LIST OF FIGURES

Chapter 1

Figure 1.1. a) Complementary base pairing in DNA helical structure and b) base pairing in DNA (guanine and cytosine form triple hydrogen bonds; adenine and thymine form double hydrogen bonds) 2

Figure 1.2. Electron micrograph of the tobacco mosaic virus 3

Figure 1.3. Self-assembly of the tobacco mosaic virus at different stages 4

Figure 1.4. Model of α helix. Hydrogen bond interactions are denoted by dotted lines 4

Figure 1.5. Models of β-pleated sheets. Side-chains are omitted for clarity. a) The antiparallel β-pleated sheet and b) the parallel β-pleated sheet. Hydrogen bonding interactions are denoted by dotted lines 5

Figure 1.6. The crystal structure of the 1:1 complex of cyanuric acid and melamine 7

Figure 1.7. Complex 3 formed from 1 and 2 7

Figure 1.8. Molecular structures of 4, 5, and 6 and their cartoon representations using balls, strings, and rods. Black and white balls denote melamine and cyanuric acid units, respectively. Strings and rods denote flexible and rigid bridging units, respectively 8

Figure 1.9. Molecular structures of 7 and 8 and the X-ray structures of the corresponding dimers 7-7 and 8-8. Hydrogen bondings are denoted by dotted lines 9

Figure 1.10. Structural representation of the cyclic hexamers 11 assembled from 9 and 10 10

Figure 1.11. Formation of the pseudorotaxane 14 between 12 and 13 11

Figure 1.12. Formation of the pseudorotaxane 17 between 15 and 16 12

Figure 1.13. Formation of the pseudorotaxane 19 between 15 and 18 12

Figure 1.14. Formation of the pseudorotaxane 22 between 20 and 21 13

Figure 1.15. Metal directed synthesis of the catenane 25 14

Figure 1.16. Metal directed synthesis of the molecular knot 28 15

Figure 1.17. Synthesis of the nanocage 31 16
Figure 1.18. Synthesis of the molecular necklace 34

Figure 1.19. Synthesis of the fourth generation self-assembling dendrimer 36 from six units of 35. The dendron wedges in 36 are omitted for clarity

Figure 1.20. Construction of nanotubes 38 from cyclic peptides 37

Figure 1.21. Synthesis of the main-chain polypseudorotaxane 41

Figure 1.22. Synthesis of the main-chain polypseudorotaxane 44

Figure 1.23. Self-assembly of thermotropic liquid crystalline polymers 47

Figure 1.24. Electron micrographs of supramolecular polymers from the mixture a) LP + LU, b) DP + DU, and c) mP + mU

Figure 1.25. Self-assembly of lyotropic liquid crystalline polymer 50

Figure 1.26. Self-assembly of side-chain liquid crystalline polymer 53

Figure 1.27. Self-assembly of polymeric network 56 and ladder structures 57

Figure 1.28. Self-assembly of supramolecular polymers 60 and 61

Chapter 2

Figure 2.1. The synthetic routes to 4

Figure 2.2. Two-step syntheses of 8 and 11

Figure 2.3. The 1H NMR spectrum of 8 (400 MHz, chloroform-d, 22°C)

Figure 2.4. The 1H NMR spectrum of 11 (400 MHz, acetone-d_6, 22°C)

Figure 2.5. The syntheses of monosubstituted 24- and 25-crown-8 derivatives

Figure 2.6. The syntheses of monosubstituted 32-crown-10 derivatives

Figure 2.7. The syntheses of difunctionalized 32-crown-10 derivatives

Chapter 3

Figure 3.1. Synthesis of 4

Figure 3.2. Construction of the 1:3 complex (5)

Figure 3.3. The aliphatic region of 1H NMR spectrum of solutions of 4 and DB24C8 (1.0 x 10^{-2}/3.0 x 10^{-2} M) (400 MHz, acetone-d_6, 22°C)

Figure 3.4. The aliphatic region of the COSY spectrum of solutions of 4 and DB24C8 (1.0 x 10^{-2}/3.0 x 10^{-2} M) (400 MHz, acetone-d_6, 22°C)
Figure 3.5. Representation of the complexation site between the ammonium salt moiety of 4 and DB24C8

Figure 3.6. The aromatic region 1H NMR spectrum of solutions of 4 and DB24C8 (1.0 x 10^{-2}/3.0 x 10^{-2} M) (400 MHz, acetone-d$_6$, 22°C)

Figure 3.7. The aromatic region of the COSY spectrum of solutions of 4 and DB24C8 (1.0 x 10^{-2}/3.0 x 10^{-2} M) (400 MHz, acetone-d$_6$, 22°C)

Figure 3.8. The stacked 1H NMR spectra of a 1.0 x 10^{-2} M solution of 4 mixed with a) 0, b) 1.0 x 10^{-2}, c) 2.0 x 10^{-2}, d) 3.0 x 10^{-2}, e) 4.0 x 10^{-2}, f) 5.0 x 10^{-2}, g) 6.0 x 10^{-2}, and h) 9.0 x 10^{-2} M solution of DB24C8 (400 MHz, acetone-d$_6$, 22°C)

Figure 3.9. Representation of the H$_{du}$ and H$_{eu}$ protons in the 1:1 complex

Figure 3.10. Representation of the H$_{du}$ and H$_{eu}$ protons in the 1:2 complex

Figure 3.11. Synthesis of the deuterated homotritopic molecule 9

Figure 3.12. The 1H NMR spectra of a 1.0 x 10^{-2} M solution of a) 4 and b) 9 (400 MHz, acetone-d$_6$, 22°C)

Figure 3.13. The stacked 1H NMR spectra of a 1.0 x 10^{-2} M solution of 9 mixed with a) 0, b) 1.0 x 10^{-2}, c) 2.0 x 10^{-2}, d) 3.0 x 10^{-2}, e) 4.0 x 10^{-2}, and f) 9.0 x 10^{-2} solution of DB24C8 (400 MHz, acetone-d$_6$, 22°C)

Figure 3.14. The FAB mass spectrum of the 1:3 complex

Chapter 4

Figure 4.1. Cartoon representations of triply charged ammonium salt 1 and dibenzyl ammonium hexafluorophosphate 2

Figure 4.2. Cartoon representations of 3, 4, and 5

Figure 4.3. Illustrations of the construction of a series of self-assembling dendritic pseudorotaxanes from complementary building blocks

Figure 4.4. The aliphatic region of stacked 1H NMR spectra of a) a 3.0 x 10^{-2} M solution of 1st generation dendron 3 and a 3.0 x 10^{-2} M solution of 3 mixed with 1/3 mol equivalent of solid 1 after b) 10 min and c) 15 h (400 MHz, chloroform-d, 22°C)

Figure 4.5. The designation of the benzylic protons in 1 and 3 for the signal assignments
Figure 4.6. The aromatic region of stacked 1H NMR spectra of a) a 3.0 $\times 10^{-2}$ M solution of 3 and a 3.0 $\times 10^{-2}$ M solution of 3 mixed with 1/3 mol equivalent of solid 1 after b) 10 min and c) 15 h (400 MHz, chloroform-d, 22°C) 81

Figure 4.7. The aliphatic region of stacked 1H NMR spectra of a) a 3.0 $\times 10^{-2}$ M solution of 3rd generation dendron 5 and a 3.0 $\times 10^{-2}$ M solution of 5 mixed with 1/3 molar equivalent of solid 1 recorded after b) 10 min., and c) 72 h (400 MHz, chloroform-d, 22°C) 83

Figure 4.8. The designation of the benzylic protons in 1 and 5 for the signal assignments 84

Figure 4.9. The aromatic region of stacked 1H NMR spectra of a) a 3.0 $\times 10^{-2}$ M solution of 5 and a 3.0 $\times 10^{-2}$ M solution of 3rd generation dendron 5 mixed with 1/3 molar equivalent of solid 1 recorded after b) 10 min., and c) 72 h (400 MHz, chloroform-d, 22°C) 85

Figure 4.10. The aliphatic region of stacked 1H NMR spectra of solutions of 1 and 1st generation dendron 3 at a) 0/1.0 $\times 10^{-2}$, b) 1.0 $\times 10^{-2}$/0, c) 1.0 $\times 10^{-2}$/1.0 $\times 10^{-2}$, d) 1.0 $\times 10^{-2}$/3.0 $\times 10^{-2}$, e) 1.0 $\times 10^{-2}$/4.0 $\times 10^{-2}$, f) 1.0 $\times 10^{-2}$/5.0 $\times 10^{-2}$, and g) 1.0 $\times 10^{-2}$ M/6.0 $\times 10^{-2}$ M (400 MHz, acetone-d_6, 22°C) 87

Figure 4.11. The aliphatic region of stacked 1H NMR spectra of solutions of 1 and 2nd generation dendron 4 at a) 0/1.0 $\times 10^{-2}$, b) 1.0 $\times 10^{-2}$/0, c) 1.0 $\times 10^{-2}$/1.0 $\times 10^{-2}$, d) 1.0 $\times 10^{-2}$/2.0 $\times 10^{-2}$, e) 1.0 $\times 10^{-2}$/3.0 $\times 10^{-2}$, f) 1.0 $\times 10^{-2}$/4.0 $\times 10^{-2}$, g) 1.0 $\times 10^{-2}$/5.0 $\times 10^{-2}$, and h) 1.0 $\times 10^{-2}$ M/6.0 $\times 10^{-2}$ M (400 MHz, acetone-d_6, 22°C) 89

Figure 4.12. The aliphatic region of stacked 1H NMR spectra of solutions of 1 and 3rd generation dendron 5 at a) 0/1.0 $\times 10^{-2}$, b) 1.0 $\times 10^{-2}$/0, c) 1.0 $\times 10^{-2}$/1.0 $\times 10^{-2}$, d) 1.0 $\times 10^{-2}$/2.0 $\times 10^{-2}$, e) 1.0 $\times 10^{-2}$/3.0 $\times 10^{-2}$, f) 1.0 $\times 10^{-2}$/4.0 $\times 10^{-2}$, g) 1.0 $\times 10^{-2}$/5.0 $\times 10^{-2}$, and h) 1.0 $\times 10^{-2}$ M/6.0 $\times 10^{-2}$ M (400 MHz, acetone-d_6, 22°C) 91

Figure 4.13. The FAB mass spectrum of the 1st generation dendrimer $1(3)_3$ 93

Figure 4.14. The FAB mass spectrum of the 2nd generation dendrimer $1(4)_3$ 94

Figure 4.15. The MALDI-TOF mass spectrum of the 3rd generation dendrimer $1(5)_3$ 95

Figure 4.16. The molecular modeling of the 3rd generation dendrimer. The hydrogen atoms are omitted for clarity 97
Chapter 5

Figure 5.1. Synthesis of 3a, 3b, and 7 103

Figure 5.2. Illustration of the constructions of the supramolecules 8 and 9 from 3a and 7 104

Figure 5.3. The stacked 1H NMR spectra of solutions of 3a and 7 at a) 1.0 x 10^-2/0, b) 0/1.0 x 10^-2, and c) 1.0 x 10^-3, d) 1.0 x 10^-2, e) 0.10, f) 0.50, g) 1.0, and h) 2.0 M equimolar solutions (400 MHz, acetone-d_6/chloroform-d (1/1, v/v), 22°C). The three sets of signals are for uncomplexed 3a and 7 (u), 8 (d), and 9 (l) 106

Figure 5.4. The stacked 1H NMR spectra of solutions of 3a and 7 at a) 1.0 x 10^-2/0, b) 0/1.0 x 10^-2, c) 1.0 x 10^-2/1.0 x 10^-2, d) 2.0 x 10^-2/1.0 x 10^-2, e) 4.0 x 10^-2/1.0 x 10^-2, f) 8.0 x 10^-2 M/1.0 x 10^-2 M (400 MHz, acetone-d_6/chloroform-d (1/1, v/v), 22°C). The three sets of signals are for uncomplexed 3a and 7 (u), 8 (d), and 9 (l) 107

Figure 5.5. Reduced viscosity as a function of concentration in acetone/chloroform (1/1, v/v) at 22°C for a) 3b and 7 and b) 3a and 7 110

Figure 5.6. DSC traces of a) the 0.50 M sample and b) 1.0 x 10^-2 M sample (2nd heating at 10°C/min) 112

Figure 5.7. Longitudinal views of scanning electron micrographs of a fiber pulled from a concentrated acetone/chloroform (1/1, v/v) equimolar solution of 3a and 7 (>2.0 M) a) low resolution b) high resolution 113

Chapter 6

Figure 6.1. Cartoon illustrations of formation of the linear dimer complex 6 and cyclic dimer complex 7 from homoditopic molecules 1 and 5 in substantially dilute conditions 118

Figure 6.2. Complementary homoditopic molecules 119

Figure 6.3. Synthetic approach to a series of homoditopic molecules 120

Figure 6.4. The stacked 1H NMR spectra of equimolar solutions of a) 1 and 5a, b) 1 and 5b, and c) 1 and 5c (4.0 x 10^-4 M each) and d) a solution of DB24C8 and 5b (8.0 x 10^-4/4.0x 10^-4 M) at 22°C (400 MHz, acetone-d_6/chloroform-d, 1/1, v/v) 122

Figure 6.5. Cartoon illustrations of the formation of the 1:1 dimer complex 9b from DB24C8 and homoditopic molecule 5b in substantially dilute conditions 123
Figure 6.6. Structure of DB24C8 derivative 10

Chapter 7

Figure 7.1. Cartoon illustration of the construction of the supramolecules 3 and 4 from heteroditopic molecules 1 and 2

Figure 7.2. Synthesis of 2d

Figure 7.3. The stacked 1H NMR spectra of solutions of 1 and 2a at a) 1.0×10^{-2} /0, b) 0/1.0 x 10^{-2}, c) 1.0 x 10^{-3}, d) 1.0 x 10^{-2}, e) 0.1, and f) 0.5 M each (400 MHz, acetone-d_6/chloroform-d (1/1, v/v), 22°C). The three sets of signals are for uncomplexed 2a (u), 3a (d), and 4a (l)

Figure 7.4. The stacked 1H NMR spectra of solutions of 1 and 2c at a) 1.0×10^{-3}, b) 1.0 x 10^{-2}, c) 0.1, d) 0.5, and e) 1.0 M each (400 MHz, acetone-d_6/chloroform-d (1/1, v/v), 22°C). The three sets of signals are for uncomplexed 2c (u), 3c (d), and 4c (l)

Figure 7.5. The average number of repeat units, n, in 4 as a function of concentration of 1 and 2

Figure 7.6. The percentages of ammonium salt moieties in cyclic dimer 3 as a function of concentration of 1 and 2

Chapter 8

Figure 8.1. Outline of the synthesis of the heteroditopic molecule 4

Figure 8.2. The 1H NMR spectrum of 2 (400 MHz, chloroform-d, 22°C)

Figure 8.3. The 1H NMR spectrum of 4 (400 MHz, DMSO-d_6, 22°C)

Figure 8.4. Cartoon representations of the formation of linear arrays 5 and cyclic species 6 by self-assembly of 4

Figure 8.5. The 1H NMR spectrum of 4 (400 MHz, acetone-d_6, 22°C)

Figure 8.6. The stacked variable-temperature 1H NMR spectra of equimolar solutions of DB24C8 and dibenzylammonium salt at a) 22, b) 0, c) –20, d) –30, e) –40, f) –50, and g) –60°C (2.0 x 10^{-2} M each, 400 MHz, acetone-d_6)

Figure 8.7. The stacked variable-temperature 1H NMR spectra of a 2.0 x 10^{-2} M solution of 4 at a) 22, b) 10, c) 0, d) –20, e) –40, and f) –60°C (400 MHz, acetone-d_6)

Figure 8.8. The MALDI spectrum of the solid sample prepared from 4

Figure 8.9. The FAB mass spectrum of the solid sample prepared from 4
Chapter 9

Figure 9.1. Illustration of three types of polypseudorotaxanes. 1a and 1b: linear main-chain polypseudorotaxanes, 2: linear side-chain polypseudorotaxanes 158

Figure 9.2. Synthesis of the crown ether side-chain polymethacrylate 5 and PMMA (6) via polymer precursor 3 159

Figure 9.3. The 1H NMR spectra in the aliphatic region of solutions (10 mL) of a) 5a with an insert of the vertically enlarged CH$_3$O- signal and b) 5d (400 MHz, acetone-d$_6$/chloroform-d (1/1, v/v), 22°C) 161

Figure 9.4. Cartoon representation of construction of 8 from 5 and 7 162

Figure 9.5. The stacked 1H NMR spectra in the aliphatic region of solutions 5a and 7 at a) 0/10, b) 10/0, c) 10/20, and d) 10 mM/40 mM (400 MHz, acetone-d$_6$/chloroform-d (1/1, v/v), 22°C) 163

Figure 9.6. Plots of fraction complexed in 8 versus concentration of 7: a) 5a, b) 5b, c) 5c, and d) 5d vs. 7 (relative error \leq ±6%). The initial concentrations of crown ether moieties of polymers 5a-c and 5d were 10 mM and 12 mM, respectively 165

Figure 9.7. Representation of one possible configurational structure of syndiotactic crown ether side-chain heptamer. The hydrogen atoms are omitted for clarity 166

Figure 9.8. Representation of planar zigzag projections of syndiotactic pentad sequences 167

Figure 9.9. Possible complexation equilibria of crown ether (at position 3 of pentad structures) with 7 168

Figure 9.10. Longitudinal views of scanning electron micrographs of films prepared by freeze-drying solutions of 5a and 7 at a) 100/0 and b) 100 mM/20 mM 172

Chapter 10

Figure 10.1. Syntheses of the dialkylammonium salts 5a and 5b 179

Figure 10.2. The 1H NMR spectrum of 5a (400 MHz, chloroform-d, 22°C) 180

Figure 10.3. The 1H NMR spectrum of 5a (400 MHz, chloroform-d, 22°C) 181
Figure 10.4. The stacked 1H NMR spectra of a) a 2.0×10^{-2} M solution of 5a and b) an equimolar solution of 5a and DB24C8 (2.0 $\times 10^{-2}$ M each) (400 MHz, acetone-d_6, 22°C)

Figure 10.5. The stacked 1H NMR spectra of a) a 2.0×10^{-2} M solution of 6 and b) an equimolar solution of 6 and DB24C8 (2.0 $\times 10^{-2}$ M each) (400 MHz, acetone-d_6, 22°C)

Figure 10.6. The stacked 1H NMR spectra of equimolar solutions of 5a and DB24C8 (2.0 $\times 10^{-2}$ M each) recorded after a) 10 min, b) 20 hours, c) 40 hours, and d) 73 hours (400 MHz, chloroform-d, 22°C)

Figure 10.7. The stacked 1H NMR spectra of an equimolar solution of 5b and DB24C8 (2.0 $\times 10^{-2}$ M each) recorded after a) 5 min. at 22°C, b) 6 days at 53°C, and c) 11 days at 53°C (400 MHz, chloroform-d)

Figure 10.8. The pseudorotaxane complex formed from 5a and DB24C8

Chapter 11

Figure 11.1. Synthesis of the heteroditopic molecule 3

Figure 11.2. The 1H NMR spectrum of 3 (400 MHz, DMSO-d_6, 22°C)

Figure 11.3. Illustration of the formation of the linear oligo- and polymolecular arrays 5 by self-organization of 3

Figure 11.4. The stacked 1H NMR spectra recorded for 3 at concentrations of a) 2.0, b) 5.0 $\times 10^{-1}$, c) 5.0 $\times 10^{-2}$, d) 1.0 $\times 10^{-2}$, e) 1.0 $\times 10^{-3}$, f) 5.0 $\times 10^{-4}$, and g) 6.3 $\times 10^{-5}$ M (400 MHz, acetone-d_6, 22°C)

Figure 11.5. The stacked 1H NMR spectra of a 1.0 $\times 10^{-2}$ M solution of 5 mixed with a) 0, b) 1.0 $\times 10^{-1}$, c) 5.0 $\times 10^{-1}$, d) 1.0, and e) 2.0 M solution of tetrabutyl ammonium hexafluorophosphate (400 MHz, acetone-d_6, 22°C)

Figure 11.6. The 1H NMR spectra of a) 5 at 2.0 M and b) 1b and 6 (2.0/2.0 M) (400 MHz, acetone-d_6, 22°C)

Figure 11.7. The NOESY spectrum of 5 (400 MHz, acetone-d_6, 30°C)

Figure 11.8. Reduced viscosity as a function of concentration (solutions in acetone at 22°C) a) 5 and b) 1b and 6 (1:1)
Figure 11.9. The FAB mass spectrum of the self-organized pseudo-oligomeric material 5

Figure 11.10. Longitudinal views of scanning electron micrographs of a fiber pulled from a concentrated acetone solution of 3 (>2.0 M)

Figure 11.11. The AFM images of a fiber pulled from a concentrated acetone solution of 3 (>2.0 M) a) height and b) phase

Figure 11.12. Roughness analysis of the fiber surface

Chapter 12

Figure 12.1. Cartoon representations of the blocking and slippage approach to mechanically interlocked polymeric materials

Figure 12.2. Synthesis of the blocking group

Figure 12.3. The 1H NMR spectrum of 2 (400 MHz, chloroform-d, 22°C)

Figure 12.4. Synthesis of heteroditopic molecule 6

Figure 12.5. The 1H NMR spectrum of 6 (400 MHz, DMSO-d_6, 22°C)

Figure 12.6. Illustration of the model system between 7 and BMP32C10 to form 8

Figure 12.7. The stacked 1H NMR of a) 7 (2.0 x 10^{-2} M) and b) equimolar solutions of BMP32C10 and 7 (2.0 x 10^{-2} M each) (400 MHz, acetonitrile-d_3, 22°C)

Figure 12.8. The stacked 1H NMR spectra of 6 (3.2 x 10^{-2} M) recorded after a) 1 day, b) 5 days, c) 17 days, d) 31 days, and e) 37 days (400 MHz, acetonitrile-d_3, 22°C)

Chapter 13

Figure 13.1. Cartoon representation of two types of main-chain polypseudorotaxanes

Figure 13.2. Self-assembly approach to construct a main-chain polypseudorotaxane of type 1

Figure 13.3. Synthesis of model polyester 8

Figure 13.4. Synthesis of poly(ester crown ether) 10

Figure 13.5. Mechanism of physical cross-linking via intermolecular hydrogen bonding between crown ether monomer molecules
Figure 13.6. Synthesis of model polyurethane 236
Figure 13.7. Synthesis of poly(urethane crown ether) 237

Chapter 14
Figure 14.1. Synthesis of non-covalent network system 243