APPENDIX E. NOTATION

1/K double layer thickness in Gouy-Chapman theory

\(\alpha \) Bjerrum et al. (1972) parameter (see Eq. 5-19), or dimensionless parameter
used in Cooper et al. (1967) method (see Eq. 6-3), or level of significance
(Section 7.3), or \(P_e / 2 \) (Section 7.4)

\(\beta \) Bjerrum et al. (1972) parameter (see Eq. 5-20) or dimensionless time
parameter used in Cooper et al. (1967) method (see Eq. 6-2)

\(\varepsilon_0 \) permittivity of vacuum

\(\phi' \) effective friction angle

\(\gamma \) unit weight of soil

\(\gamma_d \) dry unit weight of soil

\(\gamma_m \) moist unit weight of soil

\(\gamma_w \) unit weight of water

\(\varphi_{fc} \) permittivity of filter cakes in cutoff wall

\(\varphi_{sb} \) permittivity of soil-bentonite in cutoff wall

\(\mu \) average of negative logarithm of \(k \) values

\(\nu \) ionic valence or Poisson's ratio

\(\nu' \) Poisson's ratio of soil skeleton

\(\sigma \) standard deviation of negative logarithm of \(k \) values

\(\sigma_{c'} \) circumferential effective stress

\(\sigma_{h'} \) horizontal effective stress

\(\sigma_{h0'} \) initial horizontal effective stress (e.g., prior to piezometer installation)

\(\sigma_{r'} \) radial effective stress

\(\sigma_{v'} \) vertical effective stress

\(\sigma_{v0'} \) initial vertical effective stress

API American Petroleum Institute

\(A \) material parameter equal to the negative slope of a \(\log k \) vs. \(\log p \) plot, or
inside area of cell in breakthrough experiment (Section 7.2), or total area
under pdf (Section 7.4)
A_s cross-sectional area of soil specimen
a cross-sectional area of burette in falling head tests
a_i incremental area under pdf
B cutoff wall width or material parameter equal to $k_0 p_0 A / [\gamma_w (1 - A)]$
B_k piezocone parameter from Manassero (1994)
CCL Compacted Clay Liner
COV Coefficient Of Variation
cpf cumulative probability function
C dimensionless contaminant concentration, c/c_0
C_B NaCl concentration in bottom reservoir in breakthrough experiment
C_{NaCl} NaCl concentration
$C_{0,NaCl}$ initial NaCl concentration
C_T NaCl concentration in top reservoir in breakthrough experiment
$C_{T,initial}$ initial NaCl concentration in top reservoir
c contaminant concentration
c_0 constant contaminant concentration inside cutoff wall
c_h coefficient of consolidation in horizontal direction
D diameter of well or piezometer filter element, or Kolmogorov-Smirnov test statistic, or dielectric constant
D_1 difference between volumes of water added to/removed from each side of cutoff wall during measurement of background flow rates
D_2 difference between volumes of water added to/removed from each side of cutoff wall during measurement of flow rate through wall
D_α critical value of test statistic, D
D^* effective diffusion coefficient in soil
d_1 difference between background flow rates on each side of cutoff wall
d_2 difference between flow rates necessary to maintain water levels on each side of cutoff wall with a hydraulic gradient across the wall
E evaporation rate in height of water per time
E' Young's modulus of soil skeleton
e electronic charge
\(F \) shape factor for single-well test
\(F_{2D} \) two-dimensional single-well shape factor from SEEP2D
\(f_s \) sleeve friction from piezocone
\(G \) shear modulus of soil
\(G_s \) specific gravity of solids
\(H \) applied head, above equilibrium head, in constant head single-well test
\(H_0 \) head at time zero, above equilibrium head, in variable head single-well test
\(H_c \) upgradient height of water above CCL
\(H_t \) head at time \(t \), above equilibrium head, in variable head single-well test
\(h_e \) excess head
\(h_{jc} \) filter cake formation head
\(h_{lt} \) head loss across soil specimen at time \(t \)
\(h \) height of top reservoir in breakthrough experiment
\(h_{lw} \) distance variable defined in Figure 2-1
\(\Delta h \) head drop (across cutoff wall, between piezometer and trench wall, etc.)
\(I_r \) rigidity index
\(i \) hydraulic gradient
\(i_g \) gross hydraulic gradient across API test specimen
\(J \) flux through cutoff wall in mass per area per time
\(J_{D^*} \) flux through cutoff wall due to diffusion only
\(J_{steady \, state} \) steady state flux through cutoff wall
\(j \) flux in mass per time
\(K_0 \) at-rest earth pressure coefficient
\(K_h \) horizontal earth pressure coefficient
\(KR \) ratio of CCL \(k \) to soil-bentonite \(k \)
\(k \) hydraulic conductivity or Boltzmann constant
\(k_0 \) a reference hydraulic conductivity
\(k_{ave} \) average hydraulic conductivity
\(k_{CCL} \) CCL hydraulic conductivity
\(k_{eq} \) equivalent hydraulic conductivity of cutoff wall
k_{fc} filter cake hydraulic conductivity
$k_{formation}$ formation soil hydraulic conductivity
k_g gross hydraulic conductivity of API test specimen
k_h hydraulic conductivity in horizontal direction
k_{sb} soil-bentonite hydraulic conductivity
k_v hydraulic conductivity in vertical direction
LCS Light Castle Sand
L length of well or piezometer filter element or length of specimen in breakthrough experiment
L_{fc} filter cake thickness
L_s length of soil specimen
L_w length of cutoff wall
$\Delta L_{w,i}$ incremental length of cutoff wall
m_v coefficient of volume compressibility
N number of samples or values in a summation
n soil porosity
n_d number of head drops in a flow net
n_f number of flow channels in a flow net
n_{fc} filter cake porosity
n_s slurry porosity
n_0 reference ion concentration
OCR overconsolidation ratio
PFW Price's Fork Water
pdf probability density function
P_e Peclet number = $v_h B / D^*$
p effective major principal stress
p_0 a reference effective major principal stress
p_{air} air pressure applied in API tests
p_b effective major principal stress at bottom of API specimen
p_g gross effective major principal stress corresponding to k_g
p_t effective major principal stress at top of API specimen
Q_x volume of water added to/removed from x, where x is defined in text
q effective surcharge pressure
q_t tip resistance from piezocone
q_x volumetric flow rate at/through x, where x is defined in text
q_{2D} two-dimensional flow rate, i.e., volumetric flow rate per incremental length
R retardation factor
RR recompression ratio
R_e equivalent radius in single-well tests
r radius of piezocone
r_c radius of well or piezometer standpipe
r_w radius of well or piezometer filter element
SBTF Subsurface Barrier Test Facility
S shape factor for cutoff wall for given water levels on each side of wall
S_u undrained shear strength
s shape factor for incremental length of cutoff wall
T dimensionless time, $t \, D^* / (R \, B^2)$, or temperature
$T_{0.95}$ dimensionless time to reach 95% of steady state flux through cutoff wall
T^* time factor in Houlsby and Teh (1988) piezocone model
t time variable
Δt time interval between two times, t_1 and t_2
t_{50} time for 50% of excess pore pressure to dissipate
u_2 pore pressure measured just above conical tip of piezocone
u_e excess pore water pressure
V top reservoir volume in breakthrough experiment
v discharge velocity
v_s seepage velocity
ΔWL change in water level in monitoring well in barrier pit
X dimensionless position along width of cutoff wall, x / B
x position along width of cutoff wall
z vertical distance variable