LIST OF FIGURES

Figure 2-1. Definition sketch for applying Fox and Baxter (1996) theory to API hydraulic conductivity tests ...9

Figure 2-2. Plan view sketch of 3D model used by Eiben et al. (1994)19

Figure 2-3. Histograms from Barvenik and Ayres (1987) case history29

Figure 2-4. Histograms from Hayward Baker (1988) case history30, 31

Figure 2-5. Histograms from Koelling et al. (1997) case history32

Figure 2-6. Histograms from Zamojski et al. (1995) case history33

Figure 3-1. Plan view of SBTF ...37

Figure 3-2. Section A-A view of SBTF ...38

Figure 3-3. Section B-B view of SBTF ..39

Figure 4-1. Compaction curves for Washout material used for CCL in pilot-scale experiments ..46

Figure 4-2. Compaction characteristics of Washout material from three different compaction methods ...47

Figure 4-3. CCL and LCS geometry for W1 ..49

Figure 4-4. CCL and LCS geometry for W2 ..50

Figure 4-5. CCL and LCS geometry for W3 ..51

Figure 4-6. The finished CCL for W1 and compacting the LCS for W152

Figure 4-7. Aquifer and soil-bentonite base soil grain size distributions54

Figure 4-8. Soil-bentonite mix design: hydraulic conductivities of Bedding Sand mixed with three different bentonite contents57

Figure 4-9. Consolidation tests on soil-bentonite grab samples from W158

Figure 4-10. Schematic diagram of Rantec plastic mixing eductor59

Figure 4-11. Soil-bentonite mixing ..61
Figure 4-12. Excavating the trench for W1 using bioslurry for excavation support .. 66

Figure 4-13. Predicted stresses in pilot-scale cutoff walls from arching theory .. 71

Figure 4-14. Destructive evaluation of W1 .. 73

Figure 4-15a and b. Destructive evaluation of W2 ... 75, 76

Figure 4-16. Degradation of bioslurry viscosity ... 78

Figure 4-17. Filter cake in part of W3 excavated in Stage 2 ... 80

Figure 4-18. Filter cake thickness between soil-bentonite and LCS – W3 ... 81

Figure 4-19. Destructive evaluation of W3 .. 83

Figure 5-1. API filter press apparatus ... 86

Figure 5-2. Use of monitoring wells in the barrier pit to control water levels and measure the flow rate through pilot-scale cutoff walls .. 90

Figure 5-3. Sketch of W2 showing Layers A – D and the water level pairs used for evaluating the average hydraulic conductivity of the wall .. 94

Figure 5-4. Flow model 1 of flow rate through pilot-scale cutoff wall ... 96

Figure 5-5. Shape factors, s, for Flow models 1 and 2 ... 97

Figure 5-6a. SEEP2D finite element mesh used for Flow model 2 ... 100

Figure 5-6b. SEEP2D flow net for mesh shown in 5-6a ... 101

Figure 5-7a. SEEP2D mesh used to investigate influence of k_{CCL} on flow rate through cutoff wall .. 103

Figure 5-7b. Increase in flow rate through W3 due to flow through CCL .. 104

Figure 5-8a. Orthogonal view of MODFLOW grid used for Flow model 3, W2, Water level pair 4 .. 106
Figure 5-8b. View of MODFLOW grid for W2, Water level pair 4, in y-direction
..107

Figure 5-8c. View of Column 16 of MODFLOW grid in x-direction.................108

Figure 5-8d. View of Column 16 MODFLOW solution109

Figure 5-8e. View of Layer 10 of MODFLOW grid in z-direction.....................110

Figure 5-9. Orthogonal view of MODFLOW grid used for Flow model 3, W2, Water level pair 1 ...111

Figure 5-10. Modeling the constant head trench-wall boundary condition in MODFLOW ..112

Figure 5-11. Geonor M206 piezometer ...115

Figure 5-12. Flow nets for Teeter and Clemence (1986) correction factor for piezometer tests in cutoff walls ...117

Figure 5-13a. Orthogonal view of the 3D finite difference MODFLOW grid used to evaluate shape factors for a piezometer in a cutoff wall (B/D = 43.4, L/D = 15.7)...119

Figure 5-13b. Close up view of the simulated piezometer120

Figure 5-13c. Top view of the 3D finite difference MODFLOW grid (B/D = 43.4, L/D = 15.7) at a layer in the middle of the piezometer filter ...121

Figure 5-13d. Side view of the 3D finite difference MODFLOW grid (B/D = 43.4, L/D = 15.7)...122

Figure 5-13e. Close up of the piezometer filter circled in Fig. 5-13d123

Figure 5-13f. Equipotential surfaces for the model shown in Fig. 5-13a.............124

Figure 5-13g. Side view and top view of equipotential lines125

Figure 5-14. Shape factors for piezometer tests in cutoff wall from 3-D MODFLOW model ...126

Figure 5-15a. Two-dimensional finite element mesh used for shape factor evaluation of a well in a cutoff wall with filter cakes129
Figure 5-15b. Equipotential lines and flow lines for the two-dimensional finite element mesh with B/D = 12 and φ_{sb} / $\varphi_{fc} = 1.67$........................130

Figure 5-16a. Single-well test shape factors that account for filter cakes132

Figure 5-16b. Chart for evaluating k_{eq} from single-well test k_{sb} (evaluated assuming no filter cakes) and estimate of filter cake permittivity ...133

Figure 5-17. Effect of position of well in wall on shape factor136

Figure 5-18. Effect of formation soil hydraulic conductivity on boundary condition assumption..138

Figure 5-19. Results of piezometer hydraulic fracture tests and predictions for W1 and W2 ..141

Figure 5-20. Pushing the piezocone into W1..148

Figure 5-21. Obtaining and testing undisturbed samples from the cutoff walls...151

Figure 6-1. API hydraulic conductivity tests on grab samples – W1156

Figure 6-2. Hydraulic conductivity measurement locations, W1158

Figure 6-3. Variable head piezometer test results, L2D2, W1161

Figure 6-4. Effect of flow direction in variable head piezometer tests, W1.................162

Figure 6-5. Comparison of variable and constant head piezometer test results, W1...165

Figure 6-6. Comparison of variable head piezometer test results from Hvorslev-type and Cooper et al. analyses, W1167

Figure 6-7. Piezocone soundings
 a) P1 in W1 ...168
 b) P2 in W1 ...169
 c) P3 in W1 ...170
 d) P4 in W1 ...171
 e) P5 in W1 ...172
 f) P6 in W1 ...173
 g) P7 in compacted LCS ..174

Figure 6-8. Dissipation test data for P6 in W1 ...177
Figure 6-9. API hydraulic conductivity tests on grab samples – W2182

Figure 6-10. Hydraulic conductivity test locations, W2..184

Figure 6-11. API hydraulic conductivity tests on grab samples – W3191

Figure 6-12a. Measurement of background flow rates for W3 (i = 0).....................193

Figure 6-12b. Global measurement of average hydraulic conductivity of W3 (i = 1) ..194

Figure 6-13. Results of SEEP2D flow rate computations with filter cakes modeled ..196

Figure 6-14. Hydraulic conductivity test locations, W3..198

Figure 6-15. Influence of sample volume on soil-bentonite hydraulic conductivity for W3..207

Figure 6-16. Comparison of k_{sb} and k_{eq} as a function of sample volume for W3 ...210

Figure 7-1. Schematic diagram of breakthrough experiment216

Figure 7-2. Theoretical steady state concentration profiles in the breakthrough experiment..218

Figure 7-3. Results of breakthrough experiment and analysis..................................220

Figure 7-4. Diffusion test results ...225

Figure 7-5. Definition sketch for analysis of breakthrough experiment226

Figure 7-6. Solution procedure for evaluating the influence of variability in hydraulic conductivity on the flux through a barrier ...234

Figure 7-7. Effect of variability in hydraulic conductivity on the flux through a cutoff wall, negative values of mean P_e ...237

Figure 7-8. Breakthrough curves for the case of $P_e < 0$..238, 239

Figure 7-9. Effect of variability in hydraulic conductivity on the breakthrough time through a cutoff wall, negative values of mean P_e ..241
Figure 7-10. Effect of variability in hydraulic conductivity on the flux through a cutoff wall, positive values of mean P_e ...243

Figure 7-11. Breakthrough curves for the case of $P_e > 0$...244

Figure 7-12. Effect of variability in hydraulic conductivity on the breakthrough time through a cutoff wall, positive values of mean P_e ..245

Figures A-1 through A-37. Variable and Constant head piezometer test results for all tests shown in Tables 6-1 (W1), 6-8 (W2), and 6-11 (W3) ...272 – 308

Figure B-1. Dissipation test data for P1 in W1 ...310

Figure B-2. Dissipation test data for P2 in W1 ...311

Figure B-3. Dissipation test data for P3 in W1 ...312

Figure B-4. Dissipation test data for P5 in W1 ...313

Figure C-1. Batch equilibrium tests ..315

Figure D-1. Soil-bentonite/NaCl compatibility tests ...317