—vacuum systems too costly.

Worker perception of management lack of concern for worker health.

Management belief that it is the worker responsibility to use protective equipment.

Management belief that dust exposure is “part of the job”.

Worker reluctance to request dust control.

High turnover rates in employment.

Temporary, migrant, and undocumented workforce.

Firm owner risk perception variance from actual risk.

Worker perception variance from firm owner perception of risk to health.

Worker acceptance of dust as “part of the job”.

Worker inaccurate perception of benefits of control technology.

Worker low self efficacy regarding locus of control for personal health.

Lack of regulatory drivers.

Lack of enforcement for construction industry.

Lack of customer demand for dust control, despite customer satisfaction problems.

Problem Arising From

Human-Tool Interface

Sanding Technology

Work System Environment and/or Facilities

Organizational System

Worker System

External Environment

Figure 28: Problem Factor Tree
2. Objectives/Activities Tree (OAT)

The second step in the SAT is to set objectives and develop evaluation criteria (Figure 29). This is accomplished by identifying major needs, goals, objectives and sub-objectives associated with the identified problem. For the problem at hand, the major goal is a reduction of worker dust exposure in the drywall finishing industry. One objective would be an increased use of ventilated sanders and low-dust joint compound, as these are the methods that have emerged from these combined project as the optimal solutions, based on firm owner, worker, and usability study outcomes. A second objective would be a diminished reliance on respiratory protection as a means of protecting workers.

Intermediary objectives that would need to be addressed in order to achieve the goal would include changes to tool design to address usability issues, a change in worker perception of risk and susceptibility and a change in firm owner perception of locus of responsibility for dust control: shifting the burden from the worker to the owner.

![Objectives/Activities Tree (OAT)](image_url)

Figure 29: Objectives/Activities Tree (OAT)

Figure 30: Input-Output Flow Diagram

4. Recommended Alternative Solutions

Increase Regulatory Drivers

An increase in regulatory oversight of the industry would provide incentive to the firm owners to ensure that dust concentrations do not exceed permissible exposure limits for silica. An absence of this sort of incentive or driver was noted in both the studies of firm
owner perceptions (Chapter 2) and drywall worker perceptions (Chapter 4). Firm owners indicated this absence of incentive when discussing their barriers associated with the low-dust joint compound. Several comments were made that it would not make sound business sense to adopt the use of a joint compound that was more costly than the current products used. In the interviews with workers, many comments were made about regulatory drivers, when the participants were asked about cues to action. A theme emerged that indicated that it is the belief of the workers that construction firm owners are motivated by a fear of regulatory consequences.

The Occupational Safety and Health Administration (OSHA) does have some current standards concerning some of the primary constituents of drywall joint compound. In its standards for the construction industry (29 CFR 1926.55), it has adopted the “Threshold Limit Values of Airborne Contaminants for 1970”, a list of occupational exposure limits published by the American Conference of Governmental Industrial Hygienists. This list includes exposure limits for crystalline quartz (silica), talc, and mica. The standard states that exposure to employees above these specified limits shall be avoided. It also states that compliance is to be achieved through the use of administrative or engineering controls as a first option, whenever feasible. It then states that the use of personal protective equipment is allowed when these other control types are not feasible.

While this regulation does exist to control worker exposure to these hazards, enforcement of it is not commonplace. According to a summary report by Roznowski (2000), for the period 1985 to 1996, there were only 128 health inspections of silica exposure in the
construction industry. Of these, the majority (53) were undertaken because of a referral from the National Institute for Occupational Safety and Health. A large proportion (43) was initiated via employee complaint. Eighteen of the inspections were follow-up, and only 14 were planned. This indicates that inspections of this nature, for this hazard and in this industry, have been a low priority for OSHA in the past. This same report indicated that 22% of the samples taken by OSHA for silica exposure in the drywall trades of the construction industry, during that same time period, exceeded the occupational exposure limits. Roznowski also notes in this report that, for the given period of time, 11% of the deaths due to silicosis in the United States were workers of this trade group.

Based on these reports and the findings of studies of firm owner perceptions of barriers and worker perceptions of cues to action, it is the recommendation of the author that regulatory oversight of this hazard be increased in the future. This could add a significant cue to action to adopt effective controls for both the owners and the workers of this industry.

Tool Redesign

It is recommended that the ventilated sander be subjected to iterative re-design procedures, factoring in usability testing and biomechanics analysis, to address some of the key findings of this research. Notably, adjustability in the length of existence of a pole on the sanding head, and the weight and vibration associated with the device. Also key is the ability to operate in both large- and small-scale work settings and in settings without a power supply. Following is a set of design heuristics (Table 20) that emerged from the laboratory study of the usability of this technology.
Table 20: Design Guidelines for Powered Ventilated Drywall Sander

<table>
<thead>
<tr>
<th>Usability Construct</th>
<th>Study Findings</th>
<th>Design Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of Use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awkward</td>
<td>Make pole removable or adjustable in length</td>
<td></td>
</tr>
<tr>
<td>Rotation of sanding head created problems with maneuverability</td>
<td>Oscillating sanding surface</td>
<td></td>
</tr>
<tr>
<td>Long pole made it difficult to sand at head-height, or below</td>
<td>Add adjustability to pole length; Removable pole to be used only when needed</td>
<td></td>
</tr>
<tr>
<td>Could not see work area</td>
<td>Sanding unit as a hand-held device; add adjustability to pole length; Removable pole to be used only when needed</td>
<td></td>
</tr>
<tr>
<td>Could not maneuver in small spaces</td>
<td>Sanding unit as a hand-held device; add adjustability to pole length; Removable pole to be used only when needed</td>
<td></td>
</tr>
<tr>
<td>Cord/vacuum hose got in way</td>
<td>Coiled, retractable hose</td>
<td></td>
</tr>
<tr>
<td>Perceived Comfort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too heavy</td>
<td>Sanding unit as a hand-held device; add adjustability to pole length; Removable pole to be used only when needed; Use of light—weight polymeric materials; reduce size of sanding head</td>
<td></td>
</tr>
<tr>
<td>Fatigued arms, shoulders, chest</td>
<td>Sanding unit as a hand-held device; add adjustability to pole length; Removable pole to be used only when needed; Use of light—weight polymeric materials; reduce size of sanding head</td>
<td></td>
</tr>
<tr>
<td>Difficult to grip</td>
<td>Change diameter of pole to accommodate twenty-fifth percentile male anthropometry</td>
<td></td>
</tr>
<tr>
<td>Difficult to change hand position</td>
<td>Add adjustability to pole length; Removable pole to be used only when needed; Change position of controls on pole to allow for movement of hands along pole</td>
<td></td>
</tr>
<tr>
<td>Loud</td>
<td>Dampen vibration in sanding head; use polymeric materials; muffle vacuum</td>
<td></td>
</tr>
</tbody>
</table>
Educational Interventions

Many of the barriers identified in the three studies are amenable to health promotion interventions strategies. In the organizational subsystem, health promotion and educational interventions are recommended to target barriers associated with firm owner perception of the risk associated with the dust, the current expectation that protection is the responsibility of the worker, and the misconceptions related to what constitutes and effective control. In the technological subsystem, educational interventions designed to communicate the relative effectiveness of the different available control technologies and the proper use of the ventilated sander, would address some of the identified barriers concerning ease of learning and productivity. In the personnel subsystem, health promotion and education interventions are recommended to target organizational barriers, particularly associated with interpersonal influences. Also in this subsystem, health promotion to alter the worker perception of susceptibility to respiratory disease is likely to improve employee health behaviors and the use of respiratory protection.

Several studies have demonstrated the usefulness of health promotion interventions in occupational contexts. Kerr, et al. (2002) applied the Health Promotion Model to improve Mexican garment factory worker use of hearing protective devices. That project identified perceived benefits and barriers to technology adoption and developed recommended intervention strategies to improve the use of hearing protection. In a study of hearing protection device use in Portugal, Arezes and Miguel (2005) found that risk perception was a major predictor of worker health behavior in this occupational context and targeted educational programs at addressing a shift in risk perception. A study of pesticide safety
practices among farm pesticide applicators also applied a health promotion model to the design of an intervention. In this case, self-efficacy and interpersonal factors were the targeted constructs in the intervention.

These studies indicate that health promotion models and associated interventions have relevance to the problems in the occupational health realm. In the present research, the issue of adoption of protective technology is at issue. This is directly analogous to the aforementioned studies of worker adoption of protective devices. Future research into the development and evaluation of an intervention to improve worker protection in the drywall industry is recommended.

Conclusions
Technologies exist to effectively reduce worker exposure to known and regulated health hazards associated with drywall finishing operations, however usage rates are low across the industry. Barriers to the adoption of protective controls exist in the organizational, technological, and personnel subsystem, as well as the interfaces among them. The Systems Analysis Tool was employed to analyze the results of previous scans of the work system and develop three alternatives for system improvement. Future research is recommended to select, implement and evaluate one or more of the recommended alternative interventions.
References

Appendix A: Institutional Review Board Documentation

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
Informed Consent for Participants in Research Projects Involving Human Subjects

Title of Project: Evaluation of Dust Control Technologies for Drywall Finishing Operations: Industry Implementation Trends, Worker Perceptions, Effectiveness and Usability (Study 3)
Investigator(s) Maury Nussbaum, PhD and Deborah Young, doctoral candidate

I. Purpose of this Research/Project
Respiratory disease among construction workers in general, and plasterers and wall finishers in particular, is a major public health concern. Workers in these trades suffer from disproportionately high rates of respiratory disease and disability. Drywall finishing operations have been associated with worker over-exposure to dust that contains known particulate respiratory health hazards, such as silica, talc, and mica (NIOSH, 1997).
Despite the existence of engineering, work-practice, and personal-protective-equipment (PPE) control technologies for the mitigation of this hazard, worker exposures persist in the residential construction industry (Carlton et al., 2003).

There are important gaps in the existing knowledge regarding this occupational health problem. A search of the literature revealed no empirical evaluation of construction industry usage trends for the various available technologies. Aside from a pilot project conducted by the National Institutes for Occupational Safety and Health, there has been no thorough evaluation of the effectiveness of the different dust control technologies (NIOSH, 2000). Additionally, investigation is needed to identify the causes of substandard controls usage. Once probable causes are identified, intervention strategies can be developed and deployed in order to improve controls usage rates in drywall finishing operations. The proposed research aims to address these gaps.

II. Procedures
You will meet with the investigator one-on-one. In that meeting, you will be given a brief introduction to the purpose and procedure of the study and the in-depth interview will proceed. The interviewer will take notes and also will audio-record the interview for later transcription.

III. Risks
Risks are minimal to you. Personal, identifying information will not be collected. Audio recordings will only be used by the researcher. The content of what is said in the interview will not be released in any format that will be connected with you.

IV. Benefits
The long-range goal of the study is to improve dust control in drywall sanding operations and to improve the technologies.

V. Extent of Anonymity and Confidentiality
This interview data will be anonymous. You will not be identified and, therefore, your identity will never be associated with this interview data.

VI. Compensation
You will be compensated at a rate of $10 per hour.

VII. Freedom to Withdraw
Subjects are free to withdraw from a study at any time without penalty. If they choose to withdraw, they will be compensated for the portion of the time of the study. Subjects are free not to answer any questions or respond to experimental situations that they choose without penalty. There may be circumstances under which the investigator may determine that a subject should not continue as a subject. The subject must be compensated for the portion of the project completed.

VIII. Subject's Responsibilities
I voluntarily agree to participate in this study. I have the following responsibilities:
To participate in an interview in which I share my opinions about dust control.

IX. Subject's Permission
I have read the Consent Form and conditions of this project. I have had all my questions answered. I hereby acknowledge the above and give my voluntary consent:

___ Date__________
Subject signature

___ Date __________
Witness (Optional except for certain classes of subjects)

Should I have any pertinent questions about this research or its conduct, and research subjects’ rights, and whom to contact in the event of a research-related injury to the subject, I may contact:

Chair, Virginia Tech Institutional Review
Board for the Protection of Human Subjects
Office of Research Compliance
1880 Pratt Drive, Suite 2006 (0497)
Blacksburg, VA 24061

__
Investigator(s) Telephone/e-mail

__
Faculty Advisor Telephone/e-mail
VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY
Informed Consent for Participants
in Research Projects Involving Human Subjects
Title of Project: Evaluation of Dust Control Technologies for Drywall Finishing Operations: Industry Implementation Trends, Worker Perceptions, Effectiveness and Usability (Study 2)
Investigator(s) Maury Nussbaum, PhD and Deborah Young, doctoral candidate

I. Purpose of this Research/Project
Respiratory disease among construction workers in general, and plasterers and wall finishers in particular, is a major public health concern. Workers in these trades suffer from disproportionately high rates of respiratory disease and disability. Drywall finishing operations have been associated with worker over-exposure to dust that contains known particulate respiratory health hazards, such as silica, talc, and mica (NIOSH, 1997). Despite the existence of engineering, work-practice, and personal-protective-equipment (PPE) control technologies for the mitigation of this hazard, worker exposures persist in the residential construction industry (Carlton et al., 2003).

There are important gaps in the existing knowledge regarding this occupational health problem. A search of the literature revealed no empirical evaluation of construction industry usage trends for the various available technologies. Aside from a pilot project conducted by the National Institutes for Occupational Safety and Health, there has been no thorough evaluation of the effectiveness of the different dust control technologies (NIOSH, 2000). Additionally, investigation is needed to identify the causes of substandard controls usage. Once probable causes are identified, intervention strategies can be developed and deployed in order to improve controls usage rates in drywall finishing operations. The proposed research aims to address these gaps.

II. Procedures
You will be given a brief training on how to sand drywall mud and then will be given instruction on how to wear respiratory protection equipment. There will be four sanding sessions, each lasting 15 minutes. You will enter the ventilated sanding area and will sand the drywall mud for 15 minutes. Afterward, you will be asked to complete a questionnaire, before beginning the next sanding session. After the four sanding sessions, you will be asked to complete a different questionnaire.

III. Risks
Risks are minimal to you. Personal, identifying information will not be collected. Dust exposure during the sanding sessions will be brief and will be controlled by the use of respiratory protection.

IV. Benefits
The long-range goal of the study is to improve dust control in drywall sanding operations and to improve the technologies.

V. Extent of Anonymity and Confidentiality
This data will be anonymous. You will not be identified and, therefore, your identity will never be associated with this interview data.

VI. Compensation
You will be compensated at a rate of $10 per hour. The experiment should take from one to two hours.

VII. Freedom to Withdraw
Subjects are free to withdraw from a study at any time without penalty. If they choose to withdraw, they will be compensated for the portion of the time of the study. Subjects are free not to answer any questions or respond to experimental situations that they choose without penalty. There may be circumstances under which the investigator may determine that a subject should not continue as a subject. The subject must be compensated for the portion of the project completed.

VIII. Subject's Responsibilities
I voluntarily agree to participate in this study. I have the following responsibilities:
To participate in a lab study involving four sanding sessions, sanding drywall joint compound. To complete user-reaction questionnaires after each sanding session.

IX. Subject's Permission
I have read the Consent Form and conditions of this project. I have had all my questions answered. I hereby acknowledge the above and give my voluntary consent:

Subject signature

Witness (Optional except for certain classes of subjects)

Should I have any pertinent questions about this research or its conduct, and research subjects' rights, and whom to contact in the event of a research-related injury to the subject, I may contact:

Chair, Virginia Tech Institutional Review Board for the Protection of Human Subjects
Office of Research Compliance
1880 Pratt Drive, Suite 2006 (0497)
Blacksburg, VA 24061

Investigator(s) Telephone/e-mail

Faculty Advisor Telephone/e-mail
Appendix B: Study 1 Survey Instrument

CALLING INFORMATION: Known Respondent Firm Original Phone Number

Hello, my name is _______ and I’m calling from the Virginia Tech Center for Survey Research regarding practices your firm may use to control dust while working on drywall projects. This brief survey will be used to improve drywall dust control technologies for the industry. Your responses are completely confidential and will never be linked to your firm in any way.

May I speak with the person in your organization who is most knowledgeable about drywall projects?

I will try calling him/her back at: ____

Q1: How would you rate the negative impact of drywall dust on your firm’s productivity? Would you say that it has had a great impact, some impact, not much of an impact, or no impact?

Q2: How would you rate the negative impact of drywall dust on customer satisfaction? Would you say that it has had a great impact, some impact, not much of an impact, or no impact?

Q3: Would you say that drywall dust poses a great threat, somewhat of a threat, not much of a threat, or no threat to the health of the workers in your firm?
If NOT MUCH OR NO – Are dust control technologies being used that are helping?

Q4: Does your firm use wet methods when sanding drywall compound always, often, sometimes, rarely, never?
 If no, why not?

Q5: Does your firm use respiratory protection such as respirators or masks when workers are sanding drywall compound always, often, sometimes, rarely, never?
 If no, why not?

Q6: Does your firm use pole sanders when sanding drywall compound always, often, sometimes, rarely, never?
 If no, why not?

Q7: Does your firm use ventilated or vacuum sanders as a means of controlling dust when sanding drywall compound always, often, sometimes, rarely, never?
 If no, why not?
Q8: Does your firm use a low-dust drywall compound or setting compound to reduce dust levels always, often, sometimes, rarely, or never?
If no, why not?

Q9: Does your firm use any other methods of controlling dust generation?

Q10: How many employees does your firm have?
Q11: Are your employees affiliated with a union?
Q12: Does your firm hire subcontractors to perform drywall finishing always, often, sometimes, rarely, or never?

Q13: Is there anything else you can tell us about your experience with drywall dust or drywall dust control technologies?
Appendix C: In-depth Interview Guide

Participant ID: _____________________

Date: ________________

Introduction
Thank you for agreeing to be interviewed. Your assistance and comments are valuable to us in our project to improve drywall finishing operations. Our conversation is completely confidential and your comments will in no way be tied to you. Please feel free to talk openly. I will be recording our conversation, for the sole purpose of being able to review it all at a later time. The recording will be kept in strict confidence and not heard by anyone but me. Results of this interview will be combined, anonymously, with those of all the interview I’ll be doing, when I publish the results. As I mentioned on the phone, I’ll need for you to review and sign the informed consent form.

Purpose
For my graduate work, I’m investigating the dust generated from drywall sanding operations and am needing to get the opinions of experts in the field. My long-range goal is to improve dust control techniques.

Procedure
This interview will last about 30 minutes. I will be recording it and also taking some notes. There are no right or wrong answers, I am just seeking your opinion as an expert on drywall operations. You may end the interview at any time.

1. Can you tell me about your work as a drywall finisher? How long have you been doing it?

2. What is your opinion of the dust? Is it a problem?
 a. (probes: do you think it is a health problem? Do you think it is a nuisance? Is it worth controlling?)

3. In your work experience, what types of dust control have you seen used? (probes: why or why not?)

4. Have you used a vacuum system? (probe if answer negative: why not?)

5. Have you used wet methods? (probe if answer negative: why not?)

6. Have you used a pole sander? (probe if answer negative: why not?)

7. Have you used respiratory protection? (probe if answer negative: why not?)

8. If you’ve never used anything to control the dust, why not? (probe if answer negative: why not?)

9. What do you think would motivate you to use something?
Appendix D: Usability Evaluation Instrument – Individual Technology

Technology Type: __________

Participant Code: ______________

Please indicate your opinions of the following, using the scale provided:

<table>
<thead>
<tr>
<th>Ease of Learning</th>
<th>Strongly Disagree</th>
<th>Disagree</th>
<th>Neutral</th>
<th>Agree</th>
<th>Strongly Agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>I felt this was easy to learn.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>It did not take long for me to feel like I was using it correctly</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Anyone could learn to use this quickly</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>Strongly Disagree</td>
<td>Disagree</td>
<td>Neutral</td>
<td>Agree</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>I felt like it was easy to use this to do the sanding</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>I did not feel frustrated while using this technology</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>I would choose to use this sanding technology, if I had to perform this task in real life</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>I didn’t have any problems while using it</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Productivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Strongly Disagree</td>
<td>Disagree</td>
<td>Neutral</td>
<td>Agree</td>
<td>Strongly Agree</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>I felt like I could get the sanding done quickly with this technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I felt like I could get the sanding done correctly while using this technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I felt comfortable while using this technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I felt I had to apply a lot of force to accomplish the sanding task</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>My hand/arm felt comfortable during this task</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments:
Appendix E: Usability Evaluation Instrument – Technologies Comparison

Please use the following rating scale to rank your preferences regarding the sanding technologies used in this study:

1 = Best
2 = Second Best
3 = Third Best
4 = Worst

A. Please rate in terms of easiest to learn to use:

 ___ Sanding block
 ___ Pole Sander
 ___ Wet Method
 ___ Vacuum Sander

B. Please rate in terms of easiest to use to perform the task:

 ___ Sanding block
 ___ Pole Sander
 ___ Wet Method
 ___ Vacuum Sander

C. Please rate in terms preference overall:

 ___ Sanding block
 ___ Pole Sander
 ___ Wet Method
 ___ Vacuum Sander
D. For Overall BEST: Why was this your choice?

E. For Overall WORST: Why was this your choice?

Appendix F: Study 1 Responses to Open-Ended Questions

Q3. Are dust control technologies being used that are helping?

<table>
<thead>
<tr>
<th>Respondent #</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>261</td>
<td>New masks fitted once a year.</td>
</tr>
<tr>
<td>59</td>
<td>Broom.</td>
</tr>
<tr>
<td>75</td>
<td>Yes.</td>
</tr>
<tr>
<td>55</td>
<td>We use vacuum Sanders and dust masks.</td>
</tr>
<tr>
<td>56</td>
<td>Vacuum Sanders.</td>
</tr>
<tr>
<td>264</td>
<td>Use a new taping compound by USG.</td>
</tr>
<tr>
<td>74</td>
<td>Yes.</td>
</tr>
<tr>
<td>263</td>
<td>Dustless vacuum for tapers and we use 3M dust masks.</td>
</tr>
<tr>
<td>73</td>
<td>No.</td>
</tr>
<tr>
<td>57</td>
<td>Respirators and safety glasses.</td>
</tr>
<tr>
<td>48</td>
<td>Use dust protection methods (like respirators).</td>
</tr>
<tr>
<td>65</td>
<td>Relies on dust masks.</td>
</tr>
<tr>
<td>40</td>
<td>Yes, we use respirators.</td>
</tr>
<tr>
<td>258</td>
<td>Respirators.</td>
</tr>
<tr>
<td>267</td>
<td>We use respirators.</td>
</tr>
<tr>
<td>22</td>
<td>Yes, we use dust masks, etc.</td>
</tr>
<tr>
<td>21</td>
<td>Yes, depends on the job we use vacuum Sanders and masks.</td>
</tr>
<tr>
<td>38</td>
<td>Yes, respiratory protection.</td>
</tr>
<tr>
<td>37</td>
<td>We dust barriers.</td>
</tr>
<tr>
<td>14</td>
<td>Yes, use dust masks when sanding.</td>
</tr>
<tr>
<td>17</td>
<td>We use dust masks.</td>
</tr>
<tr>
<td>35</td>
<td>Wear respiratory protection or dust masks.</td>
</tr>
<tr>
<td>61</td>
<td>No comment.</td>
</tr>
<tr>
<td>79</td>
<td>Yes gypsum low duct taping product.</td>
</tr>
<tr>
<td>85</td>
<td>Seals work areas with Visqueen (polyvinyl barriers).</td>
</tr>
<tr>
<td>71</td>
<td>No more asbestos in drywall.</td>
</tr>
<tr>
<td>63</td>
<td>Few occasions, hospital or nursing homes take more measures.</td>
</tr>
<tr>
<td>266</td>
<td>They wear masks.</td>
</tr>
<tr>
<td>29</td>
<td>Dust masks and respirators.</td>
</tr>
<tr>
<td>82</td>
<td>Yes, wear masks and safety glasses.</td>
</tr>
<tr>
<td>62</td>
<td>Face masks, hats and taping areas off.</td>
</tr>
<tr>
<td>28</td>
<td>Using protection like masks.</td>
</tr>
<tr>
<td>19</td>
<td>Not really.</td>
</tr>
<tr>
<td>257</td>
<td>Vacuum Sanders.</td>
</tr>
<tr>
<td>20</td>
<td>We do dustless sanding.</td>
</tr>
<tr>
<td>262</td>
<td>Masks.</td>
</tr>
<tr>
<td>2</td>
<td>Masks, vacuum filters, heppa filters.</td>
</tr>
<tr>
<td>27</td>
<td>Yes, we use dust masks, and electric vacuum cleaners.</td>
</tr>
<tr>
<td>15</td>
<td>Not really, just what is in the mud and vacuum sanding.</td>
</tr>
</tbody>
</table>
OSHA masks, respirators and negative air systems.

Does use various control technologies, like respirators.

Dust masks and vacuum sanders.

Q3. Continued

Use masks.

Particle masks required on jobs.

Masks, air filtration system, low dust products, and vacuums.

Masks and plastic barricades.

Dust masks and vacuum sanders.

Masks and protected sanders.

Dust masks, respirators, Visqueen barriers.

Negative air. Vacuum sanders.

Use respirators, and dust collectors.

Filtered air

Dust masks.

Use masks.

Masks.

Dust masks, negative air rooms, vacuum sanders.

The dust masks and filters are being improved.

We use ventilation, vacuum sanders.

Respirators, air movers (ventilation).

We wet it down when needed.

Yes.

Use proper protections; follow OSHA standards.

No.

Vacuum sanders.

We use masks and sanding vacuums.

Dustless sanders, masks.

Use face mask.

Fresh air ventilation (although it mainly just moves the particulate around the site); mister (airborne water) systems to weigh down the dust and remove it from circulation; respirators and masks; absorbent materials to take the airborne particulates out of circulation.

No.

Use dustless sanders.

Rarely use dust control methods.

Wear masks and put up barriers.

Wear dust masks.

Routinely use respirators and masks.

Not a problem on our worksites.

Masks.

Masks, Plus3 from USG to help dust settle. Plus3 is a USG compound that creates larger dust particles that settle to the ground better (less airborne dust).

Use respirators and goggles.
Workers use masks.
Nothing specific.
Nothing specific.

Q3. Continued

Vacuum sanders.
Visqueen barriers.
Protective gear.
Nothing specific.
Use masks.
Masks.
Respirators.
USG has a good product.
Use vacuum sanders.
Vacuums, daily clean-ups.
Wear masks.
Different types.
Vacuum dust floor sweep on the floors to keep dust down.
Vacuum sanders.
Yes.
With most people dust is not a problem. We use HEPA filters.
Masks and respirators. Sanding vacuums.
No.
Use dustless sanders. Use USG, dust falls to the ground.
"Down with dust" from USG - product drops the dust to the floor.
Masks.
Dust masks.
Wear masks.
Dust masks.
Filtering masks.
Wear dust masks.
Sanding vacuum.
Masks.
Performs air control safety checks with 4 hour work window.
Masks.
We use dust masks and water based products, no threat.
We use masks, respirators, vacuum sanders and tenting off areas.
Uses dustless methods.
Masks and barriers.
Certified dust masks.
A new product by USG with a low dust factor.
Q4. Does your firm use wet methods when sanding drywall compound always, often, sometimes, rarely, or never? Responses to “rarely” and “never” provided.

<table>
<thead>
<tr>
<th>Respondent #</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>Use other methods.</td>
</tr>
<tr>
<td>79</td>
<td>Good quality job.</td>
</tr>
<tr>
<td>112</td>
<td>Since we use dustless sanders, don’t need wet methods.</td>
</tr>
<tr>
<td>81</td>
<td>Not compatible in quality.</td>
</tr>
<tr>
<td>96</td>
<td>Messy. Workers don't like this method.</td>
</tr>
<tr>
<td>111</td>
<td>Too slow, no need to use.</td>
</tr>
<tr>
<td>85</td>
<td>Generally time-consuming and costly.</td>
</tr>
<tr>
<td>115</td>
<td>No reason.</td>
</tr>
<tr>
<td>66</td>
<td>Company does not sand they only install.</td>
</tr>
<tr>
<td>73</td>
<td>Not cost effective.</td>
</tr>
<tr>
<td>65</td>
<td>Very slow and labor-intensive.</td>
</tr>
<tr>
<td>106</td>
<td>We are a Union shop just don't do it.</td>
</tr>
<tr>
<td>117</td>
<td>Use sandpaper does quicker & nicer job, use dustless sanders.</td>
</tr>
<tr>
<td>71</td>
<td>Raising the “nap” on the paper and takes longer to do an area.</td>
</tr>
<tr>
<td>103</td>
<td>Quality of finish.</td>
</tr>
<tr>
<td>118</td>
<td>Not as good of a finish on the product.</td>
</tr>
<tr>
<td>104</td>
<td>New construction so it is not a problem.</td>
</tr>
<tr>
<td>258</td>
<td>We have better methods we use.</td>
</tr>
<tr>
<td>102</td>
<td>Not familiar with them.</td>
</tr>
<tr>
<td>253</td>
<td>Not pleased with result.</td>
</tr>
<tr>
<td>250</td>
<td>Don't work.</td>
</tr>
<tr>
<td>230</td>
<td>Never done it; not our practice.</td>
</tr>
<tr>
<td>83</td>
<td>Not cost-effective.</td>
</tr>
<tr>
<td>99</td>
<td>Tapers used. Better aesthetics of product with dry methods.</td>
</tr>
<tr>
<td>62</td>
<td>Takes twice the time and increases cost.</td>
</tr>
<tr>
<td>110</td>
<td>Not company policy to use wet methods.</td>
</tr>
<tr>
<td>122</td>
<td>Doesn’t do a good job, takes longer.</td>
</tr>
<tr>
<td>86</td>
<td>Prefers use of vacuum sanders.</td>
</tr>
<tr>
<td>257</td>
<td>Too slow, the finish is not as good.</td>
</tr>
<tr>
<td>63</td>
<td>Not necessary.</td>
</tr>
<tr>
<td>94</td>
<td>Aesthetics. Wet methods don't give as good-looking a result.</td>
</tr>
<tr>
<td>121</td>
<td>Too slow.</td>
</tr>
<tr>
<td>108</td>
<td>We don't do any taping.</td>
</tr>
<tr>
<td>254</td>
<td>No need; time.</td>
</tr>
<tr>
<td>260</td>
<td>We do dry vacuum sanding.</td>
</tr>
<tr>
<td>91</td>
<td>We use dustless sanders.</td>
</tr>
<tr>
<td>123</td>
<td>Dot not need.</td>
</tr>
<tr>
<td>88</td>
<td>Use shopvac/vacuum sanders instead.</td>
</tr>
<tr>
<td>46</td>
<td>We use vacuum.</td>
</tr>
<tr>
<td>124</td>
<td>See note.</td>
</tr>
</tbody>
</table>

145
The worker just cannot get a good finish with this method.

Q4. Continued

- We don't finish the drywall we just hang it.
- Usually only with remodels, not new construction.
- No idea.
- Don't like the quality of the finish.
- Slower.
- The finished thing is not as smooth using the wet method.
- Prefer dry methods to maintain integrity of drywall.
- Does not work well.
- Quality control-not as nice as finish.
- Time-consuming and ineffective.
- We don't do that scope of work.
- Slower and does a bad job.
- We do new construction.
- We don't do sanding.
- Use portable sanding vacuuming very little dust.
- Easier to sand drywall while dry. Avoids wet methods.
- Too slow.
- Not used in this firm.
- Not our style of finishing.
- Not productive in commercial work.
- It puts moisture back into the board.
- It does not do a good job.
- Just use around places where there are computers, etc.
- See F4 note.
- The only trouble could be when sanding near computers, etc
- No reason.
- Time.
- We do new construction.
- Do not really understand the question, we used to sponge.
- We use hand vacuum sanders.
- Just use regular sandpaper.
- Hard to apply.
- Don't need to do new construction.
- Does not produce good product or finish.
- We use vacuum sanders.
- Tapers do that.
- Doesn't finish off as well.
- F4 note.
- With commercial jobs not a factor except where there are computers.
- Use vacuums instead.
- We use dustless sanding.
- We don't sand, don't do the finishing.
- Cost prohibitive.
28 Use vacuum system instead.

Q4. Continued

223 Mainly works with new buildings, not necessary.
207 It is not as easy.
38 Just don't.
40 It’s not necessary or cost effective
16 Can't sand wet dentist office.
161 Not common practice.
45 We use vacuum sanders.
53 Wet methods are costly and ineffective. Prefer to avoid them.
10 Inexperienced in them. No need.
151 Not industry standard procedure.
29 Not used.
178 Never needed it. We don't sand between coats.
174 We are normally in an environment that this is not needed.
164 Just don't need to.
200 Time.
216 Not necessary in new construction.
235 Too slow.
201 Don't know anything about wet methods.
241 Productivity problems.
234 We use vacuum sanders.
48 Use other methods, avoid wet methods as messy.
172 Productivity and the amount of mess, it’s easier to clean up.
154 Not part of our routine.
202 We don't do the finishing. Taping sanding, etc.
181 His crew does not do the sanding; paint crew does sanding.
37 We use vacuum sanders.
15 You can't sand wet mud.
175 We use vacuum sanders when control of dust is needed.
19 We don't sand.
270 Use other methods.
156 Not the practice with our firm.
205 Not company practice.
174 We work mostly in new construction and therefore the customer is not worried about the dust.
157 Sometimes water not available. Not our standard method.
180 Production would be lower. Wet methods make walls too soft.
47 Industry standard.
219 Mostly new construction.
158 Open air construction, not used.
Q5. Does your firm use respiratory protection such as respirators or masks when workers are sanding drywall compound always, often, sometimes, rarely, or never? Responses to “rarely” and “never” provided.

Respondent # Response

<table>
<thead>
<tr>
<th>Number</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>246</td>
<td>Just preference.</td>
</tr>
<tr>
<td>195</td>
<td>We don't do the finishing work.</td>
</tr>
<tr>
<td>61</td>
<td>We don't do sanding.</td>
</tr>
<tr>
<td>199</td>
<td>Don't do the finishing.</td>
</tr>
<tr>
<td>149</td>
<td>We don't do the finishing.</td>
</tr>
<tr>
<td>93</td>
<td>Don't see, not our portion of the work.</td>
</tr>
<tr>
<td>19</td>
<td>We don't sand.</td>
</tr>
<tr>
<td>257</td>
<td>Perceived risks.</td>
</tr>
<tr>
<td>66</td>
<td>Company does not sand only install.</td>
</tr>
<tr>
<td>215</td>
<td>Only when in an occupied space.</td>
</tr>
<tr>
<td>108</td>
<td>No dust at our jobsites. Subcontractor cleans it up.</td>
</tr>
</tbody>
</table>

Q6. Does your firm use pole sanders as a means of keeping workers removed from dust always, often, sometimes, rarely, or never? Responses to “rarely” and “never” provided.

Respondent # Response

<table>
<thead>
<tr>
<th>Number</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>231</td>
<td>We use dustless sanders, Porter cable.</td>
</tr>
<tr>
<td>224</td>
<td>Not our job.</td>
</tr>
<tr>
<td>149</td>
<td>We don't sand because we don't do the finishing.</td>
</tr>
<tr>
<td>48</td>
<td>Already work on scaffolding.</td>
</tr>
<tr>
<td>222</td>
<td>Pole sanders don't keep dust from workers.</td>
</tr>
<tr>
<td>132</td>
<td>Uses them but not to keep workers from dust.</td>
</tr>
<tr>
<td>66</td>
<td>Company does not sand only install.</td>
</tr>
<tr>
<td>61</td>
<td>We don't do sanding.</td>
</tr>
<tr>
<td>225</td>
<td>Does not protect from dust; it still comes down from ceiling.</td>
</tr>
<tr>
<td>91</td>
<td>Use dustless sanders only have one pole sander in our place.</td>
</tr>
<tr>
<td>118</td>
<td>Not our routine.</td>
</tr>
<tr>
<td>215</td>
<td>We do new construction.</td>
</tr>
<tr>
<td>40</td>
<td>We use them but not for means of keeping workers removed.</td>
</tr>
<tr>
<td>74</td>
<td>The dust factor we use vacuum sanders.</td>
</tr>
<tr>
<td>181</td>
<td>His crew does not sand; paint crew does sanding.</td>
</tr>
<tr>
<td>108</td>
<td>No sanding at our jobsites.</td>
</tr>
<tr>
<td>34</td>
<td>We use dustless vacuum sanders.</td>
</tr>
<tr>
<td>199</td>
<td>Don't do the finishing.</td>
</tr>
<tr>
<td>19</td>
<td>We don't sand.</td>
</tr>
<tr>
<td>85</td>
<td>Ineffective. See F4 note.</td>
</tr>
<tr>
<td>195</td>
<td>Don't do the finishing work.</td>
</tr>
<tr>
<td>202</td>
<td>Don't do the finishing.</td>
</tr>
<tr>
<td>234</td>
<td>We use vacuum sanders to capture the dust.</td>
</tr>
</tbody>
</table>
Q7. Does your firm use ventilated or vacuum sanders as a means of controlling dust during sanding always, often, sometimes, rarely, or never? Responses to “rarely” and “never” provided.

<table>
<thead>
<tr>
<th>Respondent #</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Convenience-requires setting up more equipment.</td>
</tr>
<tr>
<td>39</td>
<td>Not feasible we do condos not much dust with new construction.</td>
</tr>
<tr>
<td>106</td>
<td>Just don't do it.</td>
</tr>
<tr>
<td>41</td>
<td>Don't own any.</td>
</tr>
<tr>
<td>215</td>
<td>No need when not occupied.</td>
</tr>
<tr>
<td>164</td>
<td>Only if the area is occupied.</td>
</tr>
<tr>
<td>178</td>
<td>No electricity on our jobsites. New construction.</td>
</tr>
<tr>
<td>165</td>
<td>Time.</td>
</tr>
<tr>
<td>38</td>
<td>Don't have that much dust.</td>
</tr>
<tr>
<td>16</td>
<td>New construction.</td>
</tr>
<tr>
<td>95</td>
<td>Only use in dust controlled areas, finished areas.</td>
</tr>
<tr>
<td>85</td>
<td>Ineffective. See F4 note.</td>
</tr>
<tr>
<td>204</td>
<td>We do new construction.</td>
</tr>
<tr>
<td>43</td>
<td>We often work in open buildings, no need for these.</td>
</tr>
<tr>
<td>216</td>
<td>Cumbersome. Time-consuming.</td>
</tr>
<tr>
<td>96</td>
<td>Disappear from the worksite. Hard with to work.</td>
</tr>
<tr>
<td>158</td>
<td>Open air construction, not needed.</td>
</tr>
<tr>
<td>61</td>
<td>We don't do sanding.</td>
</tr>
<tr>
<td>219</td>
<td>Never had need for one.</td>
</tr>
<tr>
<td>47</td>
<td>Not an issue.</td>
</tr>
<tr>
<td>156</td>
<td>They leave ruts in the finish.</td>
</tr>
<tr>
<td>36</td>
<td>We don't have them.</td>
</tr>
<tr>
<td>75</td>
<td>Works didn't like them; the name of the game is production.</td>
</tr>
<tr>
<td>66</td>
<td>Company does not sand only install.</td>
</tr>
<tr>
<td>102</td>
<td>Never seen one in use except in trade ads.</td>
</tr>
<tr>
<td>264</td>
<td>See F4 footnote.</td>
</tr>
<tr>
<td>40</td>
<td>We only work in new construction not worried about.</td>
</tr>
<tr>
<td>181</td>
<td>His crew does not sand; paint crew does sanding.</td>
</tr>
<tr>
<td>17</td>
<td>We don't need to.</td>
</tr>
<tr>
<td>108</td>
<td>No sanding at our jobsites.</td>
</tr>
<tr>
<td>206</td>
<td>Practicality.</td>
</tr>
<tr>
<td>183</td>
<td>Open air/new construction.</td>
</tr>
<tr>
<td>202</td>
<td>Don't sand don't do the finishing.</td>
</tr>
<tr>
<td>154</td>
<td>Not our standard operation. Open-air construction.</td>
</tr>
<tr>
<td>79</td>
<td>New construction no concern.</td>
</tr>
<tr>
<td>48</td>
<td>Industry standard in this area.</td>
</tr>
<tr>
<td>31</td>
<td>No reason.</td>
</tr>
<tr>
<td>153</td>
<td>See F4 note.</td>
</tr>
<tr>
<td>185</td>
<td>Not familiar with them. Mainly do new construction.</td>
</tr>
<tr>
<td>199</td>
<td>Don't do the finishing.</td>
</tr>
</tbody>
</table>
Q7. Continued

222 Don't work at controlling dust; ineffective.
93 Not our portion of the work.
186 Not necessary unless you are doing houses.
5 Does not do as good of a job and they take longer.
149 We don't do the finishing.
267 You just can't get the workers to do a good job with these.
188 We just don't.
223 No reason to use them, does not find them helpful.
119 We have just not invested the money yet, it’s pricey.
97 Work in areas too big to use these.
143 Prefer tape.
138 Don't even own one.
224 Don't do that.
62 Business too competitive, too costly and time-consuming.
59 Cost.
60 Has no reason.
136 Don't have any.
127 Only use in open remodeling.
194 Not available.
121 Like to feel the work and feel the finish produced.
63 Not necessary.
249 Best used in public areas use otherwise not happy with them.
19 We don't sand.
195 Don't do the finishing work.
254 Clog up too much.

Q8. Does your firm use a low-dust drywall compound or setting compound to reduce dust levels always, often, sometimes, rarely, or never? Responses to “rarely” and “never” provided.

Respondent # Response
195 Don't do the finishing work.
196 Not familiar with product.
19 We don't sand.
22 This is a fairly new product, we have never tried it.
96 Cost.
193 Not heard of this.
84 Haven't tried it yet, new to market.
190 Not yet in use with this firm.
189 Product not used in this firm; unknown.
27 Not familiar.
188 Just use regular compound.
Q8. Continued

83 Just usual compounds.
186 Doesn't know about product.
185 Not familiar with this type of product.
199 We hand the drywall, tape, then float them out. Don't finish.
99 Did not know it existed.
184 Not available in the company's area.
32 Just don't know about it.
183 New construction.
181 Paint crew would use this; his crew does not sand.
202 We don't do the finishing work.
102 Not familiar with them.
203 Used it a few times not sure how we like it.
34 It is something new.
180 Not available.
178 Try not to sand at all. We actively avoid sanding.
103 New to market.
204 Not yet.
177 Hasn't been around long enough.
176 It's something new.
207 Never heard of it.
175 The price.
18 Not aware of product.
173 20% cost over regular compound. Use in delicate situations.
106 Just don't do it
210 Not our worker's preference.
39 Not much dust in new construction.
95 Not familiar with these materials.
211 Use multipurpose mud instead.
17 We don't need to.
212 Never have no reason to use it. Do you eat the same thing
for breakfast? You probably eat the same few things. Construction
is the same way until we have the new product we just keep using the
same thing over and over. I have had no reason to use a low dust drywall
compound.
170 Don't like the quality of the product.
169 Not familiar with this product.
108 Don't do sanding; don't need to use compound.
213 Just started using it was given to me free.
40 Not cost effective.
21 I have never heard of this.
71 More expensive.
165 New product tried it maybe once.
164 New product, have not tried.
42 Too new.
Q8. Continued

215 We are about to try that.
163 New to market. Not familiar with it.
88 New product, trying it. Works well in some cases.
160 Tapers don't like it.
44 Too new to market to be using.
158 Not in our specs.
217 Don't know of such.
111 New to me (unfamiliar with product).
157 We have good tapers, don't need to use drywall compound.
219 New to us.
13 Not used it, not really familiar with it.
156 Not used yet; new to market.
66 Haven't heard of it.
47 Industry practice.
154 Not something we use in open-air construction.
9 It has not been before us very long.
153 Happy with current product. "We stick with what works for us."
51 It is not available here yet.
151 Not industry standard to use this.
116 New product, hasn't been proven yet.
149 We don't do the finish work.
117 New product just out, have not tried it yet.
53 New product on market; very limited experience with it.
8 Cost.
118 More expensive.
62 Too costly. Taping is just as effective and cheaper.
119 We are leaning that way.
137 Just became available.
224 Don't use it.
87 Not familiar.
63 We were just introduced to this about a month ago.
132 New; sees it infiltrating market as up and coming product.
166 Unaware of it.
121 Prefer to use USG Blue Spackle.
226 Whatever is on market.
4 Not much on the market that has low dust.
3 Not used in relation to dust.
61 We do tape and bed.
228 Not as nice a finish.
229 Not yet.
127 New product not familiar.
123 Not using yet.
120 See F4 note.
Q8. Continued

230 Uses whatever is on the market at the time.
138 New product, have not tried it.
250 Don't believe it works - not as good a finish.
267 New products not tested.
254 See F4 note.
232 Don't sand as easily.
263 Rarely, because of its newness.
260 It is a new product.
234 I have not heard of it.
258 Just the regular Durabond and other products.
257 Not aware of any.
256 Not familiar.
241 Does not see much of a difference with other products.
235 Experimenting with them now.
253 Not familiar with it.
266 It's new technology.
248 Quality and cost of product.
245 Not familiar.
243 Never heard of it.
238 Tried it didn't like it. See F4 footnote.
242 See F4 note.

Q9. Does your firm use any other methods of controlling dust generation other than those I’ve mentioned? Responses to “yes” provided.

Respondent # Response
239 We use tarps, etc to close off areas.
153 See F4 note
155 See F4 note.
152 Visqueen.
150 Ventilation.
159 Sometimes we encapsulate a room with poly (plastic).
163 "Poly off the area" (polyvinyl sheets) and contain dust.
146 Straightfall sanding compound useful.
94 Negative air rooms.
166 Dust barriers like Visqueen.
144 Ventilation.
170 Use Dustdown compound when sweeping work area.
245 We use room dividers.
139 Install temporary barricades. Use Zipwall pole system.
137 mask off door ways to contain dust.
246 We use fans.
Q9. Continued

134 Tarps and barriers installed by tapers.
247 Fans, dust barricades.
175 Barricades.
129 Containment with barriers (dustwall or visqueen).
128 Barriers.
119 Put up perimeter stuff, barriers.
177 Plastic to separate rooms during remodels to protect clients.
221 Firm uses a unique no-sanding system ("dry trowels").
220 Negative air machines.
107 Ventilation at work sites.
105 Wet sanding.
222 Opening windows at worksite.
101 HEPA filters installed in doorways.
99 Hang visqueen to keep dust levels controlled.
180 Ventilation.
253 Barriers.
92 With remodels, install barriers and do draping.
87 We tarp the area, close it off.
182 Dust barriers.
187 We use air circulation fans that draw the dust out.
190 Barricades, high-grade air filters in sensitive areas.
86 Ventilation systems.
85 See F4 note.
195 We vacuum the dust.
81 Ventilation.
234 We use zipper plastic to close off the areas.
258 Clean up daily and ensure use of proper procedures.
78 Zipwall and company device. See f4 note.
76 Clean sweep.
74 Sometimes we put dust barriers.
261 Negative air systems.
71 Hepa filters.
208 Visqueen and section off areas.
66 A Hepa filter system will be used if work is done in hospital.
65 Uses dust partitions like zipwalls.
62 Enclose work areas with polyvinyl (zipwalls).
57 Uses fans for cross-ventilation.
262 Sponging around computer areas.
56 Uses barricades-specifically zipwalls.
210 Tarping off areas (no specific product).
54 Fans to blow it outside.
49 Dust barriers, it all depends on the setting.
47 Build temporary partitions.
265 Skill and experience.
Q9. Continued

44 Negative air machines.
42 Barricades or quipwalls.
250 Masking off areas with barriers.
39 We use fans.
36 We apply drywall so you don't have to sand.
24 Use Visqueen and zipwalls to keep dust controlled.
103 More coats.
269 See F4 footnote.
12 Low dust material new to market.
11 Big fans to ventilate better.
4 Poly barricade.
270 Air exchanger for hospital use.
3 Negative air. Vacuum or sweep afterwards.

Q13. Is there anything else you can tell us about your experience with drywall dust or drywall dust control technologies?

Respondent # Response
220 I think you got it covered.
11 Electric sanders with vacuums have been our best customer satisfier and we feel it is the safest for our workers. It sucks the dust.
269 He is happy to see the new heavy mud to control dust.
9 We are using vacuum sanders more and more and finding that it makes a difference, also what kind of sanding machine you use, and the type of screen makes a difference.
225 Dust goes EVERYWHERE and is hard to control, even with visqueen barriers. It's like talcum powder. Sanders get torn up, vacuum sanders get ruined. Dust ruins productivity. Filters get clogged and we have to slow down to replace them.
219 Makes you turn white. Necessary evil of the job.
10 No.
5 The more skilled the worker is with installing drywall the less sanding needs to be done which reduces dust.
224 Not a concern.
221 Has been in business doing drywall for 30 years. Does not see drywall dust as a particular problem, just part of the job.
223 It's part of the job. Messy, dirty.
3 Took asbestos out of drywall-good.
270 Becoming more of an issue with OSHA.
213 The vacuum really cuts down on dust and for finished product hands with sponges work the best.
Q13. Continued

211 Follow job specs as required for dust-free environment. Follow OSHA specs and control for exposure of others in the work environment. With remodels, barricade off areas using Visqueen or other polyvinyl products.

208 Dust control getting better. More methods available.

227 Does most of their work in hospitals. Extremely important that we institute dust control methods. Setup and cleanup is a major part of what we do.

203 Just interested in seeing how that low dust drywall compound is going to do.

216 No.

197 Some guys take precautions, some don't. Some guys poke holes in their equipment and don't take care of it.

196 Firm is located in Vegas area so has to deal with extreme conditions. Climate extremely dry so dealing with particulate matter is a concern.

15 We're using taping tools not hand trowels but boxes, cut down on amount of mud we use. More control.

12 Ongoing process - always new products and new methods to try.

151 No.

57 No.

1 No

234 We have come a long way from the old days. Much improvement.

23 No.

191 Drywall dust is a pain; wife doesn't like it coming into the house (always on his shoes). Recommend using common sense in dealing with it. Expressed great concern about his workers and making sure they are safe in workspaces generating a lot of dust in the air.

136 Part of the job.

47 None.

24 Try to keep it to a minimum with respirators and zipwalls.

90 No.

154 Not a big problem with our workers. Our guys work out in the open and don't have problems with dust.

87 New vacuum systems called Bazookas they suck the dust right up.

86 No.

92 Safety programs and training help limit dust exposure. This is mainly a commercial construction company, so there is better ventilation with open-air projects. Dust is more of a problem in remodels. Have to schedule worker clean-up time at end of each day. Installs washing facilities at worksites. Too much dust=too much use of joint compound (worker method problem). Quality of joint compound is also an issue. Some compounds are too flaky and should not be used. Can judge the quality of worker productivity by the amount of dust they generate.
Q13. Continued

85 He has years of experience in working with drywall. There are ways to do the work to minimize the dust problems. His workers see dealing with dust as part of the job. Puts up the Visqueen to block the dust and throws it away at the end of the job.

187 For schools or hospitals we recommend Imperial Board it is a thin five eighths inch coated plastic board, there is very little dust involved with installation, looks like plaster.

28 None.

253 Part of the job.

185 No.

29 None.

94 Starting using new joint compound this week. Don't know how effective it is yet.

241 (Safety manager) Workers have problems with goggles-dust sticks to the lenses, blocks their vision and blinds the workers so they can't see what they are doing. I sample the air regularly when workers are sanding overhead and they have a 4 hour window to do their job to keep it out of their respiratory systems. Regularly measures the PEL levels.

31 None.

183 Firm does new construction. Drywall dust not a problem.

181 His crew generates drywall dust by cutting, screwing and handing drywall. No sanding is done by him. All sanding is done by the paint crew.

180 They need to wear their respirators.

84 No.

35 I handle all our workman's comp and in all our years in the business we have never had any health problems from dry wall dust.

235 No.

96 Old school company (60 years in business). Workers deal with the dust – it's part of the job. Spackle creates the dust - we avoid using it. Homeowners layer it on and create dust problems.

36 The main thing is to put the mud on so you don't have to sand. We use sponges with rough sides to get edges so not to have to sand. We put a fan in the window to blow dust out so it doesn't go in the rest of the house. The fan has to fit tight in the window so air has to flow out (negative air system). We use plastic door openers with zippers.

83 Control of drywall dust leaves a lot to be desired. Need to develop better products to keep dust levels down.

178 We strongly discourage sanding. We tell out people to do it right the First time and if they can't, they don't do further work for us. Sanding creates dust and we keep our jobsites as dust-free as possible.

97 Company does mainly open-air construction. Maybe 1% of work done with hospitals and dealing with drywall dust.

52 No.
Q13. Continued

237 Keep project areas clean daily. Have work crews specific to doing cleanup and keeping job site clear of dust as much as possible. Try to stop it before it becomes a problem.

172 Its a battle on every job. Trying to keep it clean takes 1 or 2 laborers to go in every day and sweep up the place.

150 More problems with remodels and customer complaints. [This firm handles mainly open-air construction with minimal customer complaints. Heaters circulate the dust in residential homes. In construction uses lots of visqueen and zip poles on barricades. Uses white visqueen to block the view on construction sites (stop the onlookers and gawkers at construction sites).

81 Does 90% of work in veneer plaster which has no dust. In mid-80s drywall dust was more of a problem. Recommends use of pole sander with a vacuum attachment to get rid of most dust. Trains their workers to minimize dust in the work environment.

39 Where dust is a no-no we vacuum as we go.

99 Drywall dust ruins the tools. It's so powdery it gets into EVERYTHING. We try to limit the number of cuts we make in the drywall to limit the dust production. Drywall dust is part of the job and cleanup is also part of the job.

171 Asbestos was the big problem. Now that it is out of the drywall, it's no longer a problem.

170 No.

168 Specs determine which work methods are used. We do what the job requires.

167 We just ask them to always wear masks.

166 No.

236 Unscrupulous contractors make it difficult for legitimate businesses. Met with the Governor yesterday and witnessed the signing of a bill making it illegal to transfer risk to someone else. Some firms do not pay their payroll taxes or insurance making it harder for legitimate firms to compete. The less reputable firms do not follow proper safety precautions.

or maintain good working practices. Respondent would be willing to offer assistance in any way he can; he expressed his gratitude that this study was being conducted.

263 Dry wall dust is only in the hands of those that control it and we try to control it because we want our customers back.

163 Worst part of the job. Clean-up time needed to keep the customers happy - "dust is a real pain in the butt."

80 In last 5 years, industry has become more aware of silica products and more work has been generated in removing it. Sensors are placed on employees to keep management aware of silica dust levels on workers. OSHA wants management to keep tabs on it.
Q13. Continued

100 All tapers are union regulated and very stringent in their methods. Dealing with drywall dust is more of a problem for anyone not wearing a mask (other contractors or people walking around worksite).

42 Rely on vacuums for dust removal. [Interviewer asked for specific company and he recommended Porter-Cables.]

162 It'll always be there (dust).

161 Just part of the job.

160 No.

45 It has always been there and will always be there.

78 Recommended a good contact for information: AWCI at 703-538-1600 (national organization of wall and ceiling installers that publishes for the industry).

158 No.

265 It gets on the carpet.

44 Build temporary partitions in rooms; build anti-rooms and use negative air machines.

157 Safety glasses help.

156 Workers rely on taking precautions to control for dust. Put up barriers to stop it before it becomes a problem.

155 Inexperienced workers have dust problems. Just started 6 months ago Using Quickset joint compound; recommended by our equipment supplier. It's been good with dust protection. Vacuum sand poles are good in occupied areas; keeps dust out of air units.

101 "No. You covered it all."

62 Drywall dust filters thru EVERYTHING. Has more problems doing work in offices. Offices want us to do drywall work after-hours when the workers are gone. Because the drywall business is so competitive, he relies on tapes, masks, and hats.

142 No.

258 It's there, part of the job. We use special clean-up procedures and specific procedures on the job to deal with the dust.

49 Drywall dust sucks!

259 Vacuum sanders helpful in occupied areas.

107 Dust is part of the job. Wear dust protection and you are OK. Used to have a problem with asbestos dust, so drywall dust seems better by comparison. There are all kinds of dust at job sites, not just drywall dust. Protection is required on job sites.

153 Dust is part of the job; I've done it for 33 years. The trick is to put sanding compound on smooth and then you don’t need to sand it. The more dust, the more inexperienced the worker.

108 No drywall dust problem in this firm's work.

48 No.

50 It is a pain in the rear but you all have it covered.
Q13. Continued

102 Never had problems with drywall dust. Worked with drywall since 1958. Dust is a part of the job.

89 Air quality is carefully monitored because of union standards. Union ensures proper protection is used in workplace to lessen health impact of drywall dust. Workers who know what they are doing don't have health problems with drywall dust. "If you know what you are doing you don't have a problem."

88 "Not really. You covered all the major methods."

134 No.

68 The cords on the vacuum sanders are not long enough but they are a cool idea.

116 Eliminate as much sanding as possible touch up more.

148 No.

147 You HAVE To use some kind of respirator, which is imperative.

53 Has long experience working with drywall; sees little change in market or methods. Would like to see improvement in dust control.

146 Masks important in hanging drywall.

59 No.

54 Visqueen dust off to make a bubble with it. Also try to sand it off with a vacuum. Hard to deal with dust. Use of water causes a problem; it's ineffective in removing dust. Use of sponges is not cost-effective or productive in removing dust.

74 The products have gotten better and we have learned how to control it better over the last two years.

242 Firm specializes in Vegas casinos. Does multi-million dollar projects with a high expectation of excellence. Have witnessed people with serious health issues due to gypsum exposure (long-timers). Even a dust mask is not sufficient with fine particles.

252 I put floor sweep on the base boards and floor to keep dust down. I put water on the base of the walls and on carpet to keep dust down.

103 Dust goes everywhere at worksites. Vacuum sanders don't work with medium-grade dust products (drywall spackle comes in light, medium, and heavy grades.) Sanders only work with heavy-grade product and manufacturers neglect to tell companies this. We isolate work areas with negative air return systems and temporarily tie off areas. Subcontractors are supposed to isolate work areas before we arrive by setting up negative air systems. We especially need to control for dust in hospital worksites.

56 Drywall dust causes more problems with workers' hearing than with their respiration. Workers need to wear earplugs.

72 No.

143 No.

111 Once asbestos was out of the dust, dust not a problem anymore. It's just part of the job.
Q13. Continued

139 Drywall dust is a problem - once you get it, you can't get rid of it.
132 No.
120 Dust more of an issue in remodels. This firm is 90% open-air
 construction. Patch & repair generates the dust problem.
110 No.
118 No.
230 Proper protection is key. Lead guy is key to keeping the workers
 protected and using proper techniques. Work is better without the
 asbestos (had been used as a firming agent).
260 I wish they would come up with better methods.
129 Drywall dust is a nasty animal - gets everywhere.
249 The methodology has not changed in many years. Hoping for new
 equipment that is not so bulky and sanders that will perform better.
124 No.
60 No.
65 Tries to keep up with new methods.
112 Have to live with the dust, it's part of the job.
114 No.
115 Dust amount specific to type of drywall being installed - high impact
 drywall the worst for dust. Cutting methods also determine amount of
 dust generated. Cutting knives are clean; sanders generate dust.
121 Wife does not like it when he does work around the house. She gets a
 real "taste" for what he does and the dust it creates.

Supplemental Comments Provided by Respondents for Each
Survey Item

Q1. First, how would you rate the negative impact of drywall dust on your firm’s
productivity? Would you say that it has had a great impact, some impact, not
much of an impact, or no impact?

Respondent # Response
179 Firm does new construction. Drywall dust not a problem.
92 Commercial contractor; very few remodels done. Mainly do
 open-air projects.
94 More of an impact in remodels and hospital work (requires better
 dust control). Easier to deal with in new construction.
189 Specializes in new construction. General contractor prepares
 workplace to minimize dust for his crew.
121 It's part of the job.
Q1. Continued

216 Mainly new construction.
96 Part of the job.
190 Mainly does new construction.
134 Only an impact in remodels.

Q2. How would you rate the negative impact of drywall dust on customer satisfaction with your firm’s work? Would you say that it has had a great impact, some impact, not much of an impact, or no impact?

Respondent # Response
231 We do commercial.
172 97% of our work is done prior to owner occupancy.
166 Keep a very clean work environment.
134 Only an impact in remodels.
121 They realize it's part of the job.
60 Depends on type of customer - no impact with new construction. But with remodels, great impact because customer has to live with the dust.
190 Mainly new construction. Does have some impact in remodels.
185 Depends on whether it's new construction or remodels. Remodels involve customers who may need cleanup. New construction does not generate problems.
154 Firm mainly works in new construction and rarely hears from customers about dust.
53 Customers rarely see work in progress. Only occasionally see spot touchups which generate little to no dust.
178 New construction only.
235 Mainly does hospital renovations.
85 Big problem with remodels.
92 Commercial contractor.
262 95% new construction.
230 computers, residential.
227 Hospitals.
99 Mainly commercial work. For customers, more of a nuisance.
96 Customer never sees the dust; we clean it up and it's gone by the time they are around.
112 No customer likes it.
72 Mainly works new construction, doesn't do remodels. Customers aren't exposed to drywall dust.
84 Most impact with remodels. Little impact with new construction.
71 Commercial not much of an impact...remodeling and new residential construction great impact.
Q2. Continued

253 New construction; not a concern.
78 More of a problem in remodels; not a problem in new
 construction.
107 Mainly new construction.

Q3. Would you say that drywall dust poses a great threat, somewhat of a threat, not much of a threat, or no threat to the health of the workers in your firm?

 Respondent # Response

196 [respondent is safety coordinator at firm.] Has concerns about long-
 term effects of airborne dust; scientific data is currently inconclusive.
 Has specific concerns about silica in drywall dust.

190 More of a threat when workers do not wear their protective gear.

242 Personally knows several workers with health problems due to
 drywall dust. Has experienced his own respiratory problems from his own
 days out in the field.

185 Depends on worker's involvement with dust. Some workers are
 never around the dust; other types of workers do the sanding and cleanup
 and need protection. We provide protection, but it's up to the worker to
 use it.

85 Company workers are acclimated to the dust. It grows on them and has to
 be removed. It's part of their bodies and workers are experienced in dealing
 with it. It's part of the job.

88 Use protective methods to lessen impact.

121 Used to be more of a threat when asbestos was part of the dust. Better dust
 control technologies now.

107 Requires protection.

96 Follow union regulations to minimize threat. It's up to the workers to use
 the proper methods and protection.

94 Use methods to minimize threat.

78 Varies based on the specific project. Varies on compliance of worker in
 wearing protection measures.

102 Wear protective gear.

Q4. Does your firm use wet methods when sanding drywall compound always, often, sometimes, rarely, or never?

 Respondent # Response

181 Firm strictly Cuts, hangs and screws in drywall. Sanding done by
 painters. No sanding done by his crew.
Q4. Continued.

Respondent # Response

57 Anyone who tells you wet methods work is lying to you.
190 Does not give a good result. Time-consuming, costly, difficult, not the preferred method.
163 Only use wet methods in computer or sensitive areas. There are cost and quality problems with wet methods. We don't recommend this method.
40 Don't want water near an unfinished unpainted surface.
124 Not familiar with wet methods. Aware there is a new USG compound on the market but has not tried it.
172 Easier to dust than it is to clean up a wet mess.
174 Work mostly in new construction and therefore the customer is not worried about the dust.

Q5. Does your firm use respiratory protection such as respirators or masks when workers are sanding drywall compound always, often, sometimes, rarely, or never?

Respondent # Response

26 Use wire masks by 3-M, Niash approved.
96 At worker's discretion. People who have been in the industry long don't see the need.
190 Protection provided; up to workers to use it. Workers dislike wearing goggles because they fog up and get dirty, impairing vision. Don't like lugging around the respirators.
198 Equipment always available, but use not mandated. Up to the individual to use the equipment.

Q6. Does your firm use pole sanders as a means of keeping workers removed from dust always, often, sometimes, rarely, or never?

Respondent # Response

96 Depends on the job.
85 Just to reach work area, not to control dust. Workers come out covered in dust even when working with pole sanders. (Workers appear white.)
180 Pole sanders cause dust.
112 Depends on specific job and the need to reach high spots.
78 Varies based on project.
168 Pole sanders are not used to keep workers removed from dust, but to reach inaccessible areas.
210 Depends on the job and the room we have.
Q6. Continued

225 Does not protect workers from dust. It still comes down from the ceilings.

Q7. Does your firm use ventilated or vacuum sanders as a means of controlling dust during sanding always, often, sometimes, rarely, or never?

Respondent # Response
111 Depends on the job. If the site needs to be kept clean, use vacuum sanders.
53 Only used for small area touchups.
94 Depends on particular project and accessibility.

Q7. Does your firm use ventilated or vacuum sanders as a means of controlling dust during sanding always, often, sometimes, rarely, or never? Responses to “rarely” and “never” provided.

Respondent # Response
85 Requires use of electricity which is not always available. Requires certain level of skill and worker may not be able to control vacuum sander (possibly too dangerous for most workers). Equipment sometimes too difficult to handle in small work spaces.
264 Use only in occupied areas. They are very cumbersome. We try to stay away from using them and do mostly new construction.
153 They don't work at all. It's an expensive piece of equipment that we have sitting in the office that never gets used.
40 Control of where the dust goes.

Q8. Does your firm use a low-dust drywall compound or setting compound to reduce dust levels always, often, sometimes, rarely, or never?

Respondent # Response
134 New USG product being used.
124 USG is promoting the use of a new product that promises to create heavier clumping particles that fall to the floor instead of creating fine airborne dust. Treated firm members to lunch to tell them about it.
136 Not familiar with them.
168 Not for dust control, but time constraints.
110 Not familiar with the product.
59 New product. Seems to be helping.
72 New to market. Limited experience.
238 He said they did not like the new drywall compound, it is too hard, can't get it to feather just right. "We do slick work. With textured work it would probably be alright."

Q8. Continued.
Respondent # Response
120 Not currently available in respondent’s market (Colorado). Respondent has only seen it advertised in the trade magazines.
254 More time consuming. Dries too hard and requires more work. This sometimes damages existing work. Glazes over during drying process.
242 Workers don’t like it — produces excessive air bubbles and a poor finish. Workers think the company still needs to work the kinks out of the product. He has used it himself at home and does not like it.

Q9. Does your firm use any other methods of controlling dust generation other than those I’ve mentioned?

Respondent # Response
108 All the dust is gone by the time respondent’s firm does their work.
146 Straightfall.
85 Prepcoat (commercial product) applied in 98% of cases. Leaves a glasslike finish. USG product.
49 If you’re working in a hospital you need more control over the dust verses working in a new mall.
155 Visqueen to block off areas. HEPA filters used in hospitals and areas with computers. Negative air ventilation to block dust flow.
78 Company has made their own device of zipwalls attached to a pole using visqueen to control dust.
153 Tape off rooms and protect the heat register. Dust in the heater voids the warranty. Control for ventilation.
269 He said three things were important. The additive in the dry wall compound, the negative air pressure (using fans) and control and containment (dust). He mentioned dust walls and electromagnets it sticks to vinyl. Also they create double dust walls (VisQueen) to protect the work area.

Q10. How many employees does your firm have?

Respondent # Response
24 Overall total.

Q11. Are your employees affiliated with a union?

Respondent # Response
59 Would not have any workers if he hired union labor.
155 Used to be affiliated with union years ago.
198 Not drywall tapers. Everyone else is.
Q12. Does your firm hire subcontractors to perform drywall finishing always, often, sometimes, rarely, or never?

<table>
<thead>
<tr>
<th>Respondent #</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>163</td>
<td>Illegal.</td>
</tr>
<tr>
<td>196</td>
<td>Respondent’s company is the sub.</td>
</tr>
</tbody>
</table>
Appendix G: Study 3 Content Analysis Code Definitions

<table>
<thead>
<tr>
<th>Code</th>
<th>Code Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of Learning (EL)</td>
<td>Comments that pertain to the user’s ability to begin using the technology. Comments that pertain to the user’s ability to arrive at a feeling of proficiency while using the technology.</td>
</tr>
<tr>
<td>Ease of Use (EU)</td>
<td>Comments that pertain to the user’s ability to accomplish the task as instructed, once familiar with the technology.</td>
</tr>
<tr>
<td>Perceived Productivity (PP)</td>
<td>Comments that pertain to the user’s perceived ability to employ the technology to accomplish a set amount of work in a given unit of time. Comments that pertain to the user’s perceived ability to employ the technology to accomplish a desired quality level of work in a given unit of time.</td>
</tr>
<tr>
<td>Perceived Comfort (PC)</td>
<td>Comments that pertain to the user’s observations of physical sensation: pain, fatigue, muscle stress or strain, or lack thereof.</td>
</tr>
<tr>
<td>+/-</td>
<td>Denotes whether the comment was a positive or negative one pertaining to that code.</td>
</tr>
</tbody>
</table>
Appendix H: Study 3 Coded User Responses

<table>
<thead>
<tr>
<th>Tool</th>
<th>Coding Unit</th>
<th>Code</th>
<th>+/-</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pole</td>
<td>Awkward to hold the pole, one arm became more fatigued</td>
<td>PC</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Pole</td>
<td>Easier to reach higher places</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>Pole</td>
<td>Less control of the sanding in general</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>PC</td>
<td>It was heavy and awkward because of the vacuum head.</td>
<td>PC</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>PC</td>
<td>It missed one spot because of the rotation</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>PC</td>
<td>It was easy to move down or to the left but hard to move up or right because of rotation.</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>Comfort level was identical to the (block) method</td>
<td>PC</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>I don’t think I used the block correctly</td>
<td>EL</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>once it picked up enough sanding dust, it became ineffective in sanding</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>It also got the dry wall very wet</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>I think this would reduce the quality of the sanding</td>
<td>PP</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Block</td>
<td>Sanding higher places in general fatigues my arm, I don’t think it had to do with the technology</td>
<td>No code</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>The sander flipped on me a few times, denting the wall</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>PC</td>
<td>Fairly easy to use up higher</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>Equipment</td>
<td>Observation</td>
<td>Rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>Very difficult to use shoulder level and below</td>
<td>EU -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>When I initially applied the wet block it soaked the mud, and the mud clumped there</td>
<td>EU -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>The mud also clumped up in the sanding block which seemed to reduce its effectiveness</td>
<td>EU -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>Took more force than the previous sander</td>
<td>PC -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>More tiring</td>
<td>PC -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>Also harder to use at the bottom end of the board</td>
<td>EU +/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>It was easy to use on the high part but more difficult on the lower part</td>
<td>EU +/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>I would not like to use this for a large sanding job</td>
<td>PP -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>The only problem is that you cannot see the results right away b/c of the larger sanding head and it could lead to mistakes</td>
<td>EU -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>I did not like the sponge: the water is likely to spill and make a mess</td>
<td>EU -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>Plus, I felt that it would take longer to complete something with this</td>
<td>PP -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>This would be good for patching walls but not for large areas</td>
<td>PP -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>Definitely required a lot of effort, especially in the shoulders</td>
<td>PC -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tool</td>
<td>Description</td>
<td>Rating</td>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>I had to switch hands on the pole to keep from fatiguing one arm more than the other</td>
<td>PC</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>The flex-joint at the pole/sander connection is strange and flimsy, making the task harder</td>
<td>EU</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>This technology would be a plus for high overhead sanding though</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>A lot of effort, especially in my chest (pectorals)</td>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Seemed a lot less messy than the wet or block sanders</td>
<td>EU</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>Required a lot of effort, especially in the shoulder and tricep areas. Switched arms to reduce fatigue</td>
<td>PC</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>Water was confusing, didn’t seem to make any difference. There was still a ton of dust</td>
<td>EL</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Block</td>
<td>Lot of shoulder effort, very tiring</td>
<td>PC</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>I felt like I was further from the falling dust than the other two tools.</td>
<td>Not</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>If used improperly, it would tend to smack the wall causing a large “poof” of dust</td>
<td>EU</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>Hard to sand directly in front of yourself</td>
<td>EU</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>Had to stand at angle to get entire area sanded</td>
<td>EU</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>It was big and clumsy—harder to control</td>
<td>EU</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>I wouldn’t use it because I don’t think I would have a job big enough to require so much equipment, but I</td>
<td>PP</td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>
would consider in an industrial setting

Wet clumpy and sticky EU - M

Wet Seemed like it got worse in terms of dustiness the EU - M
longer you sanded without dipping it in water

Block This seemed to be the most manual style of sanding. PC - M
I switched arms once too, as my arm felt a bit
fatigued.

Block Dusty NOT M

PC A larger area to sand would have been better. I PP + M
finished the task in about 2-3 mins

Wet More mess on the hands with this method EU - M

PC Good workout! NOT M

Wet Much more fun that I thought NOT M

Block Lots of dust I can see NOT M

Pole This ws the most frustrating of the technologies. It EU - F
was very hard to keep the sander flat on the wall

Pole Also, it would not glide up and down the wall very EU - F
well

Pole I felt like I was fighting with it the entire time I was EU - F
using it

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>This particular technology was clearly more effective/efficient in terms of the sanding task</td>
<td>PP + F</td>
</tr>
<tr>
<td>PC</td>
<td>however, it was very heavy and bulky</td>
<td>PC - F</td>
</tr>
<tr>
<td>PC</td>
<td>It didn’t feel like I could switch my hand/arms to get more comfortable once I got tired</td>
<td>PC - F</td>
</tr>
<tr>
<td>PC</td>
<td>I don’t think that I would have been able to sand a whole wall with this technology --- I would have been too tired</td>
<td>PP - F</td>
</tr>
<tr>
<td>Wet</td>
<td>This technology was small enough so that I could change positions or switch hands quite easily.</td>
<td>PC + F</td>
</tr>
<tr>
<td>Wet</td>
<td>I felt like this technology was making the wall surface smoother faster than the first technology.</td>
<td>EU + F</td>
</tr>
<tr>
<td>Block</td>
<td>This technology allowed me to easily change the position of my arm/hand or switch hands once I got tired or uncomfortable</td>
<td>PC + F</td>
</tr>
<tr>
<td>Wet</td>
<td>This was the best method. I felt like I have the most control of hand/arm position while doing the sanding task</td>
<td>EU + F</td>
</tr>
<tr>
<td>Pole</td>
<td>This was the worst because it was hard to keep smooth movement up and down the wall</td>
<td>EU - F</td>
</tr>
<tr>
<td>Pole</td>
<td>This tool seems very old fashioned. You couldn’t do this task for too long without getting tired</td>
<td>PC - F</td>
</tr>
<tr>
<td>Category</td>
<td>Description</td>
<td>Rating</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>PC</td>
<td>It was easier to get the job done with this tool</td>
<td>PP</td>
</tr>
<tr>
<td>PC</td>
<td>I didn’t feel that I was doing it correctly</td>
<td>EL</td>
</tr>
<tr>
<td>Wet</td>
<td>I like that there’s less dust but it’s too wet and it caused a lot of building up on the wall</td>
<td>EU</td>
</tr>
<tr>
<td>Block</td>
<td>Not very comfortable</td>
<td>PC</td>
</tr>
<tr>
<td>Block</td>
<td>Limited arm space—cannot get very top or bottom</td>
<td>EU</td>
</tr>
<tr>
<td>PC</td>
<td>Wasn’t as uncomfortable as the others</td>
<td>PC</td>
</tr>
<tr>
<td>PC</td>
<td>It was more efficient</td>
<td>PP</td>
</tr>
<tr>
<td>Pole</td>
<td>The pole sander was the most uncomfortable</td>
<td>PC</td>
</tr>
<tr>
<td>Pole</td>
<td>It was hard to apply pressure so the job took longer</td>
<td>PC</td>
</tr>
<tr>
<td>Pole</td>
<td>It was difficult to use the device when there were lots of bumps b/c it felt like it wanted to flip up</td>
<td>EU</td>
</tr>
<tr>
<td>PC</td>
<td>The device was very heavy to be holding up with arms for any period of time especially considering the repetition</td>
<td>PC</td>
</tr>
<tr>
<td>Wet</td>
<td>This method was easy to use</td>
<td>EU</td>
</tr>
<tr>
<td>Wet</td>
<td>But is definitely not a quick method</td>
<td>PP</td>
</tr>
<tr>
<td>Wet</td>
<td>I would not recommend this method for large areas that need sanding</td>
<td>PP</td>
</tr>
<tr>
<td>Block</td>
<td>This hand sander was easier to use than the one on the stick c/ it was able to directly apply pressure to the areas that needed the extra force</td>
<td>EU</td>
</tr>
<tr>
<td>PC</td>
<td>The vacuum sander was chosen as the best because it</td>
<td>PP</td>
</tr>
</tbody>
</table>
got the job done the quickest

PC After using the other techniques, it did not require a lot of strain
PC + F

Pole Was chosen as the worst b/c it was the most awkward to use.
EU - F

Pole The end constantly wanted to flip over.
EU - F

Pole It was harder to apply pressure using this method
EU - F

Pole This was hard to use b/c the head of the device would rotate, even when you didn’t want it to. It made it difficult to hold against the wall.
EU - F

Pole However, it was lightweight and the handle decreased the amount of pressure you needed to apply
EU + F

PC This was more efficient to use
PP + F

PC But it took a lot more effort to use b/c of the large size and b/c the cord got in the way.
PC - F

PC It would be nice for bigger jobs, but too much effort for smaller jobs
PP + F

Wet Easy to use
EU + F

Wet Lots of manual labor required
EU - F

Wet I think this would be very time-consuming for large scale jobs to the point where it wouldn’t be worth it to use this for a larger job.
PP - F
Block The handle made this device easier to use than the EU + F sponge one
Block I felt like I had more control over the device EU + F
Block and I felt like it was very effective at getting the job PP + F done.
Block It required less force than the wet method EU - F
Block The tool was light weight PC + F
Block It seemed more effective than any except the vacuum EU + F sander
Pole The tool was too hard to manipulate EU - F
Pole The only good thing about it was that it didn’t PC + F require much force
Pole I didn’t feel it was very effective either EU - F
Pole It was very effective for hard to reach places EU + F
Pole It was actually pretty hard for close areas b/c of the EU - F longer pole
PC The machine was extremely heavy PC - F
PC I would’ve definitely taken a break in real life PC - F
PC It was too big EU - F
PC I was working form far away and couldn’t really see EU - F what I was doing
Wet In general I don’t know if I did it correctly EL - F
Wet I didn’t know what was the correct amount of water EL - F
needed and when I had to re-dampen it.

<table>
<thead>
<tr>
<th>Wet</th>
<th>It was harder than the first one because it wasn’t as strong.</th>
<th>EU</th>
<th>-</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>Got mud all over my hands because of the water</td>
<td>EU</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>It gets your arm pretty tired pretty quickly for high areas</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>I felt like I had good control over what I was doing</td>
<td>EU</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>I could see clearly how I was doing</td>
<td>EU</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>It wasn’t heavy</td>
<td>PC</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>It worked well</td>
<td>EU</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>I didn’t have to apply pressure</td>
<td>PC</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>It worked quickly</td>
<td>PP</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>PC</td>
<td>Too heavy</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>PC</td>
<td>I couldn’t see what I was doing</td>
<td>EU</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>PC</td>
<td>It also required more equipment plus ear phones</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>PC</td>
<td>It was really loud</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Pole</td>
<td>It was hard to sand the lower half of the wall</td>
<td>EU</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Pole</td>
<td>Felt like my hands were beginning to blister</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>PC</td>
<td>The machine was really heavy for me</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>PC</td>
<td>It did the best job</td>
<td>EU</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>PC</td>
<td>Generated the least dust</td>
<td>NOT</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>CODED</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Too cumbersome for my small frame</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
</tbody>
</table>
Wet This was definitely the easiest method EU + F
Wet I got dustier than with others PC + F
Wet I couldn’t reach the top of the wall EU - F
Wet I didn’t need to apply as much pressure as with the others PC + F
Block I couldn’t reach the top of the wall EU - F
Block This was easier b/c of the angle in which I applied the pressure EU + F
Block Dustier PC - F
Wet Required the least amount of force PC + F
Wet Less stress on my hands and arms PC + F
PC Uncomfortable to use b/c it was so big and heavy PC - F
Pole This technology required a lot of upper body strength and repetitiousness PC - F
Pole Results were not seen as clearly or quickly EU - F
Pole And I felt like I wasn’t being as productive PP - F
Pole It also got dust everywhere NOT F

PC It took me a little while to figure out what this technology was supposed to do EL - F
PC It was a slow process PP - F
PC Yet effective EU + F
PC My arms got tired of holding the machine up PC - F
Once again I could only sand as tall as I am

I saw no results while I was scrubbing the wall

This technology took much more physical effort than

the previous.

One problem with this method is that you can only

sand the height that you are

I could see results slowly, but steadily

The vacuum sander produced results that could be

clearly seen – it was effective

It also sanded the largest amount of surface area in

the time allotted

Showed no results

Required the most physical exertion

Rowing puts blisters on hands – this pole could do

the same

Less awkward than vacuum thing but more work

My arm cramped up

I had to switch out arms a lot

Very large and qawkward

May work better on a larger space

Had to use a lot of force

Hard to sand in low areas

This technique was effective
<table>
<thead>
<tr>
<th>Wet</th>
<th>But if I had to do a whole house with one I think I’d shoot myself</th>
<th>PP</th>
<th>-</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet</td>
<td>Sanding tool needs more surface area to be effective for large jobs</td>
<td>PP</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>A step up from the wet method good for the size work area allotted</td>
<td>PP</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>Medium/heavy force was required</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>VERY noticeably dusty!</td>
<td>PC</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>Easiest to use</td>
<td>EU</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>Not awkward</td>
<td>PC</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Wet</td>
<td>Very low dust</td>
<td>PC</td>
<td>+</td>
<td>F</td>
</tr>
<tr>
<td>Wet</td>
<td>Small size was not very time oriented</td>
<td>PP</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Wet</td>
<td>Others were faster</td>
<td>PP</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Wet</td>
<td>Others had more reach</td>
<td>EU</td>
<td>-</td>
<td>F</td>
</tr>
<tr>
<td>Block</td>
<td>Not the most effective in terms of speed</td>
<td>PP</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Block</td>
<td>Most control over it</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>Block</td>
<td>I felt that I could sand for a long time</td>
<td>PC</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>Block</td>
<td>I got the best results with this</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>Easy to use</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>It made the wall look like crap</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>When it got too much sand on it, it became ineffective</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Pole</td>
<td>I felt it was the easiest</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>Pole</td>
<td>And most effective</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>---------</td>
<td>-------------------</td>
<td>----</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Pole</td>
<td>It did create a lot of dust, though</td>
<td>NOT</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Pole</td>
<td>And took more effort than the vacuum</td>
<td>PC</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>The results looked bad where wet mud clumped up</td>
<td>EU</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>Wet</td>
<td>Smallest surface area and not practical for most projects</td>
<td>PP</td>
<td>-</td>
<td>M</td>
</tr>
<tr>
<td>PC</td>
<td>Easy to use</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>PC</td>
<td>Faster</td>
<td>PP</td>
<td>+</td>
<td>M</td>
</tr>
<tr>
<td>PC</td>
<td>Much less dust</td>
<td>NOT</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>Did not see good results</td>
<td>EU</td>
<td>+</td>
<td>M</td>
</tr>
</tbody>
</table>
Vita

Deborah E. Young received a baccalaureate in biology from Virginia Tech and a master of science degree from North Carolina State University, in ecology. After working as a professional industrial hygienist and adjunct instructor for the Grado Department of Industrial and Systems Engineering, she returned to graduate school for a second master of science degree and doctorate from Virginia Tech, in industrial engineering. She is a certified industrial hygienist, certified safety professional, and certified hazardous materials manager. Her doctoral study was funded with research grant and fellowship awards from the National Institute for Occupational Safety and Health of the National Institutes of Health. She holds membership in the American Industrial Hygiene Association, the American Conference of Governmental Industrial Hygienists, the American Society of Safety Engineers, the Human Factors and Ergonomics Society, and Alpha Pi Mu, the honor society of industrial engineering. She will be joining the faculty of Virginia Tech in August of 2007, as an assistant professor of the Myers-Lawson School of Construction and the Via Department of Civil and Environmental Engineering.