A special class of nonstationary processes with periodically varying statistics, called cyclostationary (CS), is investigated. These processes are encountered in many engineering problems involving rotating machinery such as turbines, propellers, helicopter rotors, and diesel engines. We analyze a cyclostationary process model in order to show its advantages compared to a traditional stationary process model and present a methodology for calculating the statistics of the response of a linear system subjected to CS excitations.

We demonstrate that a CS model estimates the statistics of the response of a linear dynamic system subjected to CS excitations more accurately by considering (1) a vehicle traveling on a rough road and (2) a propeller rotating in the wake of a ship in the presence of turbulence. In the case of the vehicle, the road consists of concrete plates of fixed length. We model the road excitation using a CS process and calculate the standard deviation (root mean square) of the vehicle response. In the case of the ship propeller, we calculate the hydrodynamic forces acting on the propeller using the vortex panel method and the vortex theory of propeller. Considering the randomness in the axial and the tangential components of velocity, we calculate the mean and the covariance of the forces. This analysis shows that the hydrodynamic forces acting on the propeller are CS processes. Then we perform finite element analysis of the propeller and calculate the mean and the standard deviation of the blade response. We do the parametric analysis to demonstrate the effects of some physical quantities such as the standard deviation, the correlation coefficient, the decorrelation time, and the scale of turbulence of the axial and the tangential components of the wake velocity on the standard deviation of the blade deflection. We found that the CS model yields the time-wise variation of the statistics of the excitation and the response (e.g., the root mean square) and their peaks correctly. This is important information for the calculation of probability of failure of the propeller. A traditional stationary model cannot provide this information.
Acknowledgements

I am greatly indebted to my advisor, Dr. Efstratios Nikolaidis, who was extremely helpful throughout the two years of my research work. Being a newcomer to the field of stochastic processes, it would have been very difficult for me to understand the concepts without his help. I recall a few difficult times in my research such as, solving the input-output problem, Monte Carlo simulation for the road vehicle and the modeling of the propeller, where his suggestions gave me new ways to proceed further. Apart from giving me constant encouragement and liberality, he also taught me how to approach a problem and the discussions with him were always enlightening. His clarity of thought and intuitive prowess are impressive. I feel very blessed to have worked under his supervision.

I would like to express deep gratitude to all my committee members who were of tremendous help to me. I would like to thank Dr. Joseph A. Schetz who explained to me the interaction of ship hull and propeller, and the concept of turbulence. His advice for the calculation of lift and drag forces on the propeller blades was of immense use. I wish to express my sincere appreciation to Dr. Rakesh Kapania for providing me the motivation to do a good research and helping me from time to time. I am also very thankful to Dr. Ioannis M. Besieris for giving some very useful references related to cyclostationary processes and to Dr. Daniel M. Ghiocel for serving on my committee.

I am obliged to Dr Wayne Neu who provided me the data of the ship propeller and suggested a few helpful references related to wake velocity and ship propeller. I am very grateful to Dr. Mahendra P. Singh who taught me Random Vibration and inspired me to become a good researcher.
My sincere appreciation goes to the customer support service of I-DEASTM for their help during the modeling of the propeller, National Science Foundation (grant BES-9713110) for providing me the financial support, and the Department of Aerospace and Ocean Engineering for providing me a good working environment.

I am indebted to my parents for their constant encouragement and support during my pursuit of higher education and to my brothers who sacrificed a lot for the advancement of my career.

My wife, Anjali Mishra, then a graduate student in the Department of electrical Engineering, helped me in understanding the concepts and jargons of cyclostationary processes and signal processing. I am blessed with her support, love, and care.

This thesis is dedicated to my grand father, Late Suryanan Jha, who was my first teacher and inculcated in me the desire to learn.
Table of Contents

Abstract ...i
Acknowledgement ..ii
Table of Contents ...iv
List of Figures ..vi
List of Tables ..ix
Notations ..x

1. INTRODUCTION ..1
 1.1 Outline of the Thesis ..3
 1.2 Random Process ...5
 1.2.1 Wide-Sense Stationary Process ...6
 1.2.2 Wide-Sense Cyclostationary Process ...7
 1.3 Examples of Cyclostationary Process ...7
 1.4 Traditional Approaches to Modeling CS Processes and Their Disadvantages8
 1.5 Literature Review ..10
 1.6 Objective of the Presented Work ...11

2. INPUT-OUTPUT PROBLEM ..13
 2.1 Characterization of a Cyclostationary Process ..13
 2.2 Response of a Linear Time-Invariant System Subjected to Cyclostationary Excitations ...15
 2.3 Stationary Process as a Special Case of Cyclostationary Process18

3. EXAMPLE OF A ROAD-VEHICLE ...20
 3.1 Model of the Road Excitation ...20
 3.2 Calculation of the Vehicle Response ...22
4. FORCES ON THE PROPELLER BLADES

4.1 Introduction

4.2 Interaction Between the Ship Hull and the Propeller

4.3 Calculation of the Hydrodynamic Forces

 4.3.1 Assumptions

 4.3.2 The Vortex Panel Method

 4.3.3 The Vortex Theory of a Propeller

 4.3.4 Randomness in the Velocity Field

 4.3.5 Mean and Covariance of the Hydrodynamic Forces

5. FINITE ELEMENT ANALYSIS OF THE PROPELLER

 5.1 Propeller Model and Finite Element Analysis Using I-DEAS™

 5.2 Modal Condensation

 5.2.1 Steady State Response

 5.2.2 Modal Condensation and Input-Output Problem

6. RESPONSE OF THE PROPELLER

 6.1 Hydrodynamic Forces

 6.2 Mean of the Blade Response

 6.3 Standard Deviation of the Blade Response

 6.4 Parametric Analysis

7. CONCLUSIONS AND RECOMMENDATIONS

8. FIGURES

9. REFERENCES

APPENDIX: DATA OF THE PROPELLER

VITA
List of Figures

Figure 1.1: Sample path of a stationary process. Statistics would be constant in time.............66
Figure 1.2: Sample path of a CS process. Statistics would be period in time......................67
Figure 1.3: A narrow-beam radar antenna rotating in a non-uniform field produced by a stationary signal source. The output signal of the receiver is cyclostationary...........68
Figure 1.4: Ensemble mean and RMS of velocity behind the stator blades of a turbine. The intensity of random fluctuation is much stronger behind the stator blades than between them...69
Figure 1.5: Ensemble RMS velocity at a fixed point behind a wind propeller. The intensity of random fluctuation is significant and varies in time...70
Figure 1.6: Autocorrelation function of $S(t)$, when ω_1, ω_2 are equal and ϕ_1, ϕ_2 are also equal. $S(t)$ is a stationary process..71
Figure 1.7: Autocorrelation of $S(t)$, when ω_1, ω_2 are different and ϕ_1, ϕ_2 are equal. $S(t)$ is a CS process..72
Figure 1.8: Autocorrelation of $S(t)$, when ω_1, ω_2 are different and ϕ_1, ϕ_2 are statistically independent. $S(t)$ is a stationary process...73
Figure 3.1: Ten laps of a test track. The sample path indicates that the statistics would vary periodically...74
Figure 3.2: Sample path of the road and the vehicle model...75
Figure 3.3: Autocorrelation of the road excitation. It is periodic in time and hence the excitation is cyclostationary...76
Figure 3.4: Comparison of results of a CS model and approximate stationary model obtained
using the analytical method (upper curve) and Monte Carlo simulation (lower curve).

Figure 3.5: Effect of velocity on the ratio of maximum standard deviation to average standard deviation.

Figure 3.6: Plot of maximum standard deviation of response vs. ω_e/ω_n.

Figure 4.1: Wake profile of axial component of velocity $u(r, t)$ behind a ship hull. The contours correspond to constant values of the wake fraction coefficient $w = (1-u(r, t)/u_0)$, where u_0 is the speed of ship.

Figure 4.2: Autocorrelation, $R_{uu}(t_2, t_1-t_2)$, of the horizontal velocity component $u(r, t)$. The autocorrelation of the CS process varies periodically with t_2, whereas the autocorrelation of a stationary process is constant in t_2.

Figure 4.3: Points on the surface of the airfoil representing the geometry in the panel method.

Figure 4.4: Solid model of propeller developed using I-DEASTM with the direction of rotation and the wake velocity.

Figure 4.5: Velocities and forces acting on a hydrofoil section at r.

Figure 4.6: Two general points at the surface of the blade where correlations of the velocities and forces are calculated.

Figure 5.1: Construction of hydrofoils by joining the points on the surface of the blade.

Figure 5.2: Wire-frame of assembly of the blades and hub.

Figure 5.3: A TET-10 elements with nodal degree of freedom. Each node has three degree-of-freedom, i.e. displacements in three directions.

Figure 6.1: Axial wake profile of a ship ($C_B = 0.65$, speed of ship = 19.4 Knots).

Figure 6.2: Lift curve slope at different radial position on the blade calculated using vortex panel method.

Figure 6.3: Prandtl’s tip loss factor as a function of radial position on the blade.

Figure 6.4: Resultant velocity as a function of radial and angular positions.

Figure 6.5: Lift at a section at 0.7 R of the blade as it rotates.

Figure 6.6: Torque coefficient, thrust coefficient, and open water efficiency of the propeller as functions of advance ratio.

Figure 6.7: Finite Element meshing of the propeller using TET-10 elements.

Figure 6.8: First four mode shapes of the propeller.
Figure 6.9: Forth to eighth mode shapes of the propeller

Figure 6.10: Mean value of z-deflection of a node at a tip section of the blade as a function of time

Figure 6.11: Standard deviation of turbulence in the axial direction as a function of θ and τ

Figure 6.12: Standard deviation of turbulence in the axial direction as a function of θ

Figure 6.13: First element of the frequency response function matrix plotted against frequency

Figure 6.14: Standard deviation of deflection of the blade in axial direction at the tip section of the blade

Figure 6.15: Band of the velocity fluctuation in the axial direction

Figure 6.16: Band of the tip deflection in the axial direction
List of Tables

Table 3.1: Values of the parameters of the road vehicle………………………………….23
Table 6.1: Data of the wake and the propeller…………………………………………….55
Table 6.2: Values of the parameters for the correlation of velocity……………………….58
Table 6.3: Data for the parametric analysis of the propeller……………………………60
NOTATIONS

Latin Symbols

\(a_o(r) \): Lift curve slope at a blade section at radius \(r \).

\(A(t), B(t) \): Zero-mean stationary random processes.

\(c \): Damping coefficient for the road-vehicle.

\(c(r) \): Chord length at a blade section at radius \(r \).

\(C \): Damping matrix.

\(C^{'} \): Modal damping matrix.

\(C_B \): Block coefficient.

\(C_d \): Drag coefficient.

\(C_l \): Lift coefficient.

\(C_{ij} \): Element in \(i^{th} \) row and \(j^{th} \) column of the diagonal damping matrix.

\(C^{S} \): Cyclostationary.

\(d \): Length of a slab.

\(D \): Diameter of the propeller.

\(D_r \): Decorrelation distance.

\(D_t \): Decorrelation time.

\(dL \): Lift force on a hydrofoil section of infinitesimal length \(dr \).

\(dD \): Drag force on a hydrofoil section of infinitesimal length \(dr \).

\(dr \): Infinitesimal length of the blade section at radius \(r \).

\(E[\cdot] \): Expected value of a random variable.

\(f(\cdot) \): Probability density function.

\(h(t) \): Matrix of impulse response functions.
H_i: Height of the i^{th} slab.

$H(\omega)$: Matrix of frequency response functions.

i: Index.

I: Set of integers.

j: Index, or,

imaginary number ($\sqrt{-1}$).

J: Advance ratio.

k: Spring constant.

K: Stiffness matrix.

K': Modal stiffness matrix.

k_{ai}: Slope of f_i with respect to v_a.

k_{ai}: Slope of f_i with respect to v_t.

$C_{ff}(r_i, t, r_j, \tau)$: Element of covariance matrix of the blade force.

$\text{Cov}_{XY}(t_1, t_2)$: Covariance matrix of the vector $X(t)$ and $Y(t)$.

$\text{Cov}_{YY}(t_1, t_2)$: Covariance matrix of the vector $Y(t)$.

$\text{Cov}_{ZZ}(t_1, t_2)$: Covariance matrix of the vector $Z(t)$.

f_{mi}: Mean value of the force f_i.

f_{ro}: Element of amplitude vector of the sinusoidal forcing function.

f_{x_i}: Component of total force in x-direction acting at i^{th} location on the blade.

$f_{X(t)}(x)$: Probability density function of the random vector process $X(t)$ at time t.

$f_{x(t_1),y(t_2)}(x, y)$: Joint probability density function of the two random vector processes $X(t)$, and $Y(t)$ at times t_1 and t_2.

f_{y_i}: Component of total force in y-direction acting at i^{th} location on the blade.

f_{z_i}: Component of total force in z-direction acting at i^{th} location on the blade.

F: Prandtl’s tip loss factor.

F': Modal force vector.

F_0: Amplitude vector of the sinusoidal forcing function.

h: Distance from the leading edge of a hydrofoil section.

k: Goldstein’s kappa factor.

K: Stiffness matrix of the propeller.

K_r: Element in r^{th} row and r^{th} column of the diagonal stiffness matrix.
K_T: Thrust coefficient.

K_Q: Torque coefficient.

LTI: Linear time invariant.

m: Mass of the road-vehicle.

M: Mass matrix.

M': Modal mass matrix.

MC: Monte Carlo.

$MIMO$: Multi-input multi-output.

M_{ir}: Element in r^{th} row and r^{th} column of the diagonal mass matrix.

n: Index, or,

The number of blades ($n = 3$), or,

The rotational speed of the propeller in revolutions per second.

N: Number of panel in vortex panel method.

$N(t)$: Response vector in principal coordinate system.

P: A particular location on the blade.

$pulse(\cdot)$: Pulse function.

$P(t)$: A CS process.

Q: Torque produced by a propeller blade.

$Q(t)$: A CS process.

Q_T: Total torque produced by the propeller.

r: Radial distance of a blade section from the center of the propeller.

R: Radius of the propeller.

RMS: Root mean square value.

$rff(n, \tau, r_{i}, r_{j})$: Element of Cyclic covariance matrix of the blade force.

$R_{FF}(t_1, t_2)$: Correlation matrix of the forces in principal coordinate system.

$R_{FF}(t_1, t_2)$: Correlation matrix of the forces in physical coordinate system.

$R_{NN}(t_1, t_2)$: Correlation matrix of the response in principal coordinate system.

r_f: Ratio of the forcing frequency to the r^{th} natural frequency.

$r_{ij}(\theta_i - \theta_j)$: Coefficient in the expression for correlation of turbulent velocity.

$R_{ss}(t_1, t_2)$: Autocorrelation of the random process $S(t)$.

$R_{v_a v_a}$: Autocorrelation of the axial component of the turbulent velocity.
$R_{V,u}V_i$: Cross correlation of the axial and tangential components of the turbulent velocity.

R_{V,V_i}: Autocorrelation of the tangential component of the turbulent velocity.

$r_{YY}(n,\tau)$: Cyclic correlation matrix of the excitation vector.

$R_{YY}(\tau)$: Autocorrelation of a stationary random process $Y(t)$.

$R_{YY}(t_1, t_2)$: Autocorrelation of a nonstationary random process $Y(t)$.

$R_{YY}(t_1, t_2)$: Correlation matrix of the excitation vector.

$R_{uu}(t_1, t_2)$: Autocorrelation of the velocity in the wake of a ship.

$R_{YY}(x+\Delta, x)$: Autocorrelation of the road excitation measured at two spatial location x and $x + \Delta$.

$r_{ZZ}(n,\tau)$: Cyclic correlation matrix of the response vector.

$R_{ZZ}(t_1, t_2)$: Correlation matrix of the response vector.

$R_{zz}^s(t_1, t_2)$: Correlation matrix of the response vector of the equivalent stationary random processes.

S_{av}: Average of the crosscorrelation at $(\tau = 0, \Delta S = 0)$

S_{max1}: Crosscorrelation at $(\tau = 0, \Delta S = 0, \theta = 0)$

S_{max2}: Crosscorrelation at $(\tau = 0, \Delta S = 0, \theta = \pi)$

$S(t)$: Resultant process after phase randomization.

$S_{YY}(n,\omega)$: Matrix of cyclic cross spectral density of the excitation vector.

$S_{ZZ}(n,\omega)$: Matrix of cyclic cross spectral density of the response vector.

t: Time.

t_1, t_2: Times at two instants.

T: Time period, also the thrust produced by a propeller blade.

T_{T}: Total thrust produced by the propeller.

$u(r, t)$: Horizontal component of the velocity.

$u(r, t)$: Velocity field in the plane of a propeller.

u_o: Ship velocity.

v: Fluctuation in the velocity.

V: Velocity of the road-vehicle, also velocity of ship.

Va: Axial component of the wake velocity.

Ve: Resultant velocity of the flow that a blade section encounters.
Vs\(a\): Velocity of advance.
\(w\): Wake fraction.
\(W\): Induced velocity.
\(Wa\): Axial component of the induced velocity.
WSCS: Wide sense cyclostationary.
\(W_t\): Tangential component of the induced velocity.
\(x\): Distance that the road vehicle has traveled in time \(t\).
\(Y(x)\): Excitation due to road roughness as function of distance traveled by the vehicle.
\(Y(t)\): Excitation due to road roughness as function of time.
\(Y(t)\): Excitation vector (size = \(m \times 1\)).
\(Z(t)\): Response Vector (size = \(p \times 1\)).

Greek Symbols

\(\alpha\): Section angle of attack.
\(\alpha_i\): Induced angle of attack.
\(\alpha_i\): Phase shift in the sinusoidal response of a single degree-of-freedom system.
\(\beta\): Geometric pitch angle of zero lift line of a hydrofoil section of blade.
\(\beta_{tip}\): Geometric pitch angle of zero lift line of a hydrofoil section at the tip of the blade.
\(\Delta\): Distance between two points where autocorrelation is being calculated.
\(\Delta S\): Distance between two points where correlation is being calculated
\(\Delta \theta\): The change in \(\theta\) from the leading edge to the trailing edge.
\(\Delta \alpha\): Reduction in the angle of attack of the zero lift line since the flow traces a curve path between two blades.
\(\varepsilon\): Ratio of lift to drag coefficients.
\(\phi\): \(\tan^{-1}(V_o/\Omega_r)\).
\(\phi\): Random phase angle of the CS signal \(P(t)\).
\(\phi_2\): Random phase angle of the CS signal \(Q(t)\).
\(\Phi \): Modal matrix.

\(\Phi_i \): \(i^{th} \) modal vector.

\(\phi_r \): Helix angle at the tip of the blade.

\(\gamma \): Slope of the flow at any point at a distance \(h \) from the leading edge of the hydrofoil.

\(\Gamma \): Circulation around a blade element.

\(\Gamma_\infty \): Circulation around a blade element when number of blades approaches infinity.

\(\eta(t) \): Mean of the excitation vector to a dynamic system.

\(\eta_o \): Open water efficiency of the propeller.

\(\eta_{r}(t) \): \(r^{th} \) element in the response vector of system in principal coordinate system.

\(\sigma \): Standard deviation.

\(\sigma_{av} \): Average standard deviation

\(\sigma_{max1} \): Maximum standard deviation at \(\theta = 0 \)

\(\sigma_{max2} \): Maximum standard deviation at \(\theta = \pi \)

\(\sigma_{\nu_1} \): Crosscorrelation at \((\tau = 0, \Delta S = 0) \)

\(\sigma_{Z,Average} \): Average value of the standard deviation of the vehicle response.

\(\sigma_{Z,Maximum} \): Maximum value of the standard deviation of the vehicle response.

\(\sigma_h \): Standard deviation of slab height.

\(\theta \): Angular position of the blade \((\theta = 0 \) is vertical up), and also the slope of the flow at any point at a distance \(h \) from the leading edge of the hydrofoil.

\(\Sigma(x,y,z,t) \): A scalar random field

\(\rho \): Density of water.

\(\rho_{\nu_1} \): Pearson’s correlation coefficient of the axial and the tangential components of the wake velocity.

\(\tau \): Time difference \((t_1 - t_2) \).

\(\omega \): Frequency.

\(\omega_1 \): Frequency of the CS process \(P(t) \).

\(\omega_2 \): Frequency of the CS process \(Q(t) \).

\(\omega_c \): Fundamental frequency.
Ω: Rotational velocity of the propeller, or,
 Frequency of the forcing function.
\' : Denotes transpose of a vector of matrix.