Effects of Capture and Return on Chardonnay (*Vitis vinifera* L.) Fermentation Volatiles.

Emily Hodson

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Masters of Sciences
In
Food Science and Technology

Dr. B. Zoecklein
Dr. S. Duncan
Dr. S. O'Keefe

February 24th, 2004
Blacksburg, VA.

Keywords: fermentation volatiles, aroma/flavor trapping, capture and return, white wine.
Effects of Capture and Return on Chardonnay (Vitis vinifera L.) Fermentation Volatiles.

Emily Hodson

Abstract

Effectiveness of a capture and return system for the partial retention of fermentation volatiles, as a means of improving white wine quality, was evaluated. Twenty-three aroma-active volatiles including ethyl esters, acetate esters, fusel alcohols, and fatty acids, were quantified using head-space solid phase microextraction with GC/MS. Volatile analysis of fermentations maintained at 15°C demonstrated a trend of increased concentrations of ethanol, esters and ethyl esters of fatty acids and decreased concentrations of fusel alcohol acetates, fatty acids and higher alcohols in treatment wines. When fermentation temperature was maintained at 30°C there was increased concentration and retention of fusel alcohols, fatty acids and higher alcohols compared to 15°C. Sensory analysis of wines fermented at 15°C, using triangle difference testing, indicated variable differences in aroma among treatments.
TABLE OF CONTENTS

List of Tables .. iv

List of Figures .. v

Dedication and Acknowledgements .. vi-vii

CHAPTER 1

Literature Review .. 1-19

- Aroma and Flavor ... 1-2
- Aroma-Active Volatiles ... 2-4
- Chemical Characteristics of Wine Aroma .. 4-11
- Production During Fermentation ... 11-12
- Effect of Temperature on Fermentation Volatiles ... 12-13
- Aroma and Flavor Trapping .. 13-18
- Specific Aims .. 19

CHAPTER 2

Effects of temperature on the capture and return of Chardonnay (Vitis vinifera L.) fermentation volatiles. .. 20-57

- Introduction .. 20-22
- Materials and Methods .. 23-29
- Results ... 30-32
- Discussion ... 33-37
- Literature Cited ... 38-45
- Tables ... 46-54
- Figures ... 55-56

Curriculum Vitae .. 57
List of Tables

Table 1:
Volatile organic compounds quantified and reference threshold values and descriptors.

Table 2:
Results of four vintages of chemical analyses\(^a\) for control and capture and return (return) Chardonnay (*Vitis vinifera* L.) wines fermented in commercial wineries.

Table 3:
Results of chemical analyses\(^a\) for control, capture and return (return) and capture and remove (remove) Chardonnay (*Vitis vinifera* L.) wines fermented at two temperatures.

Table 4:
Average aroma unit\(^a\) (AU) of volatile organic compounds found to be significantly different\(^b\) between control and treatment (capture and return) in Chardonnay (*Vitis vinifera* L.) wines fermented commercially from 1998 to 2002.

Table 5:
Aroma units\(^a\) (AU) of volatile organic compounds found to be significantly different\(^a,b\) between control, capture and return (return) and capture and remove (remove) Chardonnay (*Vitis vinifera* L.) wines fermented commercially in 2002.

Table 6:
Aroma unit values of volatile organic compounds identified in trap condensate collected from commercial fermentations of Chardonnay (*Vitis vinifera* L.) in 2002.

Table 7:
Aroma units\(^a\) (AU) of compounds found to be significantly different\(^b\) in Chardonnay (*Vitis vinifera* L.) wines fermented in a small scale laboratory setting, at two different temperatures.

Table 8:
Triangle difference testing of control and capture and return Chardonnay (*Vitis vinifera* L.) wines fermented commercially over four vintages, evaluated by a consumer panel.

Table 9:
Triangle difference testing of control, capture and return (Return) and capture and remove (Remove) Chardonnay (*Vitis vinifera* L.) wines fermented on a small scale in a laboratory setting at two temperatures evaluated by a consumer panel.
List of Figures

Figure 1: 55
Fermentation rate of Chardonnay fermented at 15°C and 30°C for control (C), capture and return (T) and capture and remove (R) wines.

Figure 2: 56
Aroma profile of Chardonnay wine (Vitis vinifera L.) produced in 1998.
Dedication

This work is dedicated to my loving parents. Their guidance and unconditional love has made me what I am today, and I thank them every single day for instilling in me their values for work, and play.
Acknowledgements

I would like to thank Dr. Bruce Zoecklein for providing me with this opportunity, and supporting me throughout. Dr. Duncan and Dr. O’Keefe were pivotal in making my project and writings a success. As a committee these three people helped me to move forward and succeed in completion of my Master’s degree. I would also like to acknowledge the love and support of my husband and my family, for they kept me inspired and on target throughout. Last but not least, emphatic gratitude to my enology family: Lisa Pelanne, Kerem Baki, Sandy Birkmeir and Bob Whiton.