Volatility Modeling Using the Student’s t Distribution

Maria S. Heracleous

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Economics

Aris Spanos, Chair
Richard Ashley
Raman Kumar
Anya McGuirk
Dennis Yang

August 29, 2003
Blacksburg, Virginia

Keywords: Student’s t Distribution, Multivariate GARCH, VAR, Exchange Rates
Copyright 2003, Maria S. Heracleous
Volatility Modeling Using the Student’s t Distribution

Maria S. Heracleous

(ABSTRACT)

Over the last twenty years or so the Dynamic Volatility literature has produced a wealth of univariate and multivariate GARCH type models. While the univariate models have been relatively successful in empirical studies, they suffer from a number of weaknesses, such as unverifiable parameter restrictions, existence of moment conditions and the retention of Normality. These problems are naturally more acute in the multivariate GARCH type models, which in addition have the problem of overparameterization.

This dissertation uses the Student’s t distribution and follows the Probabilistic Reduction (PR) methodology to modify and extend the univariate and multivariate volatility models viewed as alternative to the GARCH models. Its most important advantage is that it gives rise to internally consistent statistical models that do not require ad hoc parameter restrictions unlike the GARCH formulations.

Chapters 1 and 2 provide an overview of my dissertation and recent developments in the volatility literature. In Chapter 3 we provide an empirical illustration of the PR approach for modeling univariate volatility. Estimation results suggest that the Student’s t AR model is a parsimonious and statistically adequate representation of exchange rate returns and Dow Jones returns data. Econometric modeling based on the Student’s t distribution introduces an additional variable – the degree of freedom parameter. In Chapter 4 we focus on two questions relating to the ‘degree of freedom’ parameter. A simulation study is used to examine: (i) the ability of the kurtosis coefficient to accurately capture the implied degrees of freedom, and (ii) the ability of Student’s t GARCH model to estimate the true degree of freedom parameter accurately. Simulation results reveal that the kurtosis coefficient and the Student’s t GARCH model (Bollerslev, 1987) provide biased and inconsistent estimators of the degree of freedom parameter.

Chapter 5 develops the Students’ t Dynamic Linear Regression (DLR) model which allows us to explain univariate volatility in terms of: (i) volatility in the past history of the series itself and (ii) volatility in other relevant exogenous variables. Empirical results of this chapter suggest that the Student’s t DLR model provides a promising way to model volatility. The main advantage of this model is that it is defined in terms of observable random variables and their lags, and not the errors as is the case with the GARCH models. This makes the inclusion of relevant exogenous variables a natural part of the model set up.

In Chapter 6 we propose the Student’s t VAR model which deals effectively with several key issues raised in the multivariate volatility literature. In particular, it ensures positive definiteness of the variance-covariance matrix without requiring any unrealistic coefficient restrictions and provides a parsimonious description of the conditional variance-covariance matrix by jointly modeling the conditional mean and variance functions.
Acknowledgments

I am extremely grateful to my advisor, Aris Spanos, for encouraging me to pursue a Ph.D. and helping me navigate through the complex field of Econometrics. His inspiring teaching and invaluable advice have been absolutely vital for the development of this research. My special thanks also go to Anya McGuirk for her genuine commitment, constructive suggestions and her enthusiastic support that enabled me to complete my dissertation.

I would like to thank my other committee members, Richard Ashley, Raman Kumar and Dennis Yang for their valuable suggestions and interest in my work. I am also grateful to Abon Mozumdar and Andrew Feltenstein who were originally on my committee and gave me guidance when I first started working on this dissertation.

My sincere thanks go to Sudipta Sarangi for his entertaining phone calls and constant encouragement, and to Andreas Koutris for making sure I had fun while writing the dissertation. I am also thankful to the staff members of our department: Sherry Williams, Barbara Barker and Mike Cutlip for all their assistance. The department would not be the same without them.

Special thanks go to my roommates: Ana Martin, for her endless stories during my first year of adjustment in Blacksburg and Yea Sun Chung for her patience during my last year of writing. For the three years in between I am particularly thankful to Stavros Tsiakkouris who helped me with all kinds of little things and made my life in Blacksburg hi-tech, easier and fun!

Last but not least, I would like to thank my parents, Stelios and Panayiotis, who have taught me the important things in life and have supported all my endeavors. My parents and my sister Elpida have given me great affection and support while patiently enduring my long absence from home.
Contents

1 Introduction 1
 1.1 Background .. 1
 1.2 Econometrics of Multivariate Volatility Models 5
 1.3 A Brief Overview .. 8

2 Towards a Unifying Methodology for Volatility Modeling 14
 2.1 Introduction .. 14
 2.2 GARCH Type Models: Univariate 16
 2.3 GARCH Type Models: Multivariate 21
 2.4 Probabilistic Reduction Approach 32
 2.4.1 The VAR(1) from the Probabilistic Reduction Perspective 36
 2.5 Conclusion .. 38

3 Univariate Volatility Models 40
 3.1 Introduction .. 40
 3.2 A Picture’s Worth a Thousand Words 41
 3.3 Statistical Model Comparisons 53
 3.3.1 Normal Autoregressive Model 54
 3.3.2 Heteroskedastic Models 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3 Student’s t Autoregressive Model with Dynamic Heteroskedasticity</td>
<td>57</td>
</tr>
<tr>
<td>3.4 Empirical Results</td>
<td>59</td>
</tr>
<tr>
<td>3.5 Conclusion</td>
<td>69</td>
</tr>
<tr>
<td>4 Degrees of Freedom, Sample Kurtosis and the Student’s t GARCH Model</td>
<td>70</td>
</tr>
<tr>
<td>4.1 Simulation Set Up</td>
<td>71</td>
</tr>
<tr>
<td>4.1.1 Theoretical Questions</td>
<td>71</td>
</tr>
<tr>
<td>4.1.2 Data Generation</td>
<td>72</td>
</tr>
<tr>
<td>4.2 Results</td>
<td>74</td>
</tr>
<tr>
<td>4.2.1 Estimates of α_4 and the Implied Degrees of Freedom</td>
<td>75</td>
</tr>
<tr>
<td>4.2.2 Estimates of the Student’s t GARCH parameters</td>
<td>76</td>
</tr>
<tr>
<td>4.3 Conclusion</td>
<td>82</td>
</tr>
<tr>
<td>5 Student’s t Dynamic Linear Regression</td>
<td>83</td>
</tr>
<tr>
<td>5.1 Student’s t DLR Model</td>
<td>84</td>
</tr>
<tr>
<td>5.1.1 Specification</td>
<td>84</td>
</tr>
<tr>
<td>5.1.2 Maximum Likelihood Estimation</td>
<td>88</td>
</tr>
<tr>
<td>5.2 Empirical Results</td>
<td>91</td>
</tr>
<tr>
<td>5.2.1 Data and Motivation</td>
<td>91</td>
</tr>
<tr>
<td>5.2.2 Empirical Specification and Results</td>
<td>92</td>
</tr>
<tr>
<td>5.3 Conclusion</td>
<td>106</td>
</tr>
<tr>
<td>6 The Student’s t VAR Model</td>
<td>107</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>107</td>
</tr>
<tr>
<td>6.2 Statistical Preliminaries</td>
<td>108</td>
</tr>
<tr>
<td>6.2.1 Matrix Variate t distribution</td>
<td>109</td>
</tr>
<tr>
<td>6.2.2 Some Important Results on Toeplitz Matrices</td>
<td>115</td>
</tr>
</tbody>
</table>
List of Figures

3-1 Standardized t-plot (DEM) ... 43
3-2 Standardized t-plot (FRF) ... 43
3-3 Standardized t-plot (CHF) ... 44
3-4 Standardized t-plot (GBP) ... 44
3-5 Standardized Normal P-P plot (FRF) 46
3-6 Standardized Student’s t P-P plot, $\nu = 6$, (FRF) 46
3-7 Standardized Student’s t P-P plot, $\nu = 7$, (FRF) 47
3-8 Standardized Student’s t P-P plot, $\nu = 8$, (FRF) 47
3-9 Standardized t-plot (DJ) .. 49
3-10 Standardized Normal P-P plot (DJ) 49
3-11 Standardized Student’s t P-P plot, $\nu = 3$, (DJ) 50
3-12 Standardized Student’s t P-P plot, $\nu = 4$, (DJ) 50
3-13 Standardized Student’s t P-P plot, $\nu = 5$, (DJ) 51

4-1 Kernel density for $nu, \nu = 6, \sigma^2 = 1, n = 50$ 79
4-2 Kernel density for $nu, \nu = 6, \sigma^2 = 1, n = 100$ 79
4-3 Kernel density for $nu, \nu = 6, \sigma^2 = 1, n = 500$ 80
4-4 Kernel density for $nu, \nu = 6, \sigma^2 = 1, n = 1000$ 80
4-5 Kernel density for $nu, \nu = 6, \sigma^2 = 0.25, n = 500$ 81
4-6 Kernel density for $nu, \nu = 6, \sigma^2 = 4, n = 500$ 81
List of Tables

2.1 The PR Approach: Normal VAR(1) Model ... 38
3.1 Degrees of Freedom: P-P Plots and Sample Kurtosis Coefficient 52
3.2 Descriptive Statistics: Exchange Rates and Dow Jones 52
3.3 Correlation Matrix: Exchange Rates .. 53
3.4 Reduction and Probability Model Assumptions: Normal AR 54
3.5 Reduction and Probability Model Assumptions: Student’s t AR 58
3.6 OLS Estimations: AR(2) and AR(3) ... 60
3.7 Misspecification Tests for AR Models .. 61
3.8 Estimation Results: Normal ARCH(5) .. 62
3.9 Misspecification Testing: ARCH(5) ... 63
3.10 Estimation Results and Misspecification Tests: Normal GARCH(1,1) 64
3.11 Estimation Results and Misspecification Tests: Student’s t GARCH 66
3.12 Estimation Results and Misspecification Tests: Student’s t AR Models 68
4.1 Descriptive Statistics for Sample Kurtosis and \textit{inu} 75
4.2 Descriptive Statistics for Estimated \textit{nu} ... 77
4.3 Descriptive Statistics for the Student’s t GARCH parameters, \textit{n=500} 78
4.4 Descriptive Statistics for the constant in the Student’s t GARCH model, \textit{n=500} 78
5.1 The PR Approach: Student’s t DLR Specification 87
5.2 Reduction and Probability Model Assumptions: Student’s t DLR 88
5.3 Normal DLR: Exchange Rates 1973-1991 .. 93
5.4 Normal DLR: Exchange Rates 1986-2000 .. 94
5.5 Student’s t DLR: Exchange Rates 1973-1991 .. 96
5.6 Student’s t DLR: Deutschemark and French Franc 1986-2000 97
5.7 Student’s t DLR: Deutschemark and Swiss Franc 1986-2000 98
5.8 Student’s t DLR: French Franc and Swiss Franc 1986-2000 99
5.9 Student’s t AR: Exchange Rates 1973-1991 .. 101
5.10 Student’s t AR: Exchange Rates 1986-2000 .. 101
5.11 Normal GARCH-X: Exchange Rates 1973-1991 .. 103
5.13 Normal DLR and Student DLR: Dow Jones and T-bill rate 105
5.14 Normal GARCH(1,1)-X: Dow Jones and T-bill rate 105

6.1 The PR Approach: Student’s t VAR(1) Specification 129
6.2 Reduction and Probability Model Assumptions: Student’s t VAR 130
Chapter 1

Introduction

1.1 Background

Modeling, analyzing, and forecasting volatility has been the subject of extensive research among academics and practitioners over the last twenty years. Typically volatility models provide volatility forecasts. This information is used in risk management, derivative pricing and hedging, portfolio selection and even policy making. But what precisely do we mean by volatility in Economics and Finance? After all, as Granger (2002, p.452) pointed out “volatility is not directly observed or publicly recorded.” The term has been used by numerous researchers in different contexts and it is not clear that they all refer to the same attribute. To understand volatility we need to consider how one can measure volatility from observed data by linking it to concepts of uncertainty and risk. Volatility\(^1\), as being used in everyday language, refers to variability in prices or returns such as stock returns and exchange rate returns. The most popular measure of this type of volatility is the standard deviation. Other commonly used measures include the interquartile range and the mean absolute return.

In order to model volatility rigorously we need to consider its two different dimensions: (i) univariate volatility, which involves only a single series, and (ii) multivariate volatility, which

\(^1\)Volatility is often equated to uncertainty although this connection is debatable. The link between volatility and risk is even more tenuous, in particular, volatility exists both in the upper and lower tail of the returns distribution but risk is often associated only with the lower tail of the distribution.
involves the interactions of multiple series. For example, one may consider a case where volatility in the United States stock market may be only affected by volatility observed in the United States stock market on the previous day. This is univariate volatility – it involves only the past history of the series itself! A more realistic scenario today however, would be to consider the situation where volatility in the United States stock market is affected by its own history as well as volatilities observed earlier in the Asian and European markets. This is an example of multivariate volatility since it involves not only the past history of volatilities but correlations among other variables as well. Engle, Ito and Lin (1990b) refer to these as “heat waves” and “meteor shower effects”. The Asian financial crisis, of 1996-1997, is an excellent example of a “meteor shower effect” since it involves financial volatility transmission between foreign exchange markets. Fleming and Lopez (1999) find that unlike London and Tokyo, yield volatilities for US treasury bills in New York do not depend on global factors and hence can be characterized by “heat waves”.

Another example of multivariate volatility arises naturally when we consider several assets in the same market. One can argue that each individual stock is influenced by the volatility of the market as a whole as well as its own volatility – temporal variations in idiosyncratic volatility. This is a natural implication of the Capital Asset Pricing Model (CAPM). To clearly understand this kind of phenomena we really need to consider the notion of multivariate volatility.

In the last two decades there has been an explosion in volatility research. The “Dynamic Volatility Era”\(^2\) began with the introduction of the Autoregressive Conditional Heteroskedastic Model (ARCH), by Engle in 1982. The ARCH\(^p\) model expresses the conditional variance as a \(p\)-th order weighted average of past (squared) disturbances and thus is able to describe volatility clustering\(^3\) in financial series. Following this, an enormous body of research has focused on extending and generalizing the ARCH model, mainly by providing alternative functional forms for the conditional variance. Some of the most important contributors to the dynamic volatility literature have been Engle, Bollerslev, Nelson and Ding. Bollerslev (1986) proposed the Generalized ARCH (GARCH), as a more parsimonious way of modeling volatility dynamics. A limitation of both

\(^2\)Andreou, Pittis and Spanos (2001) identify three distinct periods since the early twentieth century in relation to the modeling of speculative prices. The next chapter provides a brief description of these different historical eras in volatility modeling.

\(^3\)Volatility clustering refers to the tendency for large (small) price changes to be followed by other large (small) price changes (see Mandelbrot, (1963)).
the ARCH and the GARCH models is that they only use information on the magnitude of the returns while completely ignoring information on the sign of the returns. To remedy this Nelson (1991) introduced the Exponential GARCH (EGARCH) model, which was the first in the family of asymmetric4 GARCH models.

During this period a number of advancements were also made in other areas of the volatility literature. One important contribution was the development of theoretical results regarding the statistical properties of the most popular ARCH and Stochastic Volatility models (Drost and Nijman 1993, Nelson 1990), as well as the development of MLE, QMLE, Bayesian, and Adaptive Estimation procedures (see for example Geweke (1989) and Bollerslev and Wooldridge (1992)). Another major development has been the extension to the family of multivariate GARCH models. The advantage of the multivariate framework is that it can model temporal dependencies in the conditional covariances as well as the conditional variances. Although the multivariate models provide a better description of reality, they unfortunately suffer from the overparametrization problem.

The most significant contribution of this extensive volatility research is that now we have a much clearer and better understanding of the probabilistic features of speculative returns data. This is of crucial importance in the search for an overarching framework, which will be able to first capture the empirical regularities adequately, and ultimately give us reliable volatility forecasts. The extensions and modifications of the GARCH family of models are numerous, and some discussion of the most popular ones can be found in Chapter 2. There are also a number of extensive surveys5 of the literature including for instance Bollerslev, Chou and Kroner (1992a), Bollerslev Engle and Nelson (1994a), and Ding and Engle (2001).

The flurry of research in modeling dynamic volatility and the impact of the GARCH family of models should not be surprising. Volatility is topical, and naturally relevant to modeling and forecasting economic and financial phenomena. It plays a major role in investment security valuation, risk management and the formation of monetary policy. For example in the US, the Federal Reserve takes into account the volatility of stocks, bonds, currencies and commodities in establishing monetary policy (Nasar, 1992). Similarly the Bank of England has made frequent references to

4Other asymmetric models include the Threshold ARCH (TARCH), by Rabemananjara and Zakoian (1993), and Glosten, Jaganathan and Runkle (1993).

5It should be emphasized however that this is a fast changing literature and survey papers quickly become outdated.
market sentiment and implied densities of key financial variables in its monetary policy meetings. The importance of volatility forecasting in financial risk management can also be highlighted by the fact that in 1996, the Basle Accord made volatility forecasting a compulsory risk management exercise for many financial institutions around the world.

This has eventually led to the establishment of the new and flourishing discipline of Financial Econometrics. Over the last decade the field of Financial Econometrics has been responsible for a number of developments in theoretical and applied econometrics, many of which were extensions and modifications of the original ARCH model. This has provided researchers and practitioners with a rich set of tools and techniques for investigating new and old questions in finance. The spectacular growth of applications of econometrics to finance was spurred by a variety of reasons, including increasing availability of high quality financial data, the acceleration of computer power, as well as the greater interest in the performance of financial markets around the world.

While many variations of the GARCH model have been used in numerous applications, and some have been quite successful, they are all plagued by a common set of problems and suffer from quite severe limitations. Moreover many theoretical issues still remain unresolved (see Frances and McAleer (2002a,b)). For example statistical inference such as estimation, testing, and prediction require conditions for the existence of moments and often these conditions are unknown. Further, Engle (2002b) provides an excellent discussion of “What we have Learned in 20 Years of GARCH,” and the limitations of the current literature. He indicates five new frontiers for ARCH models, one of which is the area of multivariate models. This opens the door to new directions in the area of volatility modeling and in particular multivariate volatility modeling. The first step in this direction would be to bridge the gap between the theoretical questions of interest in finance and the statistical models. This can be implemented by applying a new approach to multivariate volatility modeling which incorporates new concepts as well as the empirical regularities.

In the next section we discuss some of the main issues and recent developments in the area of econometrics for multivariate volatility models and how these motivated our work. Based on our discussion of the existing literature, we define the objective and the methodology adopted in this dissertation. Section 3 of this chapter provides a brief overview of the dissertation and discusses the main themes of the different chapters.
1.2 Econometrics of Multivariate Volatility Models

In today’s world of economic globalization, international integration of financial markets and the advancements in the area of Internet communication, which have accelerated all this, the issue of multivariate volatility becomes all-important. Financial markets, such as stock markets and foreign exchange markets are more dependent on each other than ever before. Price movements in one market ripple easily and instantly to other markets. Consequently, it is of paramount importance to consider these markets jointly to better understand how these markets are interrelated.

The issue of volatility transmission is of great interest to diverse groups of people. International traders, investors and financial managers are all concerned with managing their financial risk exposures. Correlations are a critical input for many financial activities such as hedges, asset allocation and the construction of an optimal portfolio. Also governments wishing to maintain stability in their financial system are particularly concerned with exchange rate volatility because of its impact on several key macroeconomic variables. For example volatility in exchange rates can affect the value of domestic currency and domestic currency value of debt payments, which in turn can affect domestic wages, prices, output and employment.

The importance of the multivariate framework was acknowledged early on in the literature of volatility dynamics. The first multivariate ARCH model was introduced in 1982 by Kraft and Engle, shortly after the development of the first univariate ARCH model. Although the extension of the univariate to the multivariate GARCH type models seems quite natural and sometimes poses a few theoretical difficulties, its implementation is a challenge due to the large number of parameters involved in the conditional variance-covariance matrix. This gave rise to a growing body of research, which has focused on choosing a model primarily by choosing a parameterization for the conditional covariance matrix. Researchers were faced with the formidable task of reducing the number of unknown parameters in sensible and tractable ways. Several specifications for the conditional variance were suggested and even used in a wide variety of applications. Essentially, each one represents a different approach to reducing the number of parameters by imposing a different set of restrictions. A major concern of such models was whether these various restrictions ensured the required positive definiteness of the variance-covariance matrix without requiring any other non-testable characteristics. Other important issues of course include Granger causality,
persistence and the existence of moments.

The best known multivariate models include the VECH of Bollerslev Wooldridge and Engle (1988), the Constant Conditional Correlation model of Bollerslev (1990), the Latent Factor model of Diebold (1989), the Factor ARCH model of Engle Ng and Rothschild (1990a), and the BEKK model studied by Engle and Kroner (1995). For an extensive survey of the literature on multivariate models see Bollerslev, Chou and Kroner (1992a), Bollerslev, Engle and Nelson (1994b), Ding and Engle (2001), and Bauwens, Laurent and Rombouts (2003). Recent empirical results have indicated that the assumption of constant correlation, which is common to most of these models, is usually violated. This evidence gave rise to a new line of research — that of time-varying correlation, which is gaining popularity in the literature. The main contributors to date are Engle (2002a) and Tsui and Tse (2002), who have independently developed multivariate models that allow for time varying correlations.

Although the extensive volatility literature has produced a variety of multivariate specifications, in practice these multivariate extensions of the univariate GARCH type models have constrained researchers to estimating models with either unappetizing restrictions or models of limited scope. As Engle (2001a) points out:

“Although various multivariate models have been proposed, there is no consensus on simple models that are satisfactory for big problems”.

We can categorize the problems with the multivariate extensions in two groups. First, the relationship between the different models has not been explored and also there seems to be no systematic way of choosing the best model for the data. Second, statistical inference such as estimation, testing, and prediction require conditions for the existence of moments, but these conditions are unknown in many situations.

This dissertation addresses some of the main issues in the area of multivariate volatility modeling by adopting the Probabilistic Reduction (PR) approach to statistical modeling (Spanos 1986), which exploits information conveyed by data plots and specifies the statistical model as a reduction from the joint distribution of the observable random variables. The primary objective of econo-
metric modeling in the context of the Probabilistic Reduction6 approach is the “systematic study of economic phenomena using observed data in the context of a statistical framework” (Spanos, 1986, pp.170-1). A particularly important component of the PR approach is that of a statistical model — a consistent set of probabilistic assumptions relating to the observable random variables underlying the data chosen. The key to successful econometric modeling is to be able to detect the “chance regularity patterns” in the data and then choose the appropriate probabilistic concepts from three broad categories: Distribution, Dependence, and Heterogeneity.

Empirical modeling in the context of the PR approach involves four interrelated stages: specification, misspecification, respecification and identification. The primary role of the first three stages is to establish the link between the (available) observed data and the assumptions making up the statistical model. Taken together these three interrelated stages lead to the all important notion of statistical adequacy. A statistically adequate model or a well specified model is one for which the data satisfies the probabilistic assumptions underlying the model. Once statistical adequacy is established the model is considered to be reliable, and forms a credible basis for statistical inference such as estimation testing, prediction and policy recommendations. It is of paramount importance to guarantee statistical adequacy of the model before we proceed to making any kind of inference. The fourth stage, identification, makes the final link between a statistically adequate model and the theoretical model of interest. The most important advantage of the PR approach is that it provides a systematic way of constructing sensible models for learning from data by enabling reliable and precise statistical inference. This allows us to better bridge the gap between theoretical questions of interest and data.

The primary objective of my dissertation is to develop the Student’s t Vector Autoregressive model as an alternative to the GARCH type multivariate models by following the Probabilistic Reduction methodology. A motivating factor behind the adoption of the Probabilistic Reduction methodology has been the desire to develop a model that can capture the probabilistic structure or “stylized facts” present in real data. As Engle and Patton (2001d) point out “A good volatility model, then, must be able to capture and reflect these stylized facts”. The PR approach is the ideal approach for these purposes since it utilizes information from graphical techniques such as

6This reduction exercise can be related to Fisher’s notion of “the reduction of data to a few numerical values; a reduction which adequately summarizes all the relevant information in the original data.” (Fisher 1922, pg. 311).
t-plots, scatter plots, P-P-plots and many more to make informed decisions about the probabilistic assumptions needed to capture the empirical regularities observed in the data. Another element that plays a major role in my dissertation is the notion of a “statistically adequate model”, i.e. a model that incorporates the probabilistic features of the data allowing credible inference. Such a model can be used to generate reliable forecasts from data like speculative price data that tend to exhibit substantial volatility. In the next section we provide a brief overview of the investigations undertaken in this dissertation and relate them to the econometrics of volatility modeling discussed above.

1.3 A Brief Overview

In Chapter 2 we provide an account of the most important developments in the area of volatility modeling. We focus on the post 1980s period − the “Dynamic Volatility Era” and in particular on the GARCH family of volatility models. We begin by revisiting the univariate GARCH models which were developed to account for the empirical features of speculative price data. These features include the bell-shaped symmetry, leptokurticity and volatility clustering which were observed over the years and confirmed by numerous studies. The developments in the area of univariate volatility were largely driven by the need to capture such characteristics through choosing the most parsimonious and appropriate functional form for the conditional variance. We argue that although the univariate models have been relatively successful in empirical studies they lack economic interpretation and suffer from a number of other limitations:

1. Ad-hoc specification,
2. Complicated parameter restrictions that are not verifiable and
3. Unnatural distribution assumption (Normal distribution) that enters the specification through the error term.

These problems naturally transfer to the multivariate extensions of these models in an even more serious manner. Overparametrization seems to be the major problem in the case of multivariate specifications and research in this area has concentrated on finding estimators which preserve the
parsimony and simplicity of the univariate specifications. However, the complexity and number of restrictions that need to be imposed for estimation often come at the cost of economic interpretation. Moreover evidence shows that these type of models have not been adequately successful in empirical work. Engle (2002b) alludes to this by saying that:

“Although the research on multivariate GARCH models has produced a wide variety of models and specifications, these have not yet been successful in financial applications as they have not been capable of generalization to large covariance matrices”.

We argue that research in this area is far from complete and there is a clear need for an alternative framework for deriving better models. This brings us to the second aim of this chapter which is to propose the PR approach to statistical modeling as a way of resolving these issues in a unifying and coherent framework. This methodology allows the structure of the data to play an important role in specifying plausible statistical models. Using the probabilistic information in our data we can derive conditional specifications by imposing the relevant reduction assumptions on the joint distributions. We give a brief overview of the PR methodology and illustrate it by revisiting the VAR model from the PR perspective. The reduction assumptions on the joint distribution of the process \(\{Z_t, \ t \in T\} \), that will give rise to the VAR(1) are: (i) Normal, (ii) Markov and (iii) Stationary. By looking at the VAR specification it becomes clear that it cannot accommodate the empirical regularities of volatility clustering exhibited by most speculative price data. The way to overcome this problem by using the PR approach is to postulate an alternative distribution assumption which embodies these features of the data. The multivariate Student’s \(t \) distribution seems to be a natural choice in this case. We contend that the PR approach will provide a sufficiently flexible framework to make the choice of the functional form for the conditional variance an informed and systematic procedure instead of an ad-hoc specification.

The third chapter is an empirical illustration of the PR methodology for modeling univariate volatility. This analysis is necessary to identify patterns and for providing useful insights that enable us to derive sensible multivariate specifications later. We consider two types of data – weekly exchange rate returns for four currencies, and daily returns for the Dow Jones Price index. The exchange rate returns are the log differences of the weekly spot rates of the British Pound (GBP), Deutschemark (DEM), French Franc (FRF), and the Swiss Franc (CHF) vis-a-vis the U.S.
Dollar, recorded every Wednesday over the period January 1986 through August 2000. The second data set consists of high frequency data set which contains 3030 observations of Dow Jones daily returns from August 1988 to August 2000.

In the first part of this chapter, we illustrate the use of a set of graphical techniques such as t-plots and P-P plots to explore the probabilistic features of our data sets. Time plots (t-plots) have the values of the variable on the ordinate and the index (dimension) t on the abscissa. They can be used to identify patterns of heterogeneity, dependence as well as to assess the distributional assumption. These graphical techniques constitute an integral and innovative part of the PR approach. We also employ the more traditional way of looking at the data by providing descriptive statistics. We conclude from this preliminary data analysis that the assumption of Normality is largely inappropriate for our data, given the leptokurtosis observed in the data plots. This is also verified by the reported kurtosis coefficients. In fact, the presence of leptokurtosis and second order dependence suggest that the Student’s t distribution might more appropriate for modeling this type of data. The degree of freedom parameter of the Student’s t distribution reflects the extent of leptokurtosis. An interesting feature of this chapter is the creative use of P-P plots in choosing the most appropriate degrees of freedom for each series.

Having explored the probabilistic features of the data we then proceed to discuss some of the most popular models in the literature of univariate volatility and their ability to capture the above mentioned characteristics of the data. We also raise a number of theoretical questions in relation to the GARCH family of models. Among these are the unnatural Normality assumption while allowing for heteroskedasticity, the complicated coefficient restrictions and the ad hoc specification. Finally the results of this chapter show that the Student’s t Autoregressive (AR) model provides a parsimonious and adequate representation of the probabilistic features of the exchange rate data set. Furthermore, misspecification testing reveals that the Student’s t AR specification outperforms the GARCH type formulations on statistical adequacy grounds.

In Chapter 4 we make a digression from the central theme of the dissertation to investigate some issues relating to the degree of freedom parameter in the Student’s t distribution. In particular we focus on two questions: (i) the ability of the kurtosis coefficient to accurately capture the implied degrees of freedom, and (ii) the ability of Student’s t GARCH model to estimate the true degree of freedom parameter accurately. We perform a simulation study to examine these two questions.
First we generate a raw series of Student’s t random numbers with mean 0 and variance 1. Then, we use Cholesky factorization to impose the necessary dependence structure on the generated data. We consider a number of different scenarios. We consider sample sizes of 50, 100, 500 and 1000 and three different degrees of freedom $\nu = 4, 6, \text{ and } 8$. For each combination of the sample size and ν, 1000 data sets were generated. Also for sample size 500 we allowed σ^2 to vary, taking the values of 1, 0.25 and 4.

The results of this study reveal that the kurtosis coefficient provides a biased and inconsistent estimator for the degree of freedom parameter. Secondly, the results suggest that the Student’s t GARCH model (Bollerslev 1987) provides a biased and inconsistent estimator for the degree of freedom parameter. More importantly however, when σ^2 is allowed to vary the constant term in the conditional variance equation is the only parameter that is affected. The conditional mean parameters along with the ARCH and GARCH coefficients and the degree of freedom parameter are not affected by varying σ^2. Thus the effect of the σ^2 (the missing parameter) in Bollerslev’s formulation is fully absorbed by the constant term in the conditional variance equation.

The fifth chapter brings us back to the central theme of the dissertation — volatility modeling using the Student’s t distribution. This chapter develops the Students’ t Dynamic Linear Regression model (DLR) from the PR perspective which allows us to explain univariate volatility in terms of: (i) volatility in the past history of the series itself and (ii) volatility in other relevant exogenous variables. This model can be viewed as a generalization of the Student’s t AR model presented in Chapter 3 to the case of including contemporaneous variables and their lags as possible exogenous variables that affect volatility. This generalization is an important one since it has been documented in the literature that other exogenous variables might be responsible for volatility. Engle and Patton (2001d) point out that researchers believe that financial asset prices do not evolve independently of the market, and expect that other variables may contain information pertaining to the volatility of the series. However very few studies have addressed this issue by including exogenous variables in the GARCH formulation (see Engle, Ito and Lin (1990b), Glosten, Jagannathan and Runkle (1993) among others). In this chapter we show that by adopting the PR methodology we can develop a volatility model that naturally contains the past history of the series and other exogenous variables for explaining volatility. This is achieved by starting with the joint distribution of all relevant variables which incorporates statistical as well as economic theory information in a coherent
In the first part of this chapter we present the Student’s t DLR specification and discuss the maximum likelihood estimation. Then we illustrate this approach using two exchange rate data sets that span different time periods and a data set which consists of daily returns of the Dow Jones Industrial Price Index and the Three-month treasury bill rate. We compare the estimated Student’s t DLR models with the traditional Normal DLR, the Student’s t AR and the Normal GARCH which allows for exogenous variables in the conditional variance.

Empirical results of this chapter suggest that the Student’s t DLR model provides a promising way of modeling volatility. Moreover it raises some questions regarding the appropriateness of the existing GARCH which simply include an exogenous variable in the conditional variance equation. The very different estimation results from the GARCH type models and the Student’s t DLR illustrate the importance of appropriate model choice and indicate the need for formal misspecification tests to check the validity of each specification. Finally the Student’s t DLR can provide us with useful insights for the specification of a multivariate volatility model and takes us one step closer to the multivariate Student’s t model which is the subject of the next chapter.

In Chapter 6 we develop an alternative model for multivariate volatility, which follows the PR methodology. The proposed model can be viewed as an extension of the traditional Normal/Linear/Homoskedastic VAR in the direction of non-Normal distributions. It is also an extension of the univariate Student’s t AR model presented in Chapter 3, to the multivariate case.

First we present some useful results on the matrix-variate t distribution, and Toeplitz matrices and their inverses. These results will be essential in the derivation of the Student’s t VAR model and the specification of the conditional variance-covariance matrix which arises from it. We begin with the most general description of the information in our data, in the form of a matrix variate distribution of all the relevant observable random variables over the entire sample period. Then by utilizing the empirical regularities exhibited by speculative price data shown in Chapter 3, we impose the following assumptions on the matrix variate distribution: (1) Student’s t, (2) Markov dependence, and (3) Second Order Stationarity. This allows us to express the information in the matrix Student’s t distribution as a product of multivariate Student’s t distributions. Consequently we obtain an operational Student’s t VAR model that is specified in terms of the first two conditional
moments. The conditional mean has a linear vector autoregressive form like the Normal VAR model. The conditional variance-covariance matrix however is a quadratic recursive form of the past history of all the variables and thus can capture the second order dependence observed in speculative price data.

To bring out the salient feature of this model we also provide a comparison between the conditional variance specification which arises from this type of model and those of the most popular multivariate GARCH type formulations. We show that the Student’s t VAR specification deals effectively with several key theoretical issues raised in the multivariate volatility literature discussed earlier on. In particular it ensures positive definiteness of the variance-covariance matrix without requiring any unrealistic and contradictory coefficient restrictions. It provides a parsimonious description of the conditional variance and covariances by jointly modeling the conditional mean and variance parameters. Furthermore, it proposes a coherent framework for modeling non-linear dependence and heteroskedasticity that will give us a richer understanding of multivariate volatility. The last chapter summarizes the results of the study and suggests directions for future research.
Chapter 2

Towards a Unifying Methodology for Volatility Modeling

2.1 Introduction

This chapter has two main objectives. The first is to provide an overview of the most important developments pertaining to the GARCH family of models with emphasis on the post 1980s dynamic volatility literature. We begin by examining the alternative specifications of the univariate and multivariate GARCH family of models. The strengths and weaknesses of these models are evaluated using the Probabilistic Reduction perspective. By focusing on the structure of the conditional variance of the univariate and multivariate models we compare them in terms of their ease of estimation, parsimony and loss in interpretation due to parameter restrictions. The second objective is to argue that the PR approach to statistical model specification and selection can address some of the shortcomings of the existing volatility literature. We contend that this methodology provides a framework that is sufficiently flexible to make empirical modeling an informed and systematic procedure instead of an ad hoc specification.

Financial volatility has been a topic of interest since the turn of the century1. Empirical research

1For a historical overview of the various statistical models proposed in the literature since the 1900s see Andreou et al. (2001). The three historical eras described in this section follow the classification introduced in the aforementioned paper.
began with the work of Working (1934), Cowles (1933) and Cowles and Jones (1937). Working concluded that stock returns behaved like “numbers from a lottery” while Cowles could find little evidence that market analysts could predict future price changes. This stimulated further research on the hypothesis that these price changes are independent events, a finding that was later called the random walk model. Interestingly, the theoretical framework for the random walk model had been developed two decades earlier by the French mathematician Bachelier (1900) in his Ph.D. thesis. Bachelier applied his theory to prices of French government bonds and concluded that they were consistent with the random walk model. The unpredictability of price changes became a major theme of the financial research during this period which we can refer to as the Bachelier-Kendal Era (1900-1960). Moreover, at around the same time theoretical research on the foundations of financial markets led to the development of the Efficient Market Hypothesis (Fama, 1965, 1970) which justified the unpredictability of returns.

Empirical evidence accumulated over this period however, indicated the inappropriateness of the random walk model for modeling speculative prices. In particular, the assumptions of Independence, Identically Distributed and Normality were called into question. While investigating weekly price changes of the Chicago wheat series Kendall (1953) observed that the distribution of returns is symmetric, but has fatter tails and is more peaked than the Normal, i.e., the distribution is most likely leptokurtic. He also found evidence against the identical distribution assumption in the form of non-constant variance in the two sub-samples he had examined. Finally, Kendal noted the presence of serial correlation in the British Industrial (weekly) share index prices, and the New York (monthly) cotton prices.

The next major development took place in the 1960s, following the publication of several influential papers by Mandelbrot and can be labelled as the Mandelbrot Era (1960-1980). Mandelbrot (1963) proposed replacing the Normality assumption with that of the Pareto-Levy (Stable) family of distributions in an attempt to capture the empirical features of leptokurticity and infinite variance in the distribution of returns. Another significant contribution of Mandelbrot was the use

2 Even more remarkably he also developed many of the mathematical properties of Brownian motion, which were derived later on by Einstein.

3 Some of the early papers on financial market analysis can be found in the collection of Cootner (1964). Further, Granger and Morgenstern (1970) provide an account of the most important developments and refinements of the random walk model.
of graphical techniques and his astute description of the features exhibited by speculative price data based on these techniques. This generated a new literature on using the “Stable” family to model speculative price data. However Mandelbrot himself realized that the Pareto family of models could not take into account the empirical regularity of volatility clustering. In other words the Pareto-Levy family of models could not explain the fact that “large changes tend to be followed by large price changes (of either sign) and small changes tend to be followed by small changes”.

Finally the “Dynamic Volatility Era” (1980−present) began with the introduction of the ARCH model by Engle in 1982. This was the first attempt to capture the phenomenon of volatility clustering, which had been documented in the literature by numerous researchers. Following the seminal paper by Engle, numerous alternative functional forms for the conditional variance were proposed giving rise to a new family of time series models. These models were labeled as the GARCH family of volatility models. In the next two sections of this chapter we provide an up to date survey of the developments in the dynamic volatility literature, and in particular of the multivariate GARCH family of models.

2.2 GARCH Type Models: Univariate

The GARCH family of models was developed primarily to account for the empirical regularities of a certain category of financial data − speculative price data. In order to best understand the development of GARCH models we first need to take stock of the empirical features of speculative price data. The following are the most important “stylized facts” regarding such data:

1. *Thick tails*: The data seem to be leptokurtic with a large concentration of observations around the mean and have more outliers relative to the Normal distribution.

2. *Volatility clustering*: This is best described by Mandelbrot (1963), “...large changes tend to be followed by large changes, of either sign, and small changes tend to be followed by small changes...”

4 For more on this see Fama (1963, 1970), Westerfield (1977), and Akgiray and Booth (1988).
5 The empirical regularity of volatility clustering had been observed as early as Mandelbrot (1963) and Fama (1965). This feature has also been documented by numerous other studies including Baillie, Bollerslev and Mikkelsen (1996), Chou (1988) and Schwert (1989).
3. **Bell-shaped symmetry:** In general the distributions seem to be bell-shaped and symmetric.

4. **Leverage effects:** This relates to the tendency of stock returns to be negatively correlated with changes in return volatility.

5. **Co-movements in volatilities:** Black (1976) observed that “In general it seems fair to say that when stock volatilities change, they all tend to change in the same direction”. This indicates that common factors may explain temporal variation in conditional second moments and also the possibility of linkages or spillovers between markets.

In his seminal paper, Mandelbrot (1963) had already observed some of these empirical regularities. In relation to the distribution of this type of data he noted: “The histograms of price changes are indeed unimodal and their central ‘bells’ remind one of the Gaussian ogive” (pg. 394). In our terminology, the above observation relates to the stylized fact of bell-shaped symmetry. Mandelbrot went on to say that these empirical distributions seemed too ‘peaked’ and had extraordinarily long tails to come from a Normal distribution. This statement can be related to the stylized fact of thick tails and leptokurticity of the distribution of speculative price data mentioned above. Apart from the stylized facts listed above, Mandelbrot made another vital observation: “the second (sequential sample) moment...does not seem to tend to any limit even though the sample size is enormous by economic standards, and even though the series to which it applies is presumably stationary” (pg. 395). In modern terminology this observation refers to variance heterogeneity and can be related to the stylized fact of thick tails and volatility clustering.

By the end of 1970s it was largely recognized that existing volatility models, based on the Pareto family, were unable to account for volatility clustering in speculative price data. This gave rise to a new line of research which has produced univariate and multivariate models by adopting a dynamic specification for volatility. The univariate volatility models mainly deal with (1)-(4), while the multivariate models are concerned with all five of the empirical regularities mentioned above.

The first attempt to capture volatility clustering through modeling the conditional variance was made by Engle in 1982. He proposed a regression model with errors following an ARCH process to model the means and variances of inflation in United Kingdom. This model can be specified in terms of the first two conditional moments.
The form of the conditional mean is given by:

\[y_t = \beta_0 + \sum_{i=1}^{l} \beta_i y_{t-1} + u_t, \quad l > 0, \quad u_t/\mathcal{F}_{t-1} \sim N(0, h_t^2) \quad (2.1) \]

where \(\mathcal{F}_{t-1} \) represents the past history of the dependent variable. The ARCH conditional variance for this model takes the form:

\[h_t^2 = a_0 + \sum_{i=1}^{m} a_i u_{t-i}^2, \quad m \geq 1, \quad u_t/\mathcal{F}_{t-1} \sim N(0, h_t^2) \quad (2.2) \]

where the parameter restrictions \(a_0 > 0, a_i \geq 0 \), are required for ensuring that the conditional variance is always positive. Also \(\sum_{i=1}^{m} a_i < 1 \) is required for the convergence of the conditional variance.

For a number of applications however, it was found that a rather long lag structure for the conditional variance is required to capture the long memory present in the data. In light of this evidence Bollerslev (1986) proposed a GARCH \((p, q)\) model that allows for both long memory as well as a more flexible lag structure. The extension of the ARCH to the GARCH process for the conditional variance in many ways resembles the extension of the AR to the ARMA process for the conditional mean. The more parsimonious GARCH formulation of the conditional variance can be written as follows:

\[h_t^2 = a_0 + \sum_{i=1}^{p} a_i u_{t-i}^2 + \sum_{j=1}^{q} \gamma_j h_{t-j}^2, \quad p \geq 1, \quad q \geq 1 \quad (2.3) \]

where the parameter restrictions \(a_0 > 0, a_i \geq 0, \gamma_j \geq 0 \) are required for ensuring that the conditional variance is always positive. As before \(\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} \gamma_j < 1 \) is required for the convergence of the conditional variance. A special case of the GARCH model is the Integrated GARCH (IGARCH), which arises when \(\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} \gamma_j = 1 \) (see Engle and Bollerslev 1986). The IGARCH model was an important development for capturing volatility persistence, which is common in high frequency data. Other advantages of such models is their parsimonious nature and ease of estimation.
In view of the fact that the Gaussian GARCH model could not explain the leptokurtosis exhibited by asset returns, Bollerslev (1987) suggested replacing the assumption of conditional Normality of the error with that of \textit{Conditional Student’s t distribution}. He argued that this formulation would permit us to distinguish between conditional leptokurtosis and conditional heteroskedasticity as plausible causes of the unconditional kurtosis observed in the data. The distribution of the error term according to Bollerslev (1987) takes the form:

\[
f(u_t/Y_{t-1}) = \frac{\Gamma \left[\frac{1}{2} (\nu + 1) \right]}{\pi^{\frac{1}{2}\nu} \Gamma \left[\frac{1}{2}\nu \right]} \frac{1}{\nu - 2} \left[1 + \frac{u_t^2}{(\nu - 2)h_t^2} \right]^{-\frac{1}{2}(\nu + 1)} \tag{2.4}
\]

McGuirk, Robertson and Spanos (1993) investigate this issue from the PR perspective. They derive the form of the conditional Student’s \textit{t} distribution from the joint distribution of the observables and show that it is not equivalent to Bollerslev’s formulation given by equation (2.4). In particular they note that one can obtain equation (2.4) by substituting the conditional variance, \(h_t^2 \) in the functional form of the marginal Student’s \textit{t} distribution and re-arranging the scale parameter. This however leads to a formulation which ignores the interaction between the degree of freedom parameter, \(\nu \) and \(\sigma^2 \). Estimation of the degrees of freedom parameter, will likely result in the estimation of a mixture of \(\nu \) and \(\sigma^2 \) since the above model ignores their interaction.

Another limitation of both the ARCH and the GARCH models was their inability to capture the “leverage effect” since the conditional variance is specified in terms of only the magnitude of the lagged residuals and ignores the signs. This led to an important class of \textit{asymmetric} models. Nelson (1991) introduced the EGARCH model, which depends on both the size and the sign of the lagged residuals. The conditional variance of the EGARCH model can be written as:

\[
\ln(h_t) = a_t + \sum_{i=1}^{q} \beta_i \left(\varphi y_t + \gamma [\eta_{t-i} - E|\eta_{t-i}|] \right) + \sum_{i=1}^{q} \delta_i \ln(h_{t-i}) \tag{2.5}
\]

where \(\beta_1 = 1 \), \(\eta_t = y_t / h_t \), and \(\varphi y_t \) represents the magnitude effect while the term \(\gamma [\eta_{t-i} - E|\eta_{t-i}|] \) represents the sign effect. It is also worth pointing out that the log specification ensures that the conditional variance is positive in contrast to the GARCH models, which require additional restrictions on the parameters. Another advantage of the EGARCH formulation is that it can be shown to be a discrete-time approximation to some of the continuous-time models in finance
(see Harvey, Ruiz and Shephard, 1994). This aspect of the EGARCH models gave rise to the
Stochastic Volatility family of models which have been proposed for capturing the empirical features
of speculative price data. For an extensive survey on the family of Stochastic Volatility models see

New applications, emerging stylized facts about the financial series, theoretical considerations
and developments in statistics have encouraged numerous other extensions and refinements of the
GARCH model. Among the most influential are the class of power models such as those proposed by
Higgins and Bera (1992), Engle and Bollerslev (1986), and Ding and Engle (1993) and the joined
models such as the Structural ARCH (STARCH), Quadratic ARCH (QARCH), and Switching
ARCH (SWARCH). During this period a number of important theoretical developments relating to
the moments, autocorrelations, and stationarity properties of some of these models also occurred.
See for example Nelson (1990), He and Teräsvirta (1999) and Ling and McAleer (2002a,b).

In summary, the post 1980s literature on univariate volatility has concentrated on capturing
the empirical regularities of speculative price data by using conditional distributions, and in par-
ticular choosing functional forms for the conditional variance which stem from these conditional
distributions. During this period the emphasis was on capturing volatility clustering (second order
dependence) by modeling the dynamic conditional heteroskedasticity. The issue of leptokurticity
and thick tails was only addressed through the development of Bollerslev’s Student’s t GARCH
model. The most powerful theoretical justification for the different functional forms for the condi-
tional variance is given by Diebold and Lopez (1996) “...the GARCH model provides a flexible and
parsimonious approximation to conditional variance dynamics in the same way that the ARMA
models provide a flexible and parsimonious approximation to conditional mean dynamics”. Another
justification of the univariate GARCH models is their empirical success that made them extremely
popular in the finance literature.

However, misspecifications in the GARCH family of models, their ad hoc nature and the weak
link between the empirical and the theoretical models in Economics and Finance indicate the need
for further research in this area and perhaps even a different methodological framework. A beginning
in this direction has been made by Spanos (1990,1994), who proposed the Student’s t Autoregressive
family6 of models by using the Probabilistic Reduction methodology and McGuirk, Robertson and Spanos, (1993). While this model is successful in describing the patterns in univariate series, it leaves a lot of questions unexplored in particular related to the multivariate framework. As already mentioned an important concern with financial data is the fact that financial variables are often interrelated. Therefore, studying them in isolation would lead to incorrect hypotheses and erroneous conclusions. This opens the door to multivariate analysis which is the topic of discussion in the next section.

2.3 GARCH Type Models: Multivariate

“While univariate GARCH models have met with widespread empirical success, the problems associated with the estimation of multivariate GARCH models with time-varying correlations have constrained researchers to estimating models with either limited scope or considerable restrictions.” (Engle R. and K. Sheppard (2001b))

The generalization of univariate to multivariate GARCH type models seems quite natural since cross variable interactions play an important role in Macroeconomics and Finance. It is argued that many economic variables react to the same information and hence have non-zero covariances conditional on the information set. Thus, a multivariate framework is more appropriate in capturing the temporal dependencies in the conditional variances or covariances and should lead to significant gains in efficiency. The extension of univariate GARCH to multivariate GARCH can be thought as analogous to the extension of ARMA to Vector ARMA (VARMA) models.

The first substantive multivariate GARCH model was developed by Kraft and Engle (1982) and was simply an extension of the pure ARCH model. However, the first multivariate model that gained popularity was the multivariate GARCH \((p,q)\) model proposed by Bollerslev, Engle and Wooldridge (1988). They apply the “Diagonal” form of this model to a CAPM model with a market portfolio consisting of three assets − stocks, bonds and bills. We now present the most general form of the conditional variance-covariance matrix for the multivariate GARCH model.

6A detailed discussion of this model as well as an application can be found in Chapter 3.
Vector GARCH

Bollerslev et al. (1988) provided the general form of an m-dimensional Normal GARCH(p,q) by simply extending the univariate GARCH representation to the vectorized conditional variance matrix.

$$\varepsilon_t|\mathcal{F}_{t-1} \sim N(0, H_t) \quad (2.6)$$

where H_t is an $m \times m$ conditional covariance matrix and can be expressed as a vector using the “vech” notation. In other words H_t can be written as:

$$Vech(H_t) = vech(\Sigma) + \sum_{i=1}^{q} A_i vech(\varepsilon_{t-i} \varepsilon_{t-i}^{'}) + \sum_{j=1}^{p} B_j vech(H_{t-j}) \quad (2.7)$$

where $vech(.)$ is the vector–half operator that converts $(m \times m)$ matrices into $(m (m + 1) / 2 \times 1)$ vectors of their lower triangular elements. Here Σ is an $m \times m$ positive definite parameter matrix and A_i and B_j are $(m (m + 1) / 2) \times (m (m + 1) / 2)$ parameter matrices. The $vech$ representation is easily interpreted as an ARMA model for the $\varepsilon_{it} \varepsilon_{jt}$. It is quite flexible since it allows all elements of H_t to depend on all elements of the lagged covariance matrix, as well as the cross products of the lagged residuals.

The above specification however, brings forth two major problems concerning the operational specification of H_t. Firstly, H_t must be positive definite and the conditions to ensure this are often difficult to impose and verify. Secondly, the unrestricted model involves a large number of parameters to be operational in empirical work7. More generally there are a number of issues relating to the parametrization of H_t which can be classified as follows:

a. Does the model impose any untested characteristics on the estimated parameters?

b. Does the model impose positive semi-definiteness of H_t?

c. Granger causality issues

d. Persistence issues

7It can be verified that the number of parameters in the Vector GARCH model is: $(m (m + 1) / 2) 1 + (p + q) (m (m + 1) / 2)^2 = O (m^4)$
e. What about linear combinations such as portfolios that are less persistent?

f. Problem of existence of moments

Various strategies have been proposed to deal with the problems of parsimony and positive definiteness. We will now discuss some of the alternative approaches to the conditional variance-covariance matrix specification. We begin with the diagonal form of the GARCH model.

Diagonal GARCH

To overcome the problem of overparametrization, Bollerslev, Engle and Wooldridge (1988) suggested a “diagonal” specification by assuming that the conditional variance depends only on its own residuals and lagged values. This is equivalent to assuming diagonality of the matrices A_i and B_j shown in equation (2.7). By setting $p = q = 1$ and imposing diagonality on A_i and B_j, every element of H_t can be written as:

$$h_{ijt} = \sigma_{ij} + a_{ij} \varepsilon_{i(t-1)} \varepsilon_{j(t-1)} + b_{ij} h_{ij(t-1)} \quad i,j = 1,2,\ldots m \quad (2.8)$$

Bollerslev et al. (1988), estimated a GARCH (1,1) model for analyzing the returns on treasury bills, bonds and stocks. Another important application of this formulation is the work by Baillie and Myers (1991) and Bera, Garcia and Roh (1997) for the estimation of hedge ratios.

The total number of parameters to be estimated in the Diagonal GARCH(p, q) model is reduced to $(p + q + 1) (m (m + 1) / 2) = O (m^2)$. This gain in parsimony however, comes at a relatively high cost since this model has several drawbacks. Most notably, it ignores cross variable volatility interactions which are an important motivation for the multivariate formulation. Additionally the diagonality constraint, which has been imposed artificially varies with the composition of the portfolio. This model does not take into account risk substitutions among different assets because cross volatility correlations are completely neglected. Further, Gouriéroux (1997, pp. 112-113) shows that diagonality of A_i and B_j is not consistent with the positivity constraint of the conditional variance-covariance matrix. The model is unable to address some of the key issues raised by the parametrization of H_t since it does not allow for causality in variance, co-persistence in variance, or for any asymmetries. To sum up, it imposes complex coefficient restrictions which are non-testable.
and violate positive definiteness.

BEKK

In order to guarantee positive definiteness, Engle and Kroner (1995) developed a general quadratic form for the conditional covariance equation which became known as the ‘BEKK\(^8\)’ representation after Baba, Engle, Kraft and Kroner. The BEKK specification for the conditional variance covariance of the multivariate GARCH \((p, q)\) is given by:

\[
H_t = V'V + \sum_{k=1}^{K} \sum_{i=1}^{q} A_{ki}^t \varepsilon_{t-i} \varepsilon_{t-i}^t + \sum_{k=1}^{K} \sum_{j=1}^{p} B_{kj} H_{t-j} B_{kj} \tag{2.9}
\]

where \(V, A_{ik}, i = 1, \ldots, q\), and \(B_{jk}, j = 1, \ldots, K\) are all \(m \times m\) matrices. In this formulation if \(V'V\) is positive definite, and so is \(H_t\).

Engle and Kroner have shown that this representation is sufficiently general since it includes all positive definite diagonal representations and most positive definite \(vech\) representations. While this model overcomes a major weakness of the \(vech\) representation, it still involves \((1 + (p + q)K)m^2 = O(m^2)\) parameters. This considerably restricts the applicability of the BEKK model to situations involving a small number of variables. More tractable formulations of the BEKK model such as the scalar and diagonal versions were also suggested. These models are unrealistic since they impose restrictions that are typically (statistically) invalid. One other disadvantage of the BEKK formulation is that the parameters cannot be easily interpreted and the intuition of the effects on the parameters is lost.

Factor ARCH

The Factor ARCH model was developed partly to enable for large-scale applicability while retaining the positive definiteness. A second motivation for the Factor ARCH models is the fact that components of financial series and speculative markets often exhibit similar volatility patterns. The commonality in volatility provides an alternative method of reducing the number of unknown

\(^8\) According to Engle and Kroner (1995), the BEKK acronym is due to an earlier version of their 1995 paper, which also included contributions by Yoshi Baba and Dennis Kraft.
parameters. Instead of imposing restrictions on matrices A_i and B_j, this model allows only a small number of factors (variables) to influence the conditional variance. Thus we can replace the $vech(\varepsilon_t - \varepsilon_{t-1})$ by a smaller vector. The factor structure has its roots in Ross’s Arbitrage Pricing Theory (1976) which is based on the idea that risk in financial assets can be accounted for by a limited number of factors and an idiosyncratic disturbance term. This model was first proposed by Engle (1987) and is represented in the following way:

$$y_t = \mu_t + B f_t + \varepsilon_t$$ \hspace{1cm} (2.10)

where y_t represents an $m \times 1$ vector of returns, μ_t is an $m \times 1$ vector of expected returns, B is a $k \times m$ matrix of factor loadings, f_t is a vector of factors and ε_t is an $m \times 1$ vector of idiosyncratic shocks. The conditional variance matrix can now be represented as a function of the matrix of factor loadings as follows:

$$H_t = V'V + \sum_{k=1}^{K} \sum_{i=1}^{q} A_{ki}^t \varepsilon_{t-i} \varepsilon_{t-i}^t A_{ki}^t + \sum_{k=1}^{K} \sum_{j=1}^{p} B_{kj}^t H_{t-j} B_{kj}$$ \hspace{1cm} (2.11)

The above representation is a special case of the BEKK model in which the matrices A_i and B_j are of rank one, and only differ by a scaling factor. For the m variable case the number of parameters in this model is $\left(\frac{1}{2}\right) m^2 + \left(\frac{5}{2}\right) m + 2$, which is significantly less than in the general BEKK model. This model was implemented empirically by Engle, Ng, and Rothschild (1990a) to explain excess returns on stocks and Treasury bills with maturities ranging from one to twelve months. They find that an equally weighted bill portfolio can effectively predict the volatility and risk premia of individual maturities. Another important application is by Ng, Engle and Rothschild (1992), who study risk premia and anomalies of the Capital Asset Pricing Model (CAPM) by using data from the U.S stock market. They show that a three9-dynamic-factor model is a good description of the behavior of excess returns in ten decile portfolios.

Diebold and Nerlove (1989) suggest a closely related model — the Latent Factor model to exploit the commonality of volatility shocks. This model is both parsimonious and easy to check for positive definiteness. The driving force behind these models is an idiosyncratic shock together

9Interestingly one of the dynamic factors is the market itself.
with $k < m$ latent shocks for each of the m time series. They apply the Latent Factor model to a data set of seven nominal exchange rate series. Diebold and Nerlove (1989) show that such a model provides a good description of the multivariate exchange rate movements. In particular the factors capture the co-movements across exchange rates and the ARCH form captures the volatility clustering present in the exchange rate series. The Factor approach has also been applied extensively for investigating international co-movements in speculative markets and transmissions of volatility. King, Sentana, and Wadhwani (1994), employ a Factor ARCH approach in an international asset pricing model. Using a similar approach Engle and Sumsel (1990c) find significant spillover between the U.S and U.K stock markets. Ng, Chang, and Chou (1991) also find spillovers among the Pacific Rim countries.

Though the Factor ARCH and Latent Factor models initially seem almost identical, they in fact differ in some important ways. First, they differ with respect to their information set: the information set for Engle’s Factor GARCH contains only past values of the observed variables, whereas that of the Latent Factor model contains past values of the unobserved variables in addition to the observables. Second, they differ significantly in their definition of the factors. The factors in Diebold and Nerlove’s model capture the co-movements between the actual observed series. However in the Factor GARCH model the factors are related to linear combinations of the series which summarize the co-movements in their conditional variances (for a more formal comparison between the two see Sentana, 1998).

While the Factor GARCH model is theoretically very appealing, its implementation poses problems. In particular, we need to identify the unobserved factors representing the portfolios, to enable estimation of the model. Secondly, estimating such models requires highly non-linear techniques. Moreover, Gouriéroux (1997) alludes to the fact that these models do not explain how such factors are linked to the underlying observable process and where to find them.

King et al. (1994), employ a Factor ARCH approach in an international asset pricing model. They extend the original Latent Factor model by allowing the conditional covariance matrix to depend on prior unobserved factors. This is essentially a Stochastic Volatility (SV) representation. We now make a brief digression to a family of models called SV models. The motivation behind the Stochastic Volatility models is to bridge the gap between the existing multivariate GARCH type models and the theoretical models used in finance theory, such as the generalization
of Black–Scholes (1973) model for option theory. They can be viewed as discrete time versions of the continuous time models like Black–Sholes model for option pricing developed in finance. A general multivariate representation of the SV models is as follows:

\[y_{it} = \varepsilon_{it} \left(\exp \left(\frac{h_{it}}{2} \right) \right) \quad i = 1, \ldots, N, \quad t = 1, \ldots, T \]

(2.12)

where \(\varepsilon_{it} = (\varepsilon_{1t}, \ldots, \varepsilon_{Nt}) \sim NID(0, \Sigma \varepsilon) \) and the vector of volatilities \(h_t \) usually follows a VAR(1) and sometimes a VARMA process. In other words:

\[h_{t+1} = \Phi h_t + \eta_t \]

(2.13)

where \(\eta_t \sim NID(0, \Sigma \eta) \). Unlike the standard multivariate GARCH models, given information up to time \((t - 1) \) \(h_t \) is not deterministic. Instead it is modelled as a VAR process which is driven by the unobserved stochastic process \(\eta_t \).

Estimation of this model can be carried out by first applying a logarithmic transformation to the squared observations to get the multivariate state space representation. Consequently, Quasi Maximum Likelihood estimators are obtained by means of the Kalman filter, (see Harvey, Ruiz and Shephard, 1994, pg. 251 for details). One advantage of this model is that it can accommodate common trends and cycles in volatility (see Shephard 1996). Although this model is relatively parsimonious it has the same drawback as Bollerslev’s (1990) model of Constant Conditional Correlations. These models cannot accommodate time varying correlation and consequently are of limited interest.

Multivariate Factor SV model

Factor specifications have also been proposed for the multivariate stochastic volatility models, which are very similar in spirit to the Diebold and Nerlove model (1989). They follow the literature on common factors related to the Unobserved Components class of time series models (see Harvey (1989), Chapter 8, Section 5 for a review). A simple one-factor model can be represented as:

\[y_t = \beta f_t + \omega_t \quad t = 1, \ldots, T \]

(2.14)
where $\omega_t \sim NID(0, \Sigma_\omega)$ and $f_t = \varepsilon_t \left(\exp \left(\frac{\omega_t}{2} \right) \right)$ for $t = 1, \ldots, T$ and, $h_{t+1} = \gamma_1 h_t + \eta_t$ and $\eta_t \sim NID(0, \sigma_\eta^2)$. Harvey, Ruiz and Shephard (1994) have applied such a model to three European currencies and the Japanese Yen. The model fits the data well and captures the co-movements in volatility. Two factors are identified as driving the volatility — one for the European currencies and a second one for the Yen. After this brief detour we now return to discussing the multivariate GARCH type models and in particular the Constant Conditional Correlation model of Bollerslev (1990).

Constant Conditional Correlations (CCC)

Bollerslev (1990) introduced the Constant Conditional Correlations multivariate GARCH specification to deal with the problem of overparametrization. The CCC model is built on the assumption that conditional correlations are time invariant and any variation in H_t is entirely due to the time varying nature of the conditional variances. This formulation greatly simplifies the overparametrization issue and the conditions on H_t to be positive definite making estimation much easier. Consequently, the computational simplicity of this model has made it very popular among empirical researchers. The conditional covariance matrix in this case can be expressed as follows:

$$H_t = D_t \Gamma D_t$$ \hspace{1cm} (2.15)

where Γ is the time invariant correlation matrix and D_t represents the $m \times m$ diagonal matrix with the conditional variances along the diagonal. The number of parameters to be estimated is $m(m+1)/2 + m$, which is significantly smaller than the general case. Also H_t is guaranteed to be positive definite almost surely for all t as long as Γ is positive definite and all the conditional variances along the diagonal of D_t are positive.

For the purposes of illustration assume $m = 2$. Then the individual variances are assumed to follow the univariate GARCH(p, q) process and can be written as:

$$h_{11t} = \sigma_{11} + \sum_{j=1}^{q} a_{1j} \varepsilon_{1(t-1)}^2 + \sum_{i=1}^{p} \beta_{1i} h_{11(t-1)}$$ \hspace{1cm} (2.16)
Positive definiteness of H_t requires $\sigma_{ii} > 0, a_{ij} \geq 0, \beta_{ik} \geq 0, i = 1, \ldots, m, j = 1, \ldots, q,$ and $k = 1, \ldots, p.$ Estimation of this model is relatively easy and involves two stages. We first estimate univariate GARCH models for each asset, and then estimate the correlation matrix using transformed residuals. The model has certain advantages with regard to numerical optimization and interpretation. It is well adapted for risk premium analysis since it can account for the correlations between different securities. Furthermore, it facilitates comparisons between subperiods. This formulation10 was used by Bollerslev (1990), in comparing the exchange rates between the European currencies both pre and post the European Monetary System.

Although the notion of constant correlations seems plausible, it is often taken for granted, and is rarely tested. Several recent studies have found evidence against constant correlations for certain financial data series. For instance, Bera and Kim (2002) developed a bivariate test, the Information Matrix (IM) test for constant correlations and found that stock returns across national markets exhibit time varying correlation. Bera and Roh (1991) suggested a test for constant conditional correlations and found that it is rejected for many financial series. Tsui and Yu (1999) apply the information matrix test to a bivariate GARCH(1,1) model of the two stock exchange markets in China and find that the assumption of constant correlation in the two markets is rejected by the data. Tse (1999) developed a more general multivariate LM test for constant correlations. He applied the LM test to three different data sets and found evidence of time varying correlations across national stock market returns. However, his results also indicate that spot-futures prices and the foreign exchange data have constant correlations. While the validity of the assumption of constant correlation remains an open empirical question, the CCC model also suffers from other drawbacks of the multivariate GARCH models such as being too restrictive and invariant to the portfolio composition.

Dynamic Conditional Correlations (DCC)

The main motivation behind research in the direction of Dynamic Conditional Correlation models was the well known fact that correlations and volatilities vary over time — and sometimes

10For other applications of the Constant Conditional Correlation model the interested reader can refer to Baillie and Bollerslev (1990), Bera, Garcia and Roh (1990), Bekaert and Hodric (1992), Kroner and Sultan (1991), Kroner and Claessens (1991) and Schwert and Seguine (1990).
abruptly. The mere fact that risk management, asset allocation, derivative pricing and hedging strategies, all rely on correlations and volatilities makes the quest for well specified and reliable models of volatility even more challenging. An equally important issue is finding a model that can be used for more realistic cases with potentially thousands of assets in a portfolio. As Ding and Engle (2001) pointed out:

“one difficulty in modeling the conditional second moment for multiple series is that the model usually involves a huge number of parameters which is the same as in the VAR model”

Recently Engle (2002a) introduced a new class of multivariate GARCH models, which are capable of estimating large time varying covariance matrices. The proposed DCC specification can be viewed as a generalization of Bollerslev’s (1990) constant conditional correlation model by allowing for time varying correlations. The specification of the variance-covariance matrix is different from that in equation (2.16) by allowing Γ to be time varying and is shown below:

$$H_t = D_t \Gamma_t D_t$$ (2.17)

Estimation of the Dynamic Conditional Correlations model requires a two-step maximum likelihood procedure. In the first stage univariate GARCH models are estimated for each return and standardized residuals are constructed (returns divided by conditional standard deviations). In the second stage, correlations11 between the standardized residuals obtained from the first stage are estimated using a small number of parameters. Ensuring positive definiteness is easy in this case but still requires the same ad-hoc restrictions that are imposed on the univariate GARCH processes.

Note that the Dynamic Conditional Correlation model preserves the computational simplicity of Bollerslev’s model while allowing for time varying correlations. Additionally the number of parameters estimated using maximum likelihood is $O(m)$, a significant improvement over the $vech$

11Various method for calculating the time varying correlations have been proposed: (i) Moving average, which calculates correlations using a rolling window, (ii) Exponential smoothing, whereby a decay parameter λ is selected so as to smooth the cross products and get covariances, variances and correlations, and (iii) Mean reverting ARMA.
and BEKK model. It is worth mentioning that the number of parameters to be simultaneously estimated is only $O(1)$. Engle and Sheppard (2001b) investigate the theoretical and empirical properties of the Dynamic Conditional Correlation models and illustrate this new method by using a hundred S&P 500 sector stocks and thirty Dow Jones Industrial Average stocks. Another advantage of this model is that it can be easily extended to allow for any asymmetric effects in volatility, or to include exogenous variables in the correlation model. In another paper Engle (2002a) finds that although “all the models are misspecified, the DCC models are competitive with the multivariate GARCH specifications and superior to moving average methods”.

A similar line of research has been pursued by Tse and Tsui (1998), who proposed a multivariate GARCH model with time varying correlations. They assume a \textit{vech} – diagonal representation of the conditional variance like Bollerslev (1990) where each conditional variance follows a univariate GARCH formulation. What is different in their model is the structure of the conditional covariances. They adopt an autoregressive moving average formulation for the conditional correlation matrix. Unlike Engle and Sheppard (2001b) they do not attempt to estimate separately the univariate GARCH processes and the dynamic conditional correlation. Nor do they allow for reversion to the unconditional correlation in the correlation estimator. Thus, this method allows for dynamic correlations, but it still requires the estimation of a large number of parameters $[O(m^2)]$, which is only slightly less than the typical BEKK formulation. Positive definiteness is ensured by suitable restrictions on the correlation matrix. The proposed model is applied to three data sets – interest rates, exchange rates and stock prices. Results indicate that the estimated correlation path can give us important insights that would have otherwise been lost. Despite the encouraging empirical results and the more realistic nature of these formulations, the DCC models still suffer from the usual drawbacks of the other multivariate GARCH models.

To sum up, the extensive research on the dynamic volatility literature has given rise to a wealth of univariate and multivariate GARCH type models. Developments in this area were largely driven by the need to capture the empirical regularities exhibited by speculative price data in a parsimonious way. Refinements and extensions of the basic ARCH model were the result of a combination of factors including a wide variety of financial applications, increased availability of data, and acceleration in computing power. While the univariate models have been relatively successful in empirical studies, they seem to lack any economic theory justification and suffer from
a number of limitations as well. First, their specification is ad hoc, and successful estimation requires complex parameter restrictions which are not verifiable. Second, they concentrate on the conditional moments, and the distribution, (Normality), adopted often does not fit the data and enters the specification through the error term. Third, they raise theoretical considerations regarding the existence of moment conditions. These problems naturally transfer to the multivariate extensions of the univariate models— in fact they become more acute. Moreover, the complexity and number of restrictions that need to be imposed for estimation often come at the cost of economic interpretation. Overparametrization seems to be a major problem in this case, and research in this area has concentrated on finding estimators which preserve the parsimony and simplicity of the univariate specifications. Although multivariate models are more realistic and can be related to theoretical models in the literature they have not yet been adequately successful in empirical work. Engle (2001a) alludes to some of the problems related to the multivariate GARCH type models by saying:

“The most significant unsolved problem is the multivariate extension of many of these methods. Although various multivariate GARCH models have been proposed, there is no consensus on simple models that are satisfactory for big problems. There has been little work on multivariate tail properties or other conditional moments. There is intriguing evidence of interesting non-linearities in correlation”

This naturally leads to the topic of the next section, which provides an alternative methodological framework to deal with some of the problems raised in the quantitative finance literature.

2.4 Probabilistic Reduction Approach

The PR approach provides a methodological framework for econometric modeling which combines economic theory models with statistical theory models in an coherent way. In this section we provide an overview of the PR methodology and highlight the advantages it offers for empirical modeling. Following the discussion we illustrate the PR approach by revisiting the Normal VAR model from this perspective. We use it to argue in favor of adopting the PR approach for developing univariate and multivariate models for speculative prices in subsequent chapters.
The PR approach differs from the traditional approach to empirical modeling in many important ways. In particular, it clearly distinguishes at the outset between (1) the Theory model, (2) the actual Data Generating Process (DGP) and (3) the estimable model. One of the main problems in econometric modeling is the substantial gap between what a theory might suggest as important features to be investigated, and the available observed data. Thus, the distinction between the different models (Statistical vs Theory) in the PR approach is potentially advantageous since it acknowledges the observed12 nature of the data in economics. The daunting task for an econometrician is to bridge this gap between the theory and the available data and to apply statistical procedures that will ensure the reliability of the empirical evidence.

The PR methodology allows the structure of the data to play an important role in specifying plausible statistical models. This is achieved by utilizing information from graphical techniques such as t-plots, scatter plots, bivariate kernels, and P-P plots to make informed decisions about the probabilistic assumptions needed to capture the empirical regularities in the observed data. The statistical model is then derived from the joint distribution of the observable random variables by sequentially imposing a number of reduction assumptions. These reduction assumptions reflect the probabilistic features of the data and are classified into three broad categories:

\begin{align*}
\text{(D) Distribution} & \quad \text{(M) Dependence} & \quad \text{(H) Heterogeneity}
\end{align*}

The Distribution category relates to choosing the particular distribution that best describes our data. There are numerous members in this category such as the Normal, Student’s \textit{t}, Pareto etc. The Dependence category relates to the nature of temporal dependence present in our data set. Some examples are: Markov\textit{(p)}, \textit{m}—dependence, martingale etc. Finally the Heterogeneity category relates to the trends, seasonal patterns and shifts in the mean and variance of our data. The most popular assumptions from this category are the Identical Distribution and the Stationarity assumptions.

In fact, all possible types of statistical models can be constructed by using different assumptions.

12The data generated in economics is rarely the result of some type of controlled experiment. In an experiment if the assumptions on the error are violated we can re-design or re-run the experiment. However, since we do not have such flexibility in gathering economic data the task of building coherent models becomes even more important.
from these three categories. As a result of the systematic reduction using the PR approach the statistical model can be viewed as a consistent set of assumptions relating to the observable random variables underlying the data. Moreover, it is specified exclusively in terms of the observable random variables involved rather than the error term. Unlike the GARCH framework, the PR approach selects the appropriate conditional statistical model in a systematic way that is uniquely determined by the form of the joint distribution. The primary objective of the statistical model is to capture the systematic attributes (real effects) of the observable phenomenon of interest by describing the statistical information present in the data in an organized and methodical way.

In the context of the PR approach empirical modeling involves four interrelated stages: Specification, Misspecification, Respecification, and Identification. The primary purpose of the first three stages is to provide the link between the available observed data and the assumptions making up the model. The fourth stage – Identification provides the final link between the statistically adequate model and the theoretical model. Specification refers to the actual choice of the statistical model, in view of the information available. This is achieved by imposing the appropriate reduction assumptions of the joint distribution. There are three sources of information at this stage: theory, measurement and sample information. Theory information affects the choice of variables and the form of the Statistical Generating Mechanism (SGM). Measurement information refers to the units and system of measurement, and sample information refers to the nature and structure of the observed data. The statistical model is fully specified in terms of three interrelated components: (i) SGM, (ii) Probability model and (iii) Sampling model. The main purpose of the SGM is to provide a bridge between the statistical model and the theoretical model of interest. It achieves that by defining the probabilistic mechanism that serves as an approximation to the actual Data Generating Process (DGP). The Probability model is defined by the probability distribution underlying the SGM. Finally, the Sampling model provides the link between the observed data and the probability model by making assumptions about the observable random variables that give rise to the particular data set.

Once the model is fully specified we then proceed to the stage of misspecification in order to assess the validity of the underlying probabilistic assumptions. The misspecification stage involves both informal graphical techniques (for example t-plots and P-P plots) and formal testing. It
is at this stage that the notion of severity13 becomes indispensable. Neyman-Pearson tests are reinterpreted as severe tests rather than ready made rules for rejecting and accepting hypotheses. Misspecification testing is performed in a piece meal way by testing the underlying model assumptions individually as well as jointly. When the model is misspecified we proceed to the stage of respecification, where the knowledge gained through the tests is taken into account. Respecification refers to the choice of an alternative statistical model when the original fails to pass all the misspecification tests. It amounts to imposing a different set of reduction assumptions on the joint distribution of the observable random variables. Misspecification and respecification are repeated until we finally reach a statistically adequate model. The relationship between the reduction and model assumptions is of paramount importance at the specification, misspecification and respecification stage. By adopting this systematic and rigorous procedure we finally reach the goal of specifying a statistically adequate model. A statistically adequate model is one that satisfies the probabilistic assumptions underlying the model and thus can provide a reliable14 summary of the systematic information in the data. In fact reliability of empirical evidence is built into the PR approach by insisting on statistical adequacy. Only after statistical adequacy is established, the model is considered a credible basis for statistical inference such as estimation, testing, prediction and policy recommendations.

Once we have established statistical adequacy, Identification makes the final link by relating the statistical model to some theoretical model of interest. This stage involves a reparametrization of the estimated SGM in view of the estimable model, so as to transform the statistical parameters to theoretically meaningful ones. The reparametrization leads to the specification of an empirical econometric model which incorporates both statistical and theoretical meaning.

The PR methodology has been used successfully in a number of empirical studies. The Student’s t Autoregressive model was applied by McGuirk et al. (1993) for modeling exchange rates. The authors show that this model outperforms the alternative GARCH type formulations on grounds

13The idea of a severe test is defined by Mayo and Spanos (2000) as follows:
Hypothesis H passes a severe test with data x if,
(i) x agrees with H (for a suitable notion of agreement), and
(ii) with very high probability, test T would have produced a result that fits H less well than x does, if H were false or incorrect.
For more on the notion of severity and hypothesis testing see Mayo and Spanos (2000).

14By reliable evidence we mean accurate findings that contain all the systematic information.
of statistical adequacy. Andreou and Spanos (2002) also apply the PR approach in revisiting the empirical results of Nelson and Plosser (1982) and Perron (1989). They show that once statistical adequacy is taken into account, some of the models proposed in these two papers need to be respecified and some of the inferences need to be modified. Recently Spanos and McGuirk (2001) illustrate the advantages of the PR approach over the traditional textbook and Bayesian approaches to statistical model specification in econometrics, by performing several simulation experiments. They show that the major advantage of the PR approach lies in the use of a battery of misspecification tests. Results from these tests not only detect departures from the assumptions of the specified model, but more importantly they guide us towards a more adequate statistical model. Apart from these exceptions however, no other work has been done in this area. The PR approach still remains a fruitful area of research especially in the context of non-Normal distributions, and multivariate series.

In this dissertation we develop the Student’s t VAR model using the PR methodology. As a prelude to the specification of the Student’s t VAR model we illustrate the PR approach by using it to develop the traditional Normal/Linear/Homoskedastic VAR model.

2.4.1 The VAR(1) from the Probabilistic Reduction Perspective

The Normal VAR model, which we will now recast in terms of the PR perspective, was first proposed in econometrics by Sims (1980) as an alternative to the large scale, structural macroeconomic models used at the time. The reduction assumptions on the joint distribution of the process $\{Z_t, \ t \in T\}$, that will give rise to the VAR(1) are: (i) Normal, (ii) Markov and (iii) Stationary. The reduction takes the form shown below:

\[
D(Z_1, ..., Z_T; \psi(t)) = D_1(Z_1; \varphi_1) \prod_{t=2}^{T} D(Z_t \mid Z_t-1, Z_t-2, ..., Z_1; \varphi_2(t))
\]

\[
M^{(1)} = D(Z_1; \varphi_1(t)) \prod_{t=2}^{T} D(Z_t \mid Z_t-1; \varphi_2(t))
\]

\[
SS \equiv D(Z_1; \varphi_1) \prod_{t=2}^{T} D(Z_t \mid Z_t-1; \varphi_2), \quad (Z_1, Z_2, Z_3, ... Z_T) \in \mathbb{R}^{mT}
\]

15 The VAR model was first introduced in the time series literature. See Rozanov (1967) and Hannan (1970).
The first equality shows that the joint distribution can be decomposed into a product of \((T-1)\) conditional distributions and one marginal distribution. The assumption of Markov(1) changes the conditioning information set to \((Z_{t-1})\). Thus we no longer have the problem where each subsequent conditional distribution depends on a different information set. The third equality shows that under the assumption of second order stationarity, the statistical parameters \(\varphi_1\) and \(\varphi_2\) are time invariant. This leads to a reduction in the number of unknown parameters. Finally the Normality assumption implies weak exogeneity\(^{16}\). Thus the specification of the statistical VAR model is based on the conditional distribution, \(D(Z_t \mid Z_{t-1}; \varphi)\). Normality, Markovness and Stationarity enable us to concentrate on the following distribution:

\[
\begin{bmatrix}
Z_t \\
Z_{t-1}
\end{bmatrix}
\sim N\left(\begin{bmatrix}
\mu \\
\mu
\end{bmatrix},
\begin{bmatrix}
\Sigma(0) & \Sigma(1) \\
\Sigma'(1) & \Sigma(0)
\end{bmatrix}\right),
t \in \mathbb{T},
\tag{2.19}
\]

The Statistical Generating Mechanism takes the following form:

\[
Z_t = \alpha_0 + A_1 Z_{t-1} + u_t \quad t \in \mathbb{T}
\tag{2.20}
\]

The statistical parameters \(\phi := (\alpha_0, A_1, \Omega)\) are related to the primary parameters \(\psi := (\mu, \Sigma(0), \Sigma(1))\) via:

\[
\alpha_0 = (I - A_1)\mu, \quad A_1 = \Sigma'(1)\Sigma(0)^{-1}, \text{ and } \quad \Omega = \Sigma(0) - \Sigma'(1)\Sigma(0)^{-1}\Sigma(1).
\]

\(^{16}\)Weak exogeneity arises in the case where the parameters \(\varphi_1\) and \(\varphi_2\) are variation free. For more on the notion of Weak exogeneity and variation freeness see Spanos, 1999, pp. 366-367.
The VAR(1) Model

I. Statistical GM: $Z_t = \alpha_0 + A_1 Z_{t-1} + U_t, \ t \in \mathbb{T}$.

[1] $D_t = \{Z_{t-1}\}$ is the relevant conditioning information set with $\mu_t = E(Z_t \mid Z_{t-1}) = \alpha_0 + A_1 Z_{t-1}$: the systematic component, and $U_t = Z_t - E(Z_t \mid Z_{t-1})$: the non-systematic component.

[2] $\varphi := (\alpha_0, A_1, \Omega)$, are the statistical parameters of interest, where $\alpha_0 = E(Z_t) - A_1 Z_{t-1}$, $A_1 = [\text{cov}(Z_{t-1})]^{-1} \text{cov}(Z_t, Z_{t-1})$, $\text{Cov}(Z_t \mid Z_{t-1}) = \Omega$ is homoskedastic.

[3] The roots of det $[\mathbb{I}_m \lambda - A_1]$ = 0 have modulus less than one.

[4] No a priori restrictions on $\varphi := (\alpha_0, A_1, \Omega)$.

[5] $\text{Rank}(Z_1, \ldots, Z_T) = m$.

II. Probability model: $\Phi = \{D(Z_t \mid Z_{t-1}; \varphi), \varphi := (\alpha_0, A_1, \Omega), Z_t \in \mathbb{R}^m\}$.

[6] $\begin{cases}
(i) & D(Z_t \mid Z_{t-1}; \varphi) \text{ is Normal}, \\
(ii) & E(Z_t \mid Z_{t-1}; \varphi) = \alpha_0 + A_1 Z_{t-1} \text{ is linear in } Z_{t-1}, \\
(iii) & \text{Cov}(Z_t \mid Z_{t-1}) = \Omega \text{ is homoskedastic}.
\end{cases}$

[7] The parameters $\varphi := (\alpha_0, A_1, \Omega)$ are t-invariant.

III. Sampling model:

$\{Z_1, Z_2, \ldots, Z_T\}$ is a Markov/stationary sample drawn from $D(Z_t \mid Z_{t-1}; \varphi), t \in \mathbb{T}$.

Table 2.1: The PR Approach: Normal VAR(1) Model

By looking at the VAR(1) model proposed above (Table 2.1) we observe that the conditional variance is homoskedastic and homogeneous. Financial data however exhibit the empirical regularities of thick tails and volatility clustering which imply that the conditional variance is heteroskedastic. The challenge is to derive a VAR model which can account for these feature by starting from a different distribution assumption. We show that the multivariate Student’s t distribution seems to be a natural choice for modeling speculative price data in later chapters.

2.5 Conclusion

The twofold tasks of this chapter has been to revisit the GARCH literature, and in particular the multivariate GARCH literature and to provide a formal introduction to the PR methodology. The initial half of the chapter provides a comprehensive overview of the literature from the PR perspective. While the existing multivariate models are theoretically appealing and have a wide variety of
important applications, they also suffer from severe limitations. There are three major problems with the existing models: (i) overparametrization due to large variance-covariance matrices, (ii) ad hoc model specification, and (iii) unnatural distribution assumptions. The first problem can be addressed to a limited extent through increased computing power which allows for the handling of large correlation matrices. However, even if one allows for the rapid technological developments the problem does not entirely vanish until we adopt a statistical approach to the overparametrization issue. We believe that the second and third issue can only be explored by adopting an alternative methodological framework. This brings us to the second aim of this chapter which has been to propose the Probabilistic Reduction methodology to statistical modeling as a way of resolving these issues in a unifying and coherent framework. This approach renders the choice of a functional form for the conditional variance an informed activity by utilizing the probabilistic nature of the data. Using this information we derive conditional specifications by imposing the relevant reduction assumptions on the joint distributions. The search for multivariate volatility models that can capture the empirical regularities observed in financial data as well as answer theoretical questions of interest is still on going and the results are quite promising. As Pagan (1996, pg. 92) remarks: “It is this interplay between statistics and theoretical work in economics which needs to become dominant in financial econometrics in the next decade”.

39
Chapter 3

Univariate Volatility Models

3.1 Introduction

Speculative prices as the name suggests refer to goods or commodities traded in markets which involve uncertainty and risk. Examples of speculative prices include stock prices, interest rates, and exchange rates. They all share the well documented probabilistic features of leptokurticity and second order dependence. It is the very nature of these markets and their inherent uncertainty that generates speculative price data, posing innumerable empirical modeling challenges.

The primary objective of this chapter is to apply the PR methodology for modeling univariate volatility. This is a necessary stepping stone for developing more realistic and complex volatility models in subsequent chapters. In this chapter we illustrate that the PR approach is relevant for modeling volatility by showing that it works in its simplest form, which is the univariate case. Moreover univariate models allow for a better understanding of the usefulness of this approach. Second, we believe that the univariate results will identify patterns and provide useful insights necessary for deriving a sensible multivariate specification. Finally, this chapter serves as a robustness check for the PR approach by showing that it applies equally well to two different data sets, of weekly and daily frequencies respectively.

The nature and economic effects of volatility have been of great concern among researchers and thus have been extensively explored in the empirical literature. In this chapter we consider exchange rate returns for four currencies as well as daily returns for the Dow Jones Industrial Price Index.
Exchange rate movements have significant implications for many issues in international finance. For instance, volatility of exchange rates can create uncertainty in prices of exports and imports, in the value of international reserves and for open positions in foreign currency. Furthermore, volatility in exchange rates can affect domestic wages, prices, output and employment through the impact on domestic currency value of debt payments. An understanding of the exchange rate dynamics is thus crucial in answering several policy-oriented questions by relating their impact on different macroeconomic variables. We have also chosen the Dow Jones returns index since it involves volatility in a different market — the stock market. The most obvious reason for choosing Dow Jones returns is that it represents about a fifth of the total value of the US stock market and is of interest to a large number of people. Another reason for choosing it is the daily nature of the data.

In the next section we demonstrate the significance of using a set of graphical techniques at the specification stage of statistical modeling. These graphical techniques are an integral and innovative part of the PR approach. We will argue that the insights gained at this stage are useful in all the three stages of specification, misspecification and respecification. They provide an informal yet systematic way of identifying the appropriate probabilistic assumptions and for checking the validity of those assumptions. In Section 3.3 we discuss the most popular econometric models of speculative prices. Unlike Chapter 2 we examine each one of the models in the context of graphical findings from Section 3.2 through the lenses of the probabilistic reduction methodology. Section 3.4 provides the empirical estimations of all the different models. The final section has some concluding remarks.

3.2 A Picture’s Worth a Thousand Words

The ultimate goal of empirical modeling is learning from data. Graphical techniques are an indispensable tool and are often the only way to utilize the data at the specification stage. The trick consists of knowing how to look at data plots and what to look for in a data plot so as to glean the systematic information present in it. In fact the connection between the probabilistic concepts of (i) Distribution, (ii) Heterogeneity and (iii) Memory and the patterns depicted in the plots, provide great insight on the nature of the statistical model that might be appropriate for a particular data
The first data set considered in this study consists of four nominal exchange series that have been extensively used in the empirical literature. They are the log differences of the weekly spot rates of the British Pound (GBP), Deutschemark (DEM), French Franc (FRF), and Swiss Franc (CHF) vis-a-vis the US. Dollar, recorded every Wednesday over the period January 1986 through August 2000. We obtained daily data starting from 1/2/86 to 21/8/00 from Datastream. The daily series were then turned to weekly by using the observations for every Wednesday thus giving us a total of 763 observations. We have chosen Wednesday so as to avoid the so called Tuesday-Thursday effects. The series are defined as $100 \times \ln(e_t) - \ln(e_{t-1})$, where e_t represents the relevant spot rate.

The second data set consists of Dow Jones daily returns from 23 August 1988 to 22 August 2000. This is a high frequency data set which contains 3130 observations. We take log differences of the value of the index to convert the data into continuously compounded returns.

To explore the probabilistic features of the data a battery of graphical techniques were used. These provide a bridge between the theoretical probabilistic concepts and the chance regularity patterns observed in the data. We first present time plots (t-plots) which have the values of the variable on the ordinate and the index (dimension) t on the abscissa. They can be used to identify patterns of heterogeneity, dependence as well as to assess the distributional assumption. Figures 3-1 – 3-4 depict the time plots for the standardized log exchange rate changes. Observe that these time plots share some common features which we expect to see in speculative price data. First, all the series seem to be stationary in that the mean over time seems to be constant and the variation around the mean appears to be relatively constant as well. The data exhibits bell-shaped symmetry since there seem to be as many points above the mean as below it. However, compared to the Normal distribution there seems to be a larger concentration of points around the mean and many more outliers. The data can be viewed as a number of sequences where clusters of small changes succeed big changes and this is symptomatic of second order dependence. Looking at the t-plots more closely we can see that the British Pound seems to be a little bit skewed and we can identify an outlier at September 16, 1992, which is known as Black Wednesday, i.e. the date when the British pound was forced out of the Exchange Rate Mechanism (ERM). Over this period the French Franc and Swiss Franc are moving in tandem with the Deutschemark.
Figure 3-1: Standardized t-plot (DEM)

Figure 3-2: Standardized t-plot (FRF)
Figure 3-3: Standardized t-plot (CHF)

Figure 3-4: Standardized t-plot (GBP)
To further investigate the possible departure from Normality the P-P plots for the different series were also utilized. The P-P plot amounts to plotting an ordered sample (or a transformation of it) against some theoretical reference sample. Given the leptokurtic nature of the data set we choose the Cauchy distribution as the reference curve because it represents the Student’s t distribution with one degree of freedom. When the postulated distribution is valid this graph will give us a straight line that coincides with the diagonal. To illustrate the use of these plots we focus on the French Franc which is quite representative of the data set. Figure 3-5 represents the standardized Normal P-P plot for the French Franc with Cauchy as the reference distribution (inverted S). Observe that the graph for the French Franc does not form a straight line. This indicates that it cannot be adequately described by a Normal distribution. Furthermore, it shows departures in the direction of Cauchy which reveals that a more leptokurtic distribution such as the Student’s t might provide a more reasonable description of the data. The extent of leptokurtosis in the Student’s t distribution is reflected in the degree of freedom parameter. The difficulty lies in choosing the most appropriate degrees of freedom for the particular data set. One way to approaching this problem is by using the standardized Student’s t P-P plot. Figures 3-6 – 3-8 show the standardized Student’s t P-P plots with different degrees of freedom for the case of French Franc. Student’s t distribution with 7 degrees of freedom seems to provide a remarkable fit but 6 and 8 degrees of freedom also indicate very good fits. By visual inspection it is hard to distinguish between these plots. To help in our decision we enlist the support of some distance measures such as the Watson Statistic (1961, 1962) and Cramer-Von Mises statistic (1981). For the French Franc both test statistics provide evidence in favor of seven degrees of freedom. It should be emphasized that these plots are only used as guides and the final choice of the degrees of freedom will be made on statistical adequacy grounds.
Figure 3-5: Standardized Normal P-P plot (FRF)

Figure 3-6: Standardized Student’s t P-P plot, $\nu = 6$, (FRF)
Figure 3-7: Standardized Student’s t P-P plot, $\nu = 7$, (FRF)

Figure 3-8: Standardized Student’s t P-P plot, $\nu = 8$, (FRF)
Next we present time plots and P-P plots for the Dow Jones daily returns. The t-plot in figure 3-9 exhibits similar features as those observed in the exchange rate data time plots of bell-shaped symmetry, leptokurticity and second order dependence. In this case however, the extent of leptokurtosis seems to be more accentuated. The Normal P-P plot in figure 3-10 clearly indicates that Normality cannot describe the data as shown by the departures toward the Cauchy distribution. Figure 3-11 shows the P-P plot for the Student’s t distribution with 3 degrees of freedom with the Cauchy distribution as the reference curve. The Cauchy can serve as a guide for increasing or decreasing the degrees of freedom. In this case we still observe departures from the diagonal, in the direction of the Cauchy which tells us to increase the degrees of freedom for a better fit. Increasing the degrees of freedom to 4 seems to provide a much better fit as shown in figure 3-12. To check if this is the best fit we repeat the same exercise for 5 degrees of freedom in figure 3-13. As we can see, the first half of the observations lie above the diagonal while the second half lie below the diagonal, thus showing departures away from the Cauchy distribution. To correct the problem we need to decrease the degrees of freedom. Through this visual inspection of the data we can thus conclude that this data can be best described by a Student’s t distribution with 4 degrees of freedom.

Besides the visual technique described above another way of determining the degrees of freedom is by using the sample kurtosis coefficient defined as \(\alpha_4 = 3 + \frac{6}{\nu - 4} \). Table 3.1 lists the suggestions for the degree of freedom parameter made by the P-P plots and those made by the kurtosis coefficient. In this case it seems that these different approaches offer similar suggestions for the most appropriate degrees of freedom. In this chapter the final choice of \(\nu \) will be made on statistical adequacy grounds\(^1\).

\(^1\)The way of choosing the correct degrees of freedom for the t distribution still remains an open question and has been the subject of research in the finance literature.
Figure 3-9: Standardized t-plot (DJ)

Figure 3-10: Standardized Normal P-P plot (DJ)
Figure 3-11: Standardized Student’s t P-P plot, $\nu = 3$, (DJ)

Figure 3-12: Standardized Student’s t P-P plot, $\nu = 4$, (DJ)
Finally, we present the traditional way of looking at the data by providing the descriptive statistics of the data sets. These are provided in Table 3.2 and they seem to strengthen our conclusion regarding non-Normality. The sample skewness and kurtosis coefficients point in the direction of non-Normality although one should proceed with caution due to the presence of dependence in the data. In particular the skewness coefficient conveys some evidence in favor of asymmetry—especially in the case of the British pound and Dow Jones. The kurtosis coefficient appears to be significantly greater than 3, which indicates that the underlying unconditional distribution has much fatter tails than the Normal distribution. It is also interesting to note that the kurtosis coefficient for the daily returns on Dow Jones is significantly larger than the kurtosis coefficient of the weekly exchange rates indicating more leptokurtosis.
\[\alpha_4 = 3 + \frac{\nu}{\nu-1} \]

<table>
<thead>
<tr>
<th>P-P Plot</th>
<th>Sample Kurtosis</th>
<th>(\nu =) 3 + (\frac{\nu}{\nu-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRF (\nu = 7) (\nu = 8)</td>
<td>4.77410</td>
<td>(\nu = 8)</td>
</tr>
<tr>
<td>CHF (\nu = 10) (\nu = 9)</td>
<td>4.05184</td>
<td>(\nu = 10)</td>
</tr>
<tr>
<td>DEM (\nu = 8) (\nu = 9)</td>
<td>4.59872</td>
<td>(\nu = 8)</td>
</tr>
<tr>
<td>GBP (\nu = 5) (\nu = 6)</td>
<td>7.71517</td>
<td>(\nu = 6)</td>
</tr>
<tr>
<td>GBP1 (\nu = 6) (\nu = 7)</td>
<td>5.03320</td>
<td>(\nu = 7)</td>
</tr>
<tr>
<td>Dow Jones (\nu = 4)</td>
<td>9.04738</td>
<td>(\nu = 4)</td>
</tr>
</tbody>
</table>

Note: GBP1 refers to the exchange rate returns for the British Pound after we “dummy out” the observation for Black Wednesday.

Table 3.1: Degrees of Freedom: P-P Plots and Sample Kurtosis Coefficient

<table>
<thead>
<tr>
<th>GBP</th>
<th>DEM</th>
<th>FRF</th>
<th>CHF</th>
<th>Dow Jones(DJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.00517</td>
<td>0.01861</td>
<td>0.00686</td>
<td>0.02666</td>
</tr>
<tr>
<td>Std</td>
<td>1.40982</td>
<td>1.54178</td>
<td>1.50679</td>
<td>1.67071</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.89089</td>
<td>-0.14410</td>
<td>-0.14891</td>
<td>0.08738</td>
</tr>
</tbody>
</table>

Table 3.2: Descriptive Statistics: Exchange Rates and Dow Jones

52
The correlation matrix of the vector of exchange rates is also presented in Table 3.3. Over the period of 1986-2000 we observe strong positive correlations between the central European exchange rates. These finding suggest that the European currencies are responding to a similar information set and their volatilities can be investigated best in a multivariate framework.

Having explored the probabilistic features of the data in a number of different ways, we now proceed to the next section which discusses the theoretical underpinnings of some models as well as our intuition about their success in capturing the chance regularity patterns observed in the exchange rate data set.

3.3 Statistical Model Comparisons

In this section we provide a selective account of the most popular models proposed in the time series literature for capturing the probabilistic features exhibited by speculative price data. We discuss the properties and assumptions underlying each model and provide comparisons between them using the PR methodology. Moreover, we indicate how well they capture the underlying characteristics of the data set described above. We start with the Normal Autoregressive model simply to bring out its major drawbacks in modeling financial data as well as to motivate the development of the Student’s t Autoregressive (AR) model based on the PR approach. Besides the Normal AR we also present the ARCH model of Engle (1982), the GARCH model proposed by Bollerslev (1986) and the Student’s t-GARCH model by Bollerslev (1987). Finally, we conclude with the Student’s t Autoregressive model (Spanos 1990) that incorporates dynamic heteroskedasticity.
Reduction Assumptions:
\{y_t, t \in T\}

Model Assumptions:
\{(y_t \mid \mathcal{F}_{t-1}; \varphi), t \in T\}

<table>
<thead>
<tr>
<th>Reduction Assumptions:</th>
<th>Model Assumptions:</th>
</tr>
</thead>
</table>
| Normality | \(\begin{array}{l}
\text{(i) } D(y_t \mid \mathcal{F}_{t-1}; \varphi) \text{ is Normal} \\
\text{(ii) } E(y_t \mid \mathcal{F}_{t-1}; \varphi) = a_0 + a_1 y_{t-1} \text{ is linear in } y_{t-1} \\
\text{(iii) } \text{Cov}(y_t \mid \mathcal{F}_{t-1}) = \sigma^2 \text{ is homoskedastic,}
\end{array} \) |
| Markov | \((iv)\{(u_t \mid \mathcal{F}_{t-1}), t \in T\} \text{ is a martingale difference process}\) |
| Stationarity | \((v)\) The parameters \((a_0, a_1, \sigma^2)\) are \(t\)-invariant. |

Table 3.4: Reduction and Probability Model Assumptions: Normal AR

3.3.1 Normal Autoregressive Model

The Normal Linear Autoregressive model takes the form:

\[
y_t = a_0 + \sum_{i=1}^{l} a_i y_{t-1} + u_t, \quad u_t / \mathcal{F}_{t-1} \sim N(0, \sigma^2), \quad l > 0
\]

where \(\mathcal{F}_{t-1} = \sigma(Y_{t-1}^0)\) is sigma field which forms the conditioning information set generated by the past history of \(y_t\).

To better understand the role of each of the assumptions behind this model it is useful at this point to revisit the Autoregressive model from the PR perspective. In this approach the form of the autoregressive function depends crucially on the underlying joint distribution. The relevant reduction assumptions on the joint distribution that would give rise to equation (3.1) are: (\(i\)) (D) Normal, (\(ii\))(M) Markov(1) and (\(iii\)) (H) Stationarity. These reduction assumptions give rise to the model assumptions and the two sets of assumptions are related as shown in Table 3.4.

The connection between the reduction and model assumptions is crucial for both the misspecification and respecification stage of statistical modeling. At the misspecification stage we can assess the validity of the model assumptions indirectly by testing the reduction assumptions. A crude but effective way to do this is by utilizing the graphical techniques shown in Section 3.2. A quick glance at the t-plots and P-P plots of the data indicates that the Autoregressive formu-
lation is inappropriate for modeling speculative prices for a number of reasons. First, we expect the assumption of Normality to be violated since our data are clearly leptokurtic, as evidenced from the kurtosis coefficients and the t-plots. Since the reduction assumption of joint Normality implies model assumptions (i)-(iii), we anticipate that formal misspecification tests for Normality, homoskedasticity and linearity will possibly display violations of these three assumptions. Second, we know that Normality can only accommodate linear dependence and thus we expect the Normal Autoregressive model to also reveal departures in the direction of higher order dependence. In other words, it will be unable to capture the volatility clustering observed in the t-plots.

Taken together, these violations point in the direction of a different joint distribution - one that can accommodate leprokurticity and dynamic heteroskedasticity. It is actually the very failure of the linear, homoskedastic models to account for the characteristics of this type of data that stimulated the extensive on going research on conditional heteroskedastic models.

3.3.2 Heteroskedastic Models

There are a number of different ways to model heteroskedasticity for speculative prices. This section discusses the three main ones from the GARCH family.

[A] Conditional Normal ARCH Model

The genesis of the GARCH family of models can be traced to the 1982 seminal paper by Engle. The basic idea underlying the ARCH was to supplement the standard regression model with a second equation that models the conditional variance. This could then accommodate the volatility clustering present in speculative price data. The form of the conditional mean is identical to that in equation (3.1):

\[y_t = a_0 + \sum_{i=1}^{l} a_i y_{t-i} + u_t, \quad u_t/F_{t-1} \sim N(0, h_t^2), \quad l > 0 \]

The ARCH conditional variance takes the form:

\[h_t^2 = a_0 + \sum_{i=1}^{m} a_i u_{t-i}^2, \quad m \geq 1, \quad u_t/F_{t-1} \sim N(0, h_t^2) \quad (3.2) \]
where the parameter restrictions $a_0 > 0$, $a_i \geq 0$, are required for ensuring that the conditional variance is always positive. Also $\sum_{i=1}^{m} a_i < 1$ is required for the convergence of the conditional variance.

This formulation retains the conditional Normality but the unconditional (marginal) distribution will be leptokurtic since the changing conditional variance will allow for the tails of the distribution to be fatter than usual (see Engle 1982). Before we discuss the appropriateness of this model for speculative price data, we present two important extensions of the original ARCH model.

[B] Conditional Normal GARCH Model

Empirical applications of the ARCH have indicated a problem of long lags in the conditional variance for capturing the long memory present in many financial series. This evidence led to the development of the GARCH (p, q) model by Bollerslev (1986) which allows for a more parsimonious representation of the conditional variance as shown below:

$$h_t^2 = a_0 + \sum_{i=1}^{p} a_i u_{t-i}^2 + \sum_{j=1}^{q} \gamma_j h_{t-j}^2, \quad p \geq 1, \quad q \geq 1 \quad (3.3)$$

where $a_0 > 0$, $a_i \geq 0$, $\gamma_j \geq 0$, and $\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} \gamma_j < 1$, are required positivity of the variance and its stability.

Although having fewer parameters this formulation retains the conditional Normality assumption which is largely inappropriate for capturing the leptokurtosis. The problem becomes particularly acute in high frequency data (i.e. we expect that this model will not perform well for the Dow Jones returns).

[C] Conditional “Student’s t” GARCH Model

In view of the above problem Bollerslev (1987) proposed the Conditional Student’s t GARCH model which replaced the assumption of conditional Normality of the error with that of Conditional Student’s t distribution. The distribution of the error term for this specification takes the form:

$$f(u_t/Y_{t-1}^p) = \frac{\Gamma \left[\frac{1}{2} (\nu + 1) \right]}{\pi^{\frac{1}{2}} \Gamma \left[\frac{1}{2} \nu \right]} \left[(\nu - 2) h_t^2 \right]^{-\frac{1}{2}} \left[1 + \frac{u_t^2}{(\nu - 2) h_t^2} \right]^{-\frac{1}{2}(\nu+1)} \quad (3.4)$$
In terms of the empirical regularities observed in the previous section we anticipate that the GARCH family of models will be successful in capturing volatility clustering but will probably indicate departures from the assumption of Normality. This is an improvement over the Normal AR model since the GARCH formulation can model the volatility clustering in the data. Also, the non-linearity problem that could be present in the AR specification might disappear if we are able to capture the dynamic components of the data in a satisfactory manner.

A number of theoretical issues arise in relation to the GARCH family of models. First, the choice of functional form for the conditional variance is ad-hoc and based on lags of the squared residual rather than the observed random variables. Second, to ensure a positive conditional variance a number of unrealistic coefficient restrictions are required which become increasingly complicated and impossible to verify as the number of lags in the conditional variance increases. Third, although the first two conditional moments are supposed to come from the same joint distribution they are modelled separately. This ignores any interrelationship between the two sets of parameters in the joint distribution. Finally, there seems to be a contradiction in retaining Normality while allowing for a heteroskedastic conditional variance. Next we present an alternative approach to univariate volatility modeling which is based on the PR methodology to address these problems.

3.3.3 Student’s t Autoregressive Model with Dynamic Heteroskedasticity

The Student’s t Autoregressive (STAR) model with dynamic heteroskedasticity, \((l, p; \nu)\), was first proposed by Spanos (1990). The STAR model takes the form:

\[
y_t = \beta_0 + \sum_{i=1}^{l} \beta_i y_{t-i} + u_t \quad l > 0, \quad t \in N
\]

where \(u_t = y_t - E(y_t|\mathcal{F}_{t-1})\) is distributed \(St(0, \omega^2_t; \nu)\). The conditional variance, \(\omega^2_t\) is given by:

\[
\omega^2_t = \left[\frac{\nu^t}{\nu + t - 3} \right] \sigma^2 \left[1 + \sum_{i=1}^{t-1} \sum_{j=-p}^{p} q_{|j|} \left(y_{t-i} - \mu \right) \left(y_{t-j-i} - \mu \right) \right],
\]

\[
q_j = 0 \quad \text{for all } |j| > p
\]

where \(\mu = E(y_t)\), \(\nu > 2\) is the degrees of freedom, \(\mathcal{F}_{t-1} = \sigma(Y_{t-1}^0)\) is the conditioning information.
Reduction Assumptions:
\{y_t, t \in T\}

Model Assumptions:
\{(y_t \mid \mathcal{F}_{t-1}; \varphi), t \in T\}

<table>
<thead>
<tr>
<th>Reduction Assumptions:</th>
<th>Model Assumptions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student’s t</td>
<td>{ (i) (D(y_t \mid \mathcal{F}_{t-1}; \varphi)) is Student’s t }</td>
</tr>
<tr>
<td></td>
<td>(ii) (E(y_t \mid \mathcal{F}{t-1}; \varphi) = \beta_0 + \sum{i=1}^l \beta_i y_{t-1}) is linear in (y_{t-1})</td>
</tr>
<tr>
<td></td>
<td>(iii) (\text{Cov}(y_t \mid \mathcal{F}_{t-1}) = \omega_t^2) is heteroskedastic,</td>
</tr>
<tr>
<td>Markov</td>
<td>{ (u_t \mid \mathcal{F}_{t-1}), t \in T } is a martingale difference process</td>
</tr>
<tr>
<td>Stationarity</td>
<td>The parameters ((\beta_0, {\beta_i}_{i=1}^l, \sigma^2)) are (t)-invariant.</td>
</tr>
</tbody>
</table>

Table 3.5: Reduction and Probability Model Assumptions: Student’s t AR

set generated by the past history of \(y_t \).

The reduction assumptions that would give rise to equation (3.5) are (i) (D) Student’s t, (ii)(M) Markov(l) and (iii) (H) Stationarity. These reduction assumptions give rise to the model assumptions and are related as shown in Table 3.5.

It is interesting to note that the conditional mean is linear in the conditioning variables as in the case of Normal autoregressive model. The assumption of Student’s t however leads to a conditional variance function which is both heterogeneous and heteroskedastic. In particular heterogeneity enters the conditional variance specification through the presence of \(t \) in the denominator, and dynamic heteroskedasticity enters through lags of the conditioning variables. The conditional variance is a quadratic function of all the past information, but is parameterized only in terms of \(q_j's \) of which \(p + 1 \) are unknown.

This model addresses a number of theoretical issues related to the GARCH family of models. First and foremost the systematic reduction leads to an internally consistent set of assumptions in terms of the observed random variables. This allows us to develop a formulation that is no longer ad-hoc and can be formally tested. We can obtain a statistically adequate model with a very specific functional form arising directly from the nature of the Student’s t distribution. In contrast to the GARCH type formulations no coefficient restrictions are required for ensuring positivity of the conditional variance as this is guaranteed by the derivation of the conditional moments from the
joint distribution. Moreover, the conditional mean and conditional variance are modelled jointly since they are interrelated through the parameters of the joint distribution thus permitting more efficient estimation.

3.4 Empirical Results

In this section we report the estimation results based on the above models and discuss the appropriateness of each one for modeling volatility. We start with the traditional Normal Autoregressive and (Homoskedastic) presentation. We have chosen the AR(2) representation for the exchange rate returns and the AR(3) representation for the Dow Jones returns so as to capture any weak form of linear dependence that might be present in the data set. The OLS estimation results for these models are summarized in Table 3.6. The various misspecification results are based on the scaled residuals and are reported in Table 3.7.

We observe that the coefficients on the lags are generally insignificant, indicating that the exchange rate returns exhibit no autocorrelation. The Dow Jones returns exhibit some autocorrelation as shown by the significance of the third lag.

Moreover, the autoregressive specifications seem to be badly misspecified in the directions that we have discussed in Section 3.2. A number of different misspecification tests are applied to investigate possible departures from the underlying model assumptions. The Bera-Jarque and D’Agostino and Pearson Normality tests are denoted by BJ and DAP respectively. DK and DS denote the D’Agostino kurtosis and skewness tests. LM stands for the Langrange multiplier test for autocorrelation. ARCH represent a modification of Engle’s ARCH test (1982) which includes the squares and cross-products of the regressors under the null. LB denotes the Ljung-Box (1978) test of linear dependence while ML denotes the McLeod-Li test of second order dependence. FF-RSET is an F-type test of linearity, which includes higher power of the fitted values under the null. Finally HH-RSET denotes a static heteroskedasticity test which includes the fitted values of the regressors under the null. In some cases the White’s test for heteroskedasticity is also reported.

The Normality tests indicate considerable skewness and excess kurtosis in the scaled residuals. Although there seems to be no autocorrelation as suggested by the LM and LB tests, there is an indication of non-linear dependence as shown by the ML tests. The exchange rate returns series,
<table>
<thead>
<tr>
<th></th>
<th>GBP</th>
<th>DEM</th>
<th>FRF</th>
<th>CHF</th>
<th>DJ (AR(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\beta}_0$</td>
<td>0.005</td>
<td>0.015</td>
<td>0.0044</td>
<td>0.024</td>
<td>0.057*</td>
</tr>
<tr>
<td></td>
<td>(.051)</td>
<td>(.056)</td>
<td>(.055)</td>
<td>(.061)</td>
<td>(.016)</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.016</td>
<td>-0.019</td>
<td>-0.043</td>
<td>-0.007</td>
<td>0.015</td>
</tr>
<tr>
<td></td>
<td>(.036)</td>
<td>(.036)</td>
<td>(.036)</td>
<td>(.036)</td>
<td>(.018)</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.052</td>
<td>0.065</td>
<td>0.053</td>
<td>0.054</td>
<td>-0.017</td>
</tr>
<tr>
<td></td>
<td>(.036)</td>
<td>(.036)</td>
<td>(.036)</td>
<td>(.036)</td>
<td>(.018)</td>
</tr>
<tr>
<td>$\hat{\beta}_3$</td>
<td>-0.043*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.018)</td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the standard deviations
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 3.6: OLS Estimations: AR(2) and AR(3)

appear to have problems of static and dynamic heteroskedasticity as indicated by the HH-Reset(2) and ARCH tests. The linearity assumption is problematic in the case of the British pound and the Deutschemark, while static heteroskedasticity poses problems for all the series. The Dow Jones returns exhibit all of the above problems in addition to some linear dependence problem shown by LM(4). These findings indicate the danger of using models that do not fully account for the features of the data and further questions the validity of the test statistics based on sample moments, when applied on series that exhibit unmodeled dependence.
<table>
<thead>
<tr>
<th></th>
<th>GBP</th>
<th>DEM</th>
<th>FRF</th>
<th>CHF</th>
<th>DJ (AR(3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BJ)</td>
<td>793.466</td>
<td>93.093</td>
<td>117.473</td>
<td>36.993</td>
<td>5013.19</td>
</tr>
<tr>
<td></td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
</tr>
<tr>
<td>(DAP)</td>
<td>160.376</td>
<td>34.538</td>
<td>39.380</td>
<td>18.908</td>
<td>546.63</td>
</tr>
<tr>
<td></td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
</tr>
<tr>
<td>(DK)</td>
<td>9.319</td>
<td>5.647</td>
<td>6.045</td>
<td>4.225</td>
<td>20.146</td>
</tr>
<tr>
<td></td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
</tr>
<tr>
<td>(DS)</td>
<td>-8.575</td>
<td>-1.628</td>
<td>-1.684</td>
<td>1.027</td>
<td>-11.864</td>
</tr>
<tr>
<td></td>
<td>(.000)*</td>
<td>(.052)</td>
<td>(.046)*</td>
<td>(.152)*</td>
<td>(.000)</td>
</tr>
<tr>
<td>(LM(2))</td>
<td>0.222</td>
<td>0.152</td>
<td>0.130</td>
<td>0.193</td>
<td>1.563</td>
</tr>
<tr>
<td></td>
<td>(.801)</td>
<td>(.859)</td>
<td>(.088)</td>
<td>(.824)</td>
<td>(.290)</td>
</tr>
<tr>
<td>(LM(3))</td>
<td>0.866</td>
<td>0.279</td>
<td>0.266</td>
<td>0.379</td>
<td>2.180</td>
</tr>
<tr>
<td></td>
<td>(.458)</td>
<td>(.840)</td>
<td>(.850)</td>
<td>(.769)</td>
<td>(.088)</td>
</tr>
<tr>
<td>(LM(4))</td>
<td>0.697</td>
<td>0.412</td>
<td>0.253</td>
<td>0.338</td>
<td>3.942</td>
</tr>
<tr>
<td></td>
<td>(.594)</td>
<td>(.800)</td>
<td>(.908)</td>
<td>(.852)</td>
<td>(.003)*</td>
</tr>
<tr>
<td>(FF – RESET(2))</td>
<td>3.956</td>
<td>4.727</td>
<td>2.028</td>
<td>2.064</td>
<td>0.453</td>
</tr>
<tr>
<td></td>
<td>(.047)*</td>
<td>(.030)*</td>
<td>(.155)</td>
<td>(.151)</td>
<td>(.501)</td>
</tr>
<tr>
<td>(HH – RESET(2))</td>
<td>5.607</td>
<td>4.835</td>
<td>3.641</td>
<td>3.147</td>
<td>11.377</td>
</tr>
<tr>
<td></td>
<td>(0.004)*</td>
<td>(0.008)*</td>
<td>(.027)*</td>
<td>(.044)*</td>
<td>(.000)*</td>
</tr>
<tr>
<td>(ARCH(1))</td>
<td>11.706</td>
<td>0.390</td>
<td>0.958</td>
<td>0.048</td>
<td>126.237</td>
</tr>
<tr>
<td></td>
<td>(.001)*</td>
<td>(.533)</td>
<td>(.328)</td>
<td>(.827)</td>
<td>(.000)*</td>
</tr>
<tr>
<td>(ARCH(4))</td>
<td>7.330</td>
<td>5.543</td>
<td>7.100</td>
<td>2.793</td>
<td>37.465</td>
</tr>
<tr>
<td></td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.025)*</td>
<td>(.000)*</td>
</tr>
<tr>
<td>(LB(16))</td>
<td>15.965</td>
<td>11.907</td>
<td>10.221</td>
<td>10.435</td>
<td>35.026</td>
</tr>
<tr>
<td></td>
<td>(.594)</td>
<td>(.750)</td>
<td>(.855)</td>
<td>(.852)</td>
<td>(.004)*</td>
</tr>
<tr>
<td>(ML(16))</td>
<td>69.040</td>
<td>39.330</td>
<td>44.912</td>
<td>31.982</td>
<td>354.025</td>
</tr>
<tr>
<td></td>
<td>(.000)*</td>
<td>(.001)*</td>
<td>(.000)*</td>
<td>(.010)*</td>
<td>(.000)*</td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the p-values
2 (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 3.7: Misspecification Tests for AR Models
Table 3.8: Estimation Results: Normal ARCH(5)

Next we provide the results from the GARCH type Heteroskedastic models. Table 3.8 provides a summary of the Maximum Likelihood estimation for AR(2)-ARCH(5) models for the exchange rate returns. For the Dow Jones returns we present the results of an AR(3)-ARCH(5) model. The relevant misspecification tests are reported in Table 3.9. As in the case of the AR models none of the conditional mean coefficients seem to be significant for the exchange rate returns whereas most of the conditional variance coefficients are indeed significant. The misspecification tests indicate significant departures from the Normality assumption as we expected and this seems to be mainly caused by excess kurtosis. Contrary to the AR results however, there seems to be no problems with heteroskedasticity and second order dependence. For the Dow Jones returns we observe that the conditional mean coefficients are significant. This model however exhibits problems with the
assumption of Normality, static heteroskedasticity and linear dependence. Contrary to the AR results there seems to be no problem with second order dependence. It is worth pointing out that an AR(3) -ARCH(9) model was also estimated for the Dow Jones returns. The ARCH parameters in the conditional variance were significant even at the ninth lag. This indicates the problem of long lags shown by the ARCH type of model. To overcome this problem we estimate GARCH(1,1) models.

GARCH(1,1)

Results for the Normal GARCH(1,1) model are reported in Table 3.10. For the exchange rate returns we find that similar to the ARCH, the conditional mean coefficients are insignificant, while the conditional variance parameters are highly significant for this model. Most notably, the conditional variance estimates indicate the presence of unit roots in the case of the British Pound and the Dow Jones returns. This can be interpreted as long memory and in general implies the persistence of shocks to the conditional variance.
<table>
<thead>
<tr>
<th></th>
<th>GBP</th>
<th>DEM</th>
<th>FRF</th>
<th>CHF</th>
<th>DJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>-0.0002</td>
<td>0.00004</td>
<td>-0.0003</td>
<td>-0.0017</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>(.005)</td>
<td>(.005)</td>
<td>(.005)</td>
<td>(.006)</td>
<td>(.014)*</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.004</td>
<td>-0.027</td>
<td>-0.056</td>
<td>-0.013</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>(.040)</td>
<td>(.037)</td>
<td>(.039)</td>
<td>(.030)</td>
<td>(.019)</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.032</td>
<td>0.038</td>
<td>0.0674</td>
<td>0.064</td>
<td>0.0119</td>
</tr>
<tr>
<td></td>
<td>(.038)</td>
<td>(.038)</td>
<td>(.039)</td>
<td>(.038)</td>
<td>(.020)</td>
</tr>
<tr>
<td>$\hat{\beta}_3$</td>
<td>-0.042</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.019)*</td>
</tr>
<tr>
<td>$\hat{\alpha}_0$</td>
<td>0.00010</td>
<td>0.002</td>
<td>0.002</td>
<td>0.004</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(.0001)</td>
<td>(.002)</td>
<td>(.001)</td>
<td>(.002)</td>
<td>(.003)*</td>
</tr>
<tr>
<td>$\hat{\alpha}_1$</td>
<td>0.031</td>
<td>0.062</td>
<td>0.083</td>
<td>0.038</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>(.009)*</td>
<td>(.023)*</td>
<td>(.027)*</td>
<td>(.020)</td>
<td>(.007)*</td>
</tr>
<tr>
<td>$\hat{\gamma}_1$</td>
<td>0.964</td>
<td>0.860</td>
<td>0.826</td>
<td>0.835</td>
<td>0.954</td>
</tr>
<tr>
<td></td>
<td>(.010)*</td>
<td>(.066)*</td>
<td>(.066)*</td>
<td>(.090)*</td>
<td>(.009)</td>
</tr>
</tbody>
</table>

LogL

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>P-values for Misspecification Test Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS</td>
</tr>
<tr>
<td>DS</td>
</tr>
<tr>
<td>DK</td>
</tr>
<tr>
<td>$WHITE$</td>
</tr>
<tr>
<td>$LM(2)$</td>
</tr>
<tr>
<td>$LM(4)$</td>
</tr>
<tr>
<td>$LB(16)$</td>
</tr>
<tr>
<td>$ARCH(2)$</td>
</tr>
<tr>
<td>$ARCH(4)$</td>
</tr>
<tr>
<td>$ML(16)$</td>
</tr>
<tr>
<td>$ML(38)$</td>
</tr>
</tbody>
</table>

Note: (*) refers to the rejection of the null hypothesis at the 5% level of significance.

Table 3.10: Estimation Results and Misspecification Tests: Normal GARCH(1,1)
In terms of misspecifications, the Normal GARCH models suffer from excess kurtosis and skewness and thus violate the Normality assumption. The ML statistics suggest some dynamic misspecification in the case of the British pound, the Deutschemark and the French Franc. In some sense misspecifications are more pronounced here than in the Normal ARCH case. The results for Dow Jones returns indicate that only the third lag in the conditional mean is significant. In terms of misspecifications it seems that the GARCH(1,1) is performing better than the ARCH but still exhibits problems with Normality and static heteroskedasticity. Next we change the distribution assumption to Student’s t and estimate Bollerslev’s Student’s t GARCH (1987).

Student’s t GARCH

The estimated parameters and the relevant misspecification tests are shown in Table 3.11. The estimated conditional mean parameters are all insignificant as in the case of the Normal GARCH model. Note that the conditional mean estimates are similar in magnitude to the OLS, ARCH and GARCH estimates. Misspecification tests indicate that despite the adoption of the Student’s t distribution this formulation still suffers from skewness and excess kurtosis\(^2\). The next model based on the PR approach addresses these issues systematically.

\(^2\)Recall that excess kurtosis is an inherent feature of the Student’s t distribution.
<table>
<thead>
<tr>
<th></th>
<th>GBP</th>
<th>DEM</th>
<th>FRF</th>
<th>CHF</th>
<th>DJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>β₀</td>
<td>0.044</td>
<td>0.014</td>
<td>-0.017</td>
<td>-0.0005</td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td>(.043)</td>
<td>(.062)</td>
<td>(.099)</td>
<td>(.006)</td>
<td>(.013)*</td>
</tr>
<tr>
<td>β₁</td>
<td>-0.011</td>
<td>-0.024</td>
<td>-0.042</td>
<td>-0.002</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(.044)</td>
<td>(.035)</td>
<td>(.041)</td>
<td>(.031)</td>
<td>(.017)</td>
</tr>
<tr>
<td>β₂</td>
<td>0.035</td>
<td>0.075</td>
<td>0.072</td>
<td>0.069</td>
<td>-0.027</td>
</tr>
<tr>
<td></td>
<td>(.036)</td>
<td>(.037)*</td>
<td>(.038)</td>
<td>(.037)</td>
<td>(.017)</td>
</tr>
<tr>
<td>β₃</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.049</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(.017)*</td>
</tr>
<tr>
<td>α₀</td>
<td>0.029</td>
<td>0.165</td>
<td>0.172</td>
<td>0.003</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(.019)</td>
<td>(.100)</td>
<td>(.108)</td>
<td>(.002)</td>
<td>(.002)*</td>
</tr>
<tr>
<td>α₁</td>
<td>0.044</td>
<td>0.058</td>
<td>0.073</td>
<td>0.041</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(.015)*</td>
<td>(.023)*</td>
<td>(.029)*</td>
<td>(.021)</td>
<td>(.008)*</td>
</tr>
<tr>
<td>γ₁</td>
<td>0.939</td>
<td>0.872</td>
<td>0.850</td>
<td>0.866</td>
<td>0.956</td>
</tr>
<tr>
<td></td>
<td>(.021)*</td>
<td>(.056)*</td>
<td>(.067)*</td>
<td>(.074)*</td>
<td>(.009)*</td>
</tr>
<tr>
<td></td>
<td>(1.581)*</td>
<td>(2.803)*</td>
<td>(2.513)*</td>
<td>(2.702)*</td>
<td>(0.474)*</td>
</tr>
<tr>
<td>LogL</td>
<td>-839.625</td>
<td>-949.517</td>
<td>-927.142</td>
<td>729.81</td>
<td></td>
</tr>
</tbody>
</table>

P-values for Misspecification Test Statistics

<table>
<thead>
<tr>
<th></th>
<th>DAS</th>
<th>DS</th>
<th>DK</th>
<th>WHITE</th>
<th>AC(2)</th>
<th>AC(4)</th>
<th>LB(16)</th>
<th>ARCH(2)</th>
<th>ARCH(4)</th>
<th>ML(16)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(.000)*</td>
</tr>
<tr>
<td></td>
<td>(.000)*</td>
<td>(.028)*</td>
<td>(.003)*</td>
<td>(.200)</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
</tr>
<tr>
<td></td>
<td>(.000)*</td>
</tr>
<tr>
<td></td>
<td>(.734)</td>
<td>(.554)</td>
<td>(.333)</td>
<td>(.468)</td>
<td>(.754)</td>
<td>(.976)</td>
<td>(.656)</td>
<td>(.789)</td>
<td>(.703)</td>
<td>(.987)</td>
</tr>
<tr>
<td></td>
<td>(.794)</td>
<td>(.976)</td>
<td>(.960)</td>
<td>(.656)</td>
<td>(.789)</td>
<td>(.999)</td>
<td>(.932)</td>
<td>(.703)</td>
<td>(.847)</td>
<td>(.987)</td>
</tr>
<tr>
<td></td>
<td>(.789)</td>
<td>(.999)</td>
<td>(.993)</td>
<td>(.921)</td>
<td>(.989)</td>
<td>(.847)</td>
<td>(.916)</td>
<td>(.755)</td>
<td>(.366)</td>
<td>(.560)</td>
</tr>
<tr>
<td></td>
<td>(.703)</td>
<td>(.847)</td>
<td>(.898)</td>
<td>(.916)</td>
<td>(.863)</td>
<td>(.344)</td>
<td>(.372)</td>
<td>(.693)</td>
<td>(.344)</td>
<td>(.560)</td>
</tr>
<tr>
<td></td>
<td>(.755)</td>
<td>(.366)</td>
<td>(.325)</td>
<td>(.245)</td>
<td>(.693)</td>
<td>(.344)</td>
<td>(.372)</td>
<td>(.693)</td>
<td>(.344)</td>
<td>(.560)</td>
</tr>
<tr>
<td></td>
<td>(.755)</td>
<td>(.366)</td>
<td>(.325)</td>
<td>(.245)</td>
<td>(.693)</td>
<td>(.344)</td>
<td>(.372)</td>
<td>(.693)</td>
<td>(.344)</td>
<td>(.560)</td>
</tr>
</tbody>
</table>

Note:
1. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 3.11: Estimation Results and Misspecification Tests: Student’s t GARCH
Student’s t Autoregressive models with dynamic heteroskedasticity

The probabilistic features of the data in hand, point to the direction of a Student’s t Autoregressive model as a convenient framework for analyzing both the temporal dependence and the leptokurtosis. We now provide a formal illustration of the PR methodology by presenting the results from this model in Table 3.12. Note that the misspecification tests presented in Table 3.12 are based on the weighted residuals\(^3\) proposed by Spanos (1990).

A STAR(2,2,9) model was found to be statistically adequate for the Deutschemark and the Swiss Franc, while a STAR(2,2,8) was required for the French Franc. The British Pound was best described by a STAR(2,2,5). To get a statistically adequate model for the British Pound we “dummy” the observation for “Black Wednesday”. It is also interesting to note that the estimates of the conditional mean differ in magnitude from those obtained using the OLS, ARCH, and the Normal GARCH specifications. However they are much closer to the Student’s t GARCH. This can perhaps be explained by the fact that the data looks much closer to the Student’s t distribution rather than the Normal. For the Dow Jones a STAR(3,3,4) was found to be statistically adequate. Compared to the Normal GARCH we observe that misspecification tests suggest no problems with static heteroskedasticity in this case.

\(^3\)The weighted residuals are defined as \(\hat{u}_t \frac{\hat{\omega}_t}{\hat{\omega}_t} - \hat{\omega}_t \hat{\epsilon}_t\), where \(\hat{u}_t = y_t - \hat{\beta}_0 + \sum_{i=1}^{l} \hat{\beta}_i y_{t-i}\), and \(\hat{\epsilon}_t \sim St(0, 1; \nu)\) is a simulated standard i.i.d. Student’s t series. These residuals are a modification of the usual (Pearson) residuals, where the additional term purports to account for the non-linear effects of the conditional variance on \(y_t\).
<table>
<thead>
<tr>
<th></th>
<th>GBP((\nu = 5))</th>
<th>DEM((\nu = 9))</th>
<th>FRF((\nu = 8))</th>
<th>CHF((\nu = 9))</th>
<th>DJ((\nu = 4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_1)</td>
<td>0.0500</td>
<td>-0.0070</td>
<td>-0.0199</td>
<td>0.0074</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(.026)</td>
<td>(.0411)</td>
<td>(.043)</td>
<td>(.037)</td>
<td>(.023)</td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>0.0524</td>
<td>0.0731</td>
<td>0.0755</td>
<td>0.0702</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td>(.0391)</td>
<td>(.0404)</td>
<td>(.039)</td>
<td>(.039)</td>
<td>(.034)</td>
</tr>
<tr>
<td>(\hat{\beta}_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.052*</td>
</tr>
<tr>
<td>q0</td>
<td>0.1970</td>
<td>0.1096</td>
<td>0.1235</td>
<td>0.1092</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>(.012)*</td>
<td>(.006)*</td>
<td>(.007)*</td>
<td>(.006)*</td>
<td>(.005)*</td>
</tr>
<tr>
<td>q1</td>
<td>0.002</td>
<td>0.0017</td>
<td>0.004</td>
<td>-0.00068</td>
<td>-0.007</td>
</tr>
<tr>
<td></td>
<td>(.006)*</td>
<td>(.004)</td>
<td>(.005)</td>
<td>(.005)</td>
<td>(.005)</td>
</tr>
<tr>
<td>q2</td>
<td>-0.0117</td>
<td>-0.0097</td>
<td>-0.0109</td>
<td>-0.0093</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>(.008)</td>
<td>(.005)*</td>
<td>(.005)*</td>
<td>(.005)*</td>
<td>(.005)</td>
</tr>
<tr>
<td>q3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.006</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>0.9527</td>
<td>1.6073</td>
<td>1.451</td>
<td>0.485</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.061)*</td>
<td>(.094)*</td>
<td>(.086)*</td>
<td>(.029)*</td>
<td></td>
</tr>
<tr>
<td>LogL</td>
<td>-1.396</td>
<td>-1.379</td>
<td>-930</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P-values for Misspecification Test Statistics

<table>
<thead>
<tr>
<th>Test Method</th>
<th>GBP((\nu = 5))</th>
<th>DEM((\nu = 9))</th>
<th>FRF((\nu = 8))</th>
<th>CHF((\nu = 9))</th>
<th>DJ((\nu = 4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS</td>
<td>(.000)*</td>
<td>(.414)</td>
<td>(.066)</td>
<td>(.40)</td>
<td>(.021)*</td>
</tr>
<tr>
<td>DK</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
<td>(.000)*</td>
</tr>
<tr>
<td>WHITE</td>
<td>(.201)</td>
<td>(.800)</td>
<td>(.180)</td>
<td>(.280)</td>
<td>(.944)</td>
</tr>
<tr>
<td>LM(2)</td>
<td>(.345)</td>
<td>(.860)</td>
<td>(.549)</td>
<td>(.600)</td>
<td>(.668)</td>
</tr>
<tr>
<td>LM(4)</td>
<td>(.431)</td>
<td>(.955)</td>
<td>(.534)</td>
<td>(.336)</td>
<td>(.298)</td>
</tr>
<tr>
<td>LB(16)</td>
<td>(.500)</td>
<td>(.970)</td>
<td>(.408)</td>
<td>(.740)</td>
<td>(.710)</td>
</tr>
<tr>
<td>ARCH(2)</td>
<td>(.433)</td>
<td>(.607)</td>
<td>(.640)</td>
<td>(.580)</td>
<td>(.302)</td>
</tr>
<tr>
<td>ARCH(4)</td>
<td>(.500)</td>
<td>(.565)</td>
<td>(.650)</td>
<td>(.745)</td>
<td>(.286)</td>
</tr>
<tr>
<td>ML(26)</td>
<td>(.450)</td>
<td>(.987)</td>
<td>(.720)</td>
<td>(.730)</td>
<td>(.292)</td>
</tr>
<tr>
<td>ML(38)</td>
<td>(.54)</td>
<td>(.640)</td>
<td>(.80)</td>
<td>(.760)</td>
<td>(.757)</td>
</tr>
</tbody>
</table>

Note: (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 3.12: Estimation Results and Misspecification Tests: Student’s t AR Models
3.5 Conclusion

In this chapter we illustrate the use of graphical techniques for identifying chance regularity patterns in the data and guiding us to a valid specification for exchange rate volatility. In view of the preliminary data analysis, Normality was rejected as being inappropriate for this data. Also the presence of second order dependence and leptokurtosis suggested that the Student’s t distribution was likely to be more appropriate. This gave rise to the Student’s t autoregressive formulation for modeling speculative prices which directly takes into account the nature of the data. An important aspect of the graphical techniques is the creative use of the P-P plots which provide a reasonably good approximation for the actual degrees of freedom involved.

The empirical analysis of this chapter shows that the Student’s t Autoregressive model provides a parsimonious account of the probabilistic features of the exchange rate data. Furthermore, misspecification testing reveals that the Student’s t AR specification outperforms the GARCH type formulations on statistical adequacy grounds. Estimation results suggest that there are substantial similarities in the movements of European exchange rate returns which indicate the necessity of the multivariate framework. Moreover the well specified univariate volatility models seem to share similar degrees of freedom thus allowing us to explore the possibility of the Student’s t VAR model.

Finally this chapter illustrates that the PR approach provides a systematic technique for formulating well specified models. Its comprehensive toolkit consisting of graphical techniques and the systematic reduction leads to an internally consistent statistical model. This gives us confidence that we can extend the univariate Student’s t AR formulation to the multivariate framework without having to resort to ad hoc restrictions and contradictory assumptions.
Chapter 4

Degrees of Freedom, Sample Kurtosis and the Student’s t GARCH Model

In this chapter we make a digression from the central theme of the dissertation — modeling volatility — to examine certain interesting side issues. As shown in Chapter 2 there is plenty of evidence in the literature that points to leptokurtosis and the presence of second order dependence in economic and financial data. Using plots of financial data, in Chapter 3, we find that the Student’s t distribution provides a better description of this type of data.

Econometric modeling based on the Student’s t distribution introduces an additional parameter — the degree of freedom parameter, which measures the extent of leptokurtosis in the data. One can also interpret this as a measure of the extent of departure from the Normal distribution. Two questions naturally arise at this stage in the context of the Student’s t distribution. The first one relates to using the sample kurtosis coefficient for determining the appropriate degree of freedom parameter. The second question is concerned with the reliability of the estimated degree of freedom parameter from Bollerslev’s (1987) Student’s t GARCH model. In this chapter a simulation study was performed to investigate these questions.

In the next section we describe the design of the simulation set up. Section 4.2 presents the analysis of results. The final section has some concluding remarks.
4.1 Simulation Set Up

We begin by providing a formal description of the two questions of interest. Next we describe the simulation design to study these questions.

4.1.1 Theoretical Questions

The sample kurtosis coefficient defined as \(\alpha_4 = 3 + \frac{6}{\nu - 4} \) provides one way of choosing the degrees of freedom parameter \(\nu \) for the Student’s \(t \) distribution. Despite its popularity, the sample kurtosis coefficient – the standardized fourth central moment has been criticized a lot in the in the statistics literature as a “vague concept” (Mosteller and Tuckey, 1977). Also Ballanda and MacGillivray (1988) point out that “although moments play an important role in statistical inference they are very poor indicators of distributional shape”. Given these criticisms it is not apparent that the kurtosis coefficient is a useful way to compute the implied degrees of freedom. Hence we use a simulation study to investigate the sampling distribution of the kurtosis coefficient and the sampling distribution of the implied degrees of freedom parameter.

The second objective of this simulation study is to examine the reliability of the estimated degrees of freedom parameter from the Student’s \(t \) GARCH model. Bollerslev (1987) introduced the Student’s \(t \) GARCH model by suggesting the following distribution of the error term

\[
f(u_t/Y_{t-1}^p; \theta_1) = \frac{\Gamma \left[\frac{1}{2} (\nu + 1) \right]}{\pi^{1/2} \Gamma \left[\frac{1}{2} \nu \right]} [(\nu - 2) h_t^2]^{-\frac{1}{2}} \left[1 + \frac{u_t^2}{(\nu - 2) h_t^2} \right]^{-\frac{1}{2}(\nu - 1)}
\]

Recall from Chapter 2 that \(h_t^2 \) is the GARCH formulation of the conditional variance and can be written as follows:

\[
h_t^2 = \omega + \sum_{i=1}^{p} a_i u_{t-i}^2 + \sum_{j=1}^{q} \gamma_j h_{t-j}^2, \quad p \geq 1, \quad q \geq 1
\]

where the parameter restrictions \(\omega > 0, \ a_i \geq 0, \ \gamma_j \geq 0 \) ensure that the conditional variance is always positive. As before \(\sum_{i=1}^{p} a_i + \sum_{j=1}^{q} \gamma_j < 1 \) is required for the convergence of the conditional variance.
McGuirk et al. (1993) point out that the above distribution in equation (4.1) can be obtained by substituting the conditional variance h_t^2 in the functional form of the marginal Student’s t distribution and re-arranging the scale parameter. This would be indeed the correct strategy for the Normal distribution, since one does not have to be concerned about the degree of freedom parameter. In the case of the Student’s t distribution however, the degrees of freedom in the conditional distribution change depending on the number of the conditioning variables. In fact McGuirk et al. (1993) further show that if we derive the conditional distribution from the joint distribution of the observables $f(y_t, y_{t-1},...,y_{t-p}; \psi)$ we get the expression shown in equation (4.3) below:

$$f(u_t/Y_{t-1}^p; \theta_2) = \frac{\Gamma \left[\frac{1}{2}(\nu + p + 1) \right]}{\pi \sigma^2 \Gamma \left[\frac{\nu}{2} + p \right]} \left[\nu \sigma^2 h_t^2 \right]^{-\frac{1}{2}} \left[1 + \frac{u_t^2}{\nu \sigma^2 h_t^2} \right]^{-\frac{1}{2}(\nu+p+1)}$$

(4.3)

Note that the parameter in the gamma function in the two equations are different. More importantly however, we observe that σ^2 does not appear in equation (4.1). This suggests that estimation of the degree of freedom parameter, ν from the Student’s t GARCH model ala Bollerslev (1987), that ignores σ^2 will give an incorrect mixture of both ν and σ^2. To investigate this issue further we allow σ^2 to vary and examine its effect on all estimated parameters from the Student’s t GARCH model.

4.1.2 Data Generation

This simulation study uses a program developed by Paczkowski (1997)\(^1\). The data for this simulation were generated in the following way. First, a raw series of Student’s t random numbers with mean 0 and variance 1 is generated. The degree of freedom parameter was allowed to vary in different simulations according to the needs of the study. The true structure of the data is given by:

$$Y_t^1 \sim \mathcal{S}_{t_t} \left(1_t \mu, \Sigma_t^1, \nu \right), \quad t = 1, \ldots, T,$$

\(^1\)By running a series of Monte Carlo experiments Paczkowski (1997) investigates the usefulness of the Student’s t regression models for estimation and testing, and their ability to capture dynamic heteroskedasticity.

72
where $Y^T_t = (Y_1, Y_2, \ldots, Y_t)'$, $\mu = 0$, and $(\Sigma^1_t)^{-1}$ is

$$
(\Sigma^1_t)^{-1} = \begin{pmatrix}
1 & -0.4 & -0.2 \\
-0.4 & 1.16 & -0.32 & -0.2 \\
-0.2 & -0.32 & 1.20 & -0.32 & -0.2 \\
-0.2 & -0.32 & 1.20 & -0.32 & -0.2 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
-0.2 & -0.32 & 1.20 & -0.32 & -0.20 \\
-0.2 & -0.32 & 1.16 & -0.4 & \vdots \\
-0.2 & -0.4 & 1 & \vdots & \vdots \\
\end{pmatrix}
$$

(4.4)

Using $\mu = 0$ and equation (4.4) the remaining parameters can be computed as follows:

$$
\beta = \begin{pmatrix} \beta_2 \\ \beta_1 \end{pmatrix} = \begin{pmatrix} 0.2 \\ 0.4 \end{pmatrix}, \quad \sigma^2 = 1, \quad \beta_0 = 0.
$$

Next, we use the Cholesky factorization as shown below to impose the necessary dependence structure on the generated data.

$$
Y^T_T = \text{chol} \left(\frac{\nu}{\nu - 2} \Sigma^1_T \right) J
$$

(4.5)

where J is the series of raw Student’s t numbers and Σ^1_T is the scale matrix, and $\text{chol}(.)$ refers to the Cholesky factorization.

The raw Student’s t numbers were generated using the algorithm proposed by Dagpunar (1988). This algorithm uses numbers from a uniform distribution as an input, allowing the user to control the seed. The following procedure was chosen in order to enable easy reproduction of the data from any given run. First the initial seed was set to $2^{11} - 1$ and series of Student’s t numbers were generated. The generated data were tested for skewness and kurtosis using tolerance levels used in Paczkowski (1997). Only samples that met the standards were used in the simulation study.
Maximum allowable skewness was set to ±0.1. The tolerance for kurtosis was set to ±0.5 around the value implied by the degree of freedom parameter according to the relationship shown below:

\[\alpha_4 = 3 + \frac{6}{\nu - 4}; \nu > 4 \]

(4.6)

Note that for \(\nu = 4 \) the above relationship breaks down and the allowable kurtosis range was set to 7.5–8.5.

To study the questions of interest discussed in Section 4.1.1 we consider a number of different scenarios. Sample sizes \((n)\) of 50, 100, 500 and 1000 were chosen since financial data series can be available annually, monthly, weekly or daily. Three different degrees of freedom \(\nu = 4, 6,\) and 8 were used in this study. The true value of \(\alpha_4\) is 6 when \(\nu = 6\) and 4.5 when \(\nu = 8\). For \(\nu = 4\) \(\alpha_4\) is undefined. Most financial data are leptokurtic and thus can be described by degrees of freedom in the range of 4–8. Also as \(\nu\) increases above 8 the distribution looks much closer to the Normal. Hence it would be uninteresting to consider larger degrees of freedom. For each combination of the sample size and \(\nu\), 1000 data sets were generated. Also for sample size 500 we allowed \(\sigma^2\) to vary. It took the values 1, 0.25 and 4. In each of these instances the value of \(\sigma^2\) affects only the scale matrix \(\Sigma_t^1\), leaving the other parameters unchanged. For \(\sigma^2 = 1, (\Sigma_t^1)^{-1}\) takes the values given in equation (4.3). In general for \(\sigma^2 = k, k > 0\), the inverse of the scale matrix in equation (4.3) is multiplied by the factor of \(\frac{1}{k}\).

The computer code for this simulation exercise was written in GAUSS 4.0 and the Student’s \(t\) GARCH model was estimated using the FANPAC toolbox which is part of the GAUSS package.

4.2 Results

In this section we present the results of the simulation study. In the first part we present the results for the sample kurtosis coefficient \(\alpha_4\) and the implied degrees of freedom parameter (\textit{inu}) computed using \(\alpha_4\). In the second part we focus on the degrees of freedom parameter as estimated in Bollerslev’s (1987) model. By allowing \(\sigma^2\) to take different values we examine its impact on all estimated parameters.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Sample size</th>
<th>Mean</th>
<th>Empirical s.e</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha}_4$</td>
<td>$\nu = 4$</td>
<td>50</td>
<td>5.2981</td>
<td>.9064</td>
<td>.4637</td>
<td>3.2697</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>5.5234</td>
<td>.9170</td>
<td>.3247</td>
<td>3.0346</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>5.6626</td>
<td>.6454</td>
<td>.6828</td>
<td>4.3656</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>5.6577</td>
<td>.5183</td>
<td>.6625</td>
<td>4.4543</td>
</tr>
<tr>
<td></td>
<td>$\nu = 6$</td>
<td>50</td>
<td>4.3069</td>
<td>.7529</td>
<td>.5666</td>
<td>3.7797</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>4.4364</td>
<td>.7100</td>
<td>.5382</td>
<td>3.7072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>4.5507</td>
<td>.4824</td>
<td>.5406</td>
<td>3.6502</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>4.5317</td>
<td>.3960</td>
<td>.5921</td>
<td>3.3306</td>
</tr>
<tr>
<td></td>
<td>$\nu = 8$</td>
<td>50</td>
<td>3.6416</td>
<td>.6341</td>
<td>.4985</td>
<td>3.2237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>3.7211</td>
<td>.5630</td>
<td>.6295</td>
<td>3.7385</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>3.7202</td>
<td>.3554</td>
<td>.7278</td>
<td>4.0377</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>3.7350</td>
<td>.2914</td>
<td>.7100</td>
<td>4.0557</td>
</tr>
<tr>
<td>inu</td>
<td>$\nu = 4$</td>
<td>50</td>
<td>6.7046</td>
<td>10.0026</td>
<td>-20.6339</td>
<td>458.6991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>6.8047</td>
<td>2.0034</td>
<td>2.8237</td>
<td>95.6585</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>6.3920</td>
<td>.6194</td>
<td>1.3633</td>
<td>7.1254</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>6.3441</td>
<td>.4664</td>
<td>.9253</td>
<td>5.5797</td>
</tr>
<tr>
<td></td>
<td>$\nu = 6$</td>
<td>50</td>
<td>10.3436</td>
<td>21.9843</td>
<td>-2.979</td>
<td>74.1571</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>14.6619</td>
<td>145.1031</td>
<td>30.0049</td>
<td>929.4971</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>8.3120</td>
<td>1.6467</td>
<td>2.4282</td>
<td>14.7343</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1000</td>
<td>8.1886</td>
<td>1.1193</td>
<td>.9077</td>
<td>4.2954</td>
</tr>
<tr>
<td></td>
<td>$\nu = 8$</td>
<td>50</td>
<td>-1.4269</td>
<td>314.2906</td>
<td>-22.8729</td>
<td>631.6351</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>992.2762</td>
<td>30878</td>
<td>31.5739</td>
<td>997.9412</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>15.5592</td>
<td>26.7089</td>
<td>6.0128</td>
<td>316.9994</td>
</tr>
</tbody>
</table>

Table 4.1: Descriptive Statistics for Sample Kurtosis and inu

4.2.1 Estimates of α_4 and the IMPLIED Degrees of Freedom

In Table 4.1 we report descriptive statistics for the empirical distribution of the estimates. We observe that the sample kurtosis coefficient, α_4 is relatively stable around 5.6 for $\nu = 4$. Similarly it is stable around 4.5 for $\nu = 5$, and around 3.7 for $\nu = 6$. Also note that as ν increases, α_4 decreases as expected. However, once we use α_4 to derive the implied degrees of freedom (inu), we find some interesting features. In all three cases ($\nu = 4, 6, 8$) the implied degrees of freedom consistently exceeds the true ones. For $\nu = 4$, inu is around 6 (starting at 6.7 for sample size of 50 and going down to 6.3 for sample size of 1000). Also note that the standard error decreases dramatically from a value of 10 ($n = 50$) to a value of 0.46 ($n = 1000$). For $\nu = 6$, at sample size 50, $inu = 10$, but
stabilizes around 8 for sample sizes 500 and 1000. Interestingly for sample size 100 it jumps to 14 and the standard error is high as well. For \(\nu = 8 \) we find evidence of erratic behavior especially for sample sizes of 50 and 100 where \(inu = -1.4 \) and \(inu = 992 \) respectively. As the sample size increases the implied degrees of freedom parameter decreases to 13 for \(n = 1000 \) and possibly could decrease even more for sample sizes beyond 1000. This erratic behavior at small sample sizes can largely be explained by the fact that a few bad draws can affect the (mean) estimates for small sample sizes. Also as mentioned before, for \(\nu = 6 \) and \(\nu = 8 \), we find that \(\alpha_4 \) is around 4 and 3 respectively. Recall that \(inu = 4 + \frac{6}{\alpha_4-3} \). Hence for \(\nu = 6 \) and \(\nu = 8 \) there is a higher probability of getting unusually large values for \(inu \). This can explain the erratic behavior observed above. Overall, the results suggest that the sample kurtosis coefficient is not a good measure of the true degrees of freedom.

4.2.2 Estimates of the Student’s t GARCH parameters

Table 4.2 provides descriptive statistics for the empirical distribution of the degree of freedom parameter (\(nu \)), estimated by Bollerslev’s (1987) model. The results suggest that the Student’s t GARCH model consistently overestimates the true degree of freedom parameter. For instance when \(\nu = 4 \), the estimated value is around 8. Also note that for small sample sizes the empirical standard error of the parameters is larger than their estimated value. Even if sample size increases the standard error is quite large giving rise to imprecise estimates. For \(\nu = 4 \) estimated \(nu \) is stable around the value of 8. For \(\nu = 6 \) and \(\nu = 8 \) as the sample size increases we observe a downward trend towards the true value of \(\nu \), although the final estimates are nowhere close to it.

Next we present Table 4.3 which shows how the estimates of the conditional variance from the Student’s t GARCH model vary for different values of \(\sigma^2 \). We chose to use a sample size of 500 in this case to avoid any problems with small sample sizes. Recall that \(\sigma^2 \) is not a free parameter to be estimated in Bollerslev’s (1987) formulation (see equation 4.1). Therefore we can interpret this as the \(\sigma^2 = 1 \) case, that serves as the benchmark. Interestingly, we find that the only parameter which varies with \(\sigma^2 \) is \(\omega \) – the constant term in the conditional variance equation. Moreover, we observe that there is an approximate relationship between \(\sigma^2 \) and \(\omega \). For example when \(\nu = 4 \) and \(\sigma^2 = 4 \) the estimate of \(\omega \) is 4.5016 which is roughly four times the value of \(\omega \) when \(\sigma^2 = 1 \). This
The relationship holds for $\nu = 6, 8$ (see Table 4.4). We can also see from Table 4.3 that the estimated degree of freedom (ν), and the GARCH and ARCH parameters in the conditional variance remain unchanged as σ^2 varies.

These results suggest that the effect of the σ^2 (the missing parameter) in Bollerslev’s formulation is fully absorbed by the constant in the conditional variance equation.

We also present Normal kernel density estimates of the empirical distribution of ν for various sample sizes and $\nu = 6$ in Figures 4–1– 4-6. Graphs for $\nu = 4$ and $\nu = 8$ exhibit similar patterns. The dashed lines in the pictures represent the contour of the Normal density, with the same mean and variance as the data whose distribution is shown in the graph. The pictures in Figure 4–1 – 4-6 indicate that the distribution is skewed to the left and the mode and the mean are far from the true value ($\nu = 6$). The graphs also show strong evidence of leptokurticity.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Sample size</th>
<th>Mean</th>
<th>Empirical s.e</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu = 4$</td>
<td>50</td>
<td>7.8161</td>
<td>12.4646</td>
<td>5.2276</td>
<td>31.7047</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>8.2640</td>
<td>10.9403</td>
<td>5.3855</td>
<td>35.1996</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>7.9918</td>
<td>2.7387</td>
<td>3.0789</td>
<td>22.0161</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>8.1036</td>
<td>1.8096</td>
<td>1.8848</td>
<td>9.4895</td>
<td></td>
</tr>
<tr>
<td>$\nu = 6$</td>
<td>50</td>
<td>13.0683</td>
<td>20.7030</td>
<td>3.0020</td>
<td>10.9406</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>12.2761</td>
<td>16.1543</td>
<td>3.5979</td>
<td>15.7681</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>10.9033</td>
<td>4.1220</td>
<td>1.9758</td>
<td>8.9713</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>11.0866</td>
<td>2.8603</td>
<td>1.2313</td>
<td>5.0127</td>
<td></td>
</tr>
<tr>
<td>$\nu = 8$</td>
<td>50</td>
<td>20.7026</td>
<td>27.1638</td>
<td>1.8269</td>
<td>4.9891</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>20.3718</td>
<td>24.1092</td>
<td>2.0239</td>
<td>6.0065</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>17.7961</td>
<td>10.3940</td>
<td>2.9042</td>
<td>16.7992</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>15.4479</td>
<td>4.5214</td>
<td>1.9255</td>
<td>13.8620</td>
<td></td>
</tr>
</tbody>
</table>

Table 4.2: Descriptive Statistics for Estimated ν
<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>σ^2</th>
<th>Mean</th>
<th>Empirical s.e</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>$\nu = 4$</td>
<td>1</td>
<td>1.1164</td>
<td>.3846</td>
<td>.4161</td>
<td>3.1568</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>.2778</td>
<td>.0959</td>
<td>.3616</td>
<td>3.0933</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4.5016</td>
<td>1.5929</td>
<td>.4569</td>
<td>3.1791</td>
</tr>
<tr>
<td>γ_1</td>
<td>$\nu = 4$</td>
<td>1</td>
<td>.2226</td>
<td>.2074</td>
<td>-.0394</td>
<td>2.8308</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>.2264</td>
<td>.2072</td>
<td>.0119</td>
<td>2.8227</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>.2196</td>
<td>.2121</td>
<td>-.0699</td>
<td>2.8588</td>
</tr>
<tr>
<td>a_1</td>
<td>$\nu = 4$</td>
<td>1</td>
<td>.2229</td>
<td>.0642</td>
<td>.3804</td>
<td>3.2621</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>.2219</td>
<td>.0642</td>
<td>.3653</td>
<td>3.1943</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>.2219</td>
<td>.0641</td>
<td>.3451</td>
<td>3.0918</td>
</tr>
</tbody>
</table>

Note:
1. γ_1 is the GARCH parameter, a_1 is the ARCH parameter and ω is the constant in the Student’s t GARCH model (Bollerslev, 1987)

Table 4.3: Descriptive Statistics for the Student’s t GARCH parameters, $n=500$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>σ^2</th>
<th>Mean</th>
<th>Empirical s.e</th>
<th>Skewness</th>
<th>Kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω</td>
<td>$\nu = 6$</td>
<td>1</td>
<td>.9111</td>
<td>.4027</td>
<td>.6434</td>
<td>4.0782</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>.2246</td>
<td>.0987</td>
<td>.5478</td>
<td>3.6875</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.6325</td>
<td>.1896</td>
<td>.5383</td>
<td>3.7684</td>
</tr>
<tr>
<td>ω</td>
<td>$\nu = 8$</td>
<td>1</td>
<td>.9728</td>
<td>.5244</td>
<td>.7333</td>
<td>3.2792</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.25</td>
<td>.2454</td>
<td>.1310</td>
<td>.7034</td>
<td>3.2997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>3.8037</td>
<td>2.0297</td>
<td>.6705</td>
<td>3.2348</td>
</tr>
</tbody>
</table>

Table 4.4: Descriptive Statistics for the constant in the Student’s t GARCH model, $n=500$
Figure 4-1: Kernel density for $nu, \nu = 6, \sigma^2 = 1, n = 50$

Figure 4-2: Kernel density for $nu, \nu = 6, \sigma^2 = 1, n = 100$
Figure 4-3: Kernel density for $nu, \nu = 6, \sigma^2 = 1, n = 500$

Figure 4-4: Kernel density for $nu, \nu = 6, \sigma^2 = 1, n = 1000$
Figure 4-5: Kernel density for $nu, \nu = 6, \sigma^2 = 0.25, n = 500$

Figure 4-6: Kernel density for $nu, \nu = 6, \sigma^2 = 4, n = 500$
4.3 Conclusion

In this chapter we investigate some interesting side questions relating to the degree of freedom parameter in the Student’s t distribution. In particular we have focused on: (i) the ability of the kurtosis coefficient to accurately capture the implied degrees of freedom and (ii) the ability of Student’s t GARCH model to estimate the true degree of freedom parameter accurately. With regard to the first question the simulation study reveals that the kurtosis coefficient provides a biased and inconsistent estimator of the degree of freedom parameter. With regard to the second question, our findings can be summarized as follows. First, the simulation results show that the Student’s t GARCH model provides a biased and inconsistent estimator of the degree of freedom parameter. More importantly however, when σ^2 is allowed to vary the constant term in the conditional variance equation is the only parameter that is affected. The conditional mean parameters along with the ARCH and GARCH coefficients and the degree of freedom parameter are not affected by varying σ^2.

82
Chapter 5

Student’s t Dynamic Linear Regression

Until now we have considered models of univariate volatility involving only the past history of the series itself to explain volatility. In fact Pagan (1996) claims that a purely statistical approach has dominated the univariate modeling of financial data. However, in recent years it has been pointed out in the literature that other exogenous variables might also be responsible for volatility. Granger (2002) suggests that “volume or perhaps daily trade would be interesting explanatory variables to include in a model of volatility particularly as both of these variables appear to be forecastable”. Along the same lines Engle and Patton (2001d) point out: “Of course no-one believes that financial asset prices evolve independently of the market around them, and so we expect that other variables may contain relevant information for the volatility of the series”. Evidence in this direction can be found in earlier papers by Engle et al. (1990b), Engle and Mezrich (1996), and Bollerslev and Melvin (1994b). Glosten, Jagannathan and Runkle (1993) also find evidence that indicator variables can help to explain dynamic conditional volatility of equity returns. Moreover deterministic events such as macroeconomic announcements and scheduled company announcements are also believed to have an influence on volatility. For example Andersen and Bollerslev (1998) find that volatility of the Deutschemark-Dollar exchange rate increases around the time of announcements of US macroeconomic data such as the quarterly GDP and the Producer Price Index. Although the literature has recognized the importance of exogenous variables in explaining volatility, very little
work has been done to explore this issue. This is primarily because the GARCH framework models volatility through the error term making it hard to justify the inclusion of other contemporaneous variables.

The primary objective of this chapter is to develop a Student’s t Dynamic Linear Regression (DLR) model for univariate volatility in terms of the volatility of the series itself, as well as other relevant exogenous variables. We illustrate this approach by using two different exchange rate returns data sets and a data set which consists of daily returns of the Dow Jones Industrial Price index and the Three-month treasury bill rate.

In the next section we introduce some notation and develop the specification of the Student’s t DLR model. We also discuss the maximum likelihood estimation of this model. In Section 5.2 we provide the empirical results. The estimated Student’s t DLR model is compared to the traditional Normal DLR, the Student’s t AR and the Normal GARCH−X (which allows for exogenous variables in the conditional variance). Finally in Section 5.3 we conclude by summarizing the empirical results and their implications.

5.1 Student’s t DLR Model

5.1.1 Specification

In the context of the Probabilistic Reduction approach, the operational Student’s t DLR model is specified by imposing certain reduction assumptions on the joint distribution of the vector stochastic process $\{Z_t, t \in T\}$ where $Z_t \equiv (y_t, x_t)'$. Here y_t is the dependent variable and x_t is a $(k \times 1)$ vector of exogenous variables. The reduction assumptions are derived from the probabilistic features of the underlying stochastic process and as before can be summarized into three categories: Distributional assumption, Dependence and (time) Heterogeneity assumptions. For the Student’s t DLR model the reduction assumptions are given by:

1. **Distribution**: Student’s t

2. **Dependence**: Markov of order p

3. **Heterogeneity**: Second Order Stationarity
Using these assumptions the reduction can be performed in the following way:

\[D(Z_1, Z_2, Z_3, \ldots Z_T; \psi(t)) = D_1(Z_1; \varphi_1) \prod_{t=2}^{T} D(Z_t | Z_{t-1}, Z_{t-2}, \ldots Z_1; \varphi(t)) \]

\[\overset{M(p)}{=} D(Z_p; \varphi_1(t)) \prod_{t=p+1}^{T} D(Z_t | Z_{t-1}, \ldots, Z_{t-p}; \varphi_2(t)) \]

\[SS = D(Z_p; \varphi_1) \prod_{t=p+1}^{T} D(Z_t | Z_{t-p}^{t-1}; \varphi_2) \]

\[= D(Z_p; \varphi_1) \prod_{t=p+1}^{T} D(y_t | Z_{t-1}^{t-p} x_t; \theta_1) D(x_t | Z_{t-p}^{t-1}; \theta_2) \]

where \(Z_{t-p}^{t-1} := (Z_{t-1}, Z_{t-2}, \ldots, Z_{t-p}) \) denotes the past history of \(Z_t \) and \(Z_p \equiv (Z_1, \ldots, Z_p) \) denotes the initial conditions. Also \(\psi(t), \varphi_1, \) and \(\varphi_2 \) denote the parameters in the joint, marginal and conditional distributions respectively. The first equality shows that the joint distribution can be decomposed into a product of \((T-1)\) conditional distributions and one marginal distribution. The assumption of Markov\((p)\) changes the conditioning information set to \((Z_{t-1}, Z_{t-2}, \ldots, Z_{t-p})\). This allows us to have an information set that can be handled more easily since it depends only on the past \(p \) periods. The third equality shows that under the assumption of second order stationarity, the statistical parameters \(\varphi_1 \) and \(\varphi_2 \) are time invariant. This leads to a reduction in the number of unknown parameters. In the last equality we simply decompose \(Z_t \) into \((y_t, x'_t)'\). Taken together these assumptions allow us to express the Student’s \(t \) DLR model in terms of the first two moments as shown in the next page.
The Student’s t Dynamic Linear Regression Model

[A] The conditional mean takes the form:

$$y_t = \beta_0' x_t + \sum_{i=1}^{p} \alpha_i y_{t-i} + \sum_{i=1}^{p} \beta_i' x_{t-i} + u_t, \; t \in \mathbb{T}$$ \hfill (5.2)

where $u_t = y_t - E(y_t | \mathfrak{F}_{t-1})$ is distributed $St(0, h_t^2; \nu)$, and $\mathfrak{F}_{t-1} = \{\sigma(Y^0_{t-1}), X^0_t = x^0_t\}$.

$Y^0_{t-1} \equiv (y_{t-1}, y_{t-2}, \ldots, y_1)$, and $X^0_t \equiv (x_t, x_{t-1}, \ldots, x_1)$.

[B] The conditional variance, h_t^2 is given by:

$$h_t^2 \equiv \left[\frac{\nu}{\nu + k_1 - 2} \right] \sigma^2 \left[1 + (X^*_t - M^*_t)' \Sigma_{22}^{-1} (X^*_t - M^*_t) \right]$$ \hfill (5.3)

where $X^*_t = (x'_t, y_{t-1}, \ldots, y_{t-p}, x'_{t-1}, \ldots, x'_{t-p})'$, $M^*_t = (\mu_x, \mu_y, 1_{t-p}, \mu_x 1_{t-p})'$, are both $(k_1 \times 1)$ vectors and $k_1 = k(p + 1) + p$ is the number of conditioning variables and Σ_{22} is the variance-covariance matrix of X^*_t.

The Student’s t DLR can be fully specified as shown in Table 5.1.
I. Statistical GM:
\[y_t = \beta_0' x_t + \sum_{i=1}^{p} \alpha_i y_{t-i} + \sum_{i=1}^{p} \beta_i' x_{t-i} + u_t, \quad t > p. \]

[1] \(D_t = \{ Z_{t-1}, X_t \} \) is the relevant conditioning information set with
\[\mu_t = E(y_t | \sigma(Y_{t-1}, X_t = x_t^0) = \beta_0' x_t + \sum_{i=1}^{p} \alpha_i y_{t-i} + \sum_{i=1}^{p} \beta_i' x_{t-i} : \] the systematic component,
and
\[u_t = y_t - E(y_t | \sigma(Y_{t-1}, X_t = x_t^0), X_t = x_t^0) : \] the non-systematic component.

[2] \(\theta^* := (\alpha_1, \alpha_2, \ldots, \alpha_p, \beta_0, \beta_1 \ldots, \beta_p, \sigma^2, \Sigma_{22}^{-1}) \), are the statistical parameters of interest.

[3] The parameters \(\alpha \equiv (\alpha_1, \alpha_2, \ldots, \alpha_p)' \) satisfy the restriction that all the roots of the polynomial
\((\chi^p - \sum_{i=1}^{p} \alpha_i \chi^{p-i}) = 0 \) are less than one in absolute value.

[4] No a priori restrictions on \(\theta^* := (\alpha_1, \alpha_2, \ldots, \alpha_p, \beta_0, \beta_1 \ldots, \beta_p, \sigma^2, \Sigma_{22}^{-1}) \).

[5] \(\text{Rank}(X^*) = k(p+1)+p \) for all the observable values of \(Y_{t-p}, \quad T > k(p+1)+p. \)

II. Probability model:
\[\Phi = \{ D(y_t | \sigma(Y_{t-1}, X_t = x_t^0; \theta^*), Z_t \in \mathbb{R}^m \}. \]

\[
\begin{cases}
\text{(i)} & D(y_t | \sigma(Y_{t-1}, X_t = x_t^0; \theta^*) \text{ is Student’s } t, \\
\text{(ii)} & E(y_t | \sigma(Y_{t-1}, X_t = x_t^0; \theta^*) = \beta^* X_t^* \text{ is linear in } X_t^*, \\
\text{(iii)} & Var(y_t | \sigma(Y_{t-1}, X_t = x_t^0) = \sigma^2 \left[1 + (X_t^* - M^*_t) \Sigma_{22}^{-1} (X_t^* - M^*_t) \right] \text{ is heteroskedastic.} \]
\end{cases}
\]

[7] The parameters \(\varphi \) are \(t \)-invariant.

III. Sampling model:
\[y_t \equiv (y_{p+1}, y_{p+2}, \ldots, y_T) \text{ is stationary asymptotically independent sample sequentially drawn from } D(y_t | \sigma(Z_{t-1}, X_t = x_t^0; \theta^*), \quad t = p + 1, p + 2, \ldots, T, \text{ respectively.} \]

Table 5.1: The PR Approach: Student’s \(t \) DLR Specification

It is also interesting to see how the reduction assumptions relate to the probabilistic assumptions of the Student’s \(t \) DLR model. Observe that in Table 5.2 the conditional mean is linear in the conditioning variables as in the case of Normal DLR model. (For details on the Normal DLR see Spanos (1986)). The assumption of Student’s \(t \) however leads to a conditional variance function which is different from that of the Normal DLR model. It accommodates both static and dynamic heteroskedasticity. In particular static heteroskedasticity enters the conditional variance specification through the presence of contemporaneous variables, and dynamic heteroskedasticity enters through the lags of the conditioning variables. We now discuss the estimation of this model.
Reduction Assumptions:
\{y_t, t \in T\}

Model Assumptions
\{(y_t | \sigma(Y_{t-1}^0), X_t^0 = x_t^0; \theta^*), t \in T\}

| Student’s t | → | \{ (i) \quad D(y_t | \sigma(Y_{t-1}^0), X_t^0 = x_t^0; \theta^*) \text{ is Student’s } t

(ii) \quad E(y_t | \sigma(Y_{t-1}^0), X_t^0 = x_t^0; \theta^*) = \beta^* X_t^* \text{ is linear in } X_t^*

(iii) \quad Cov(y_t | \sigma(Y_{t-1}^0), X_t^0 = x_t^0; \theta^*) = h_t^2 \text{ is heteroskedastic,} |

| Markov | → | \{(u_t | \sigma(Y_{t-1}^0), X_t^0 = x_t^0), t \in T\} \text{ is a martingale difference process} |

| Stationarity | → | The parameters } \theta^* := (\alpha_1, \alpha_2, \ldots, \alpha_p, \beta_0, \beta_1, \ldots, \beta_p, \sigma^2, \Sigma^{-1}) \text{ are } t\text{-invariant.} |

Table 5.2: Reduction and Probability Model Assumptions: Student’s t DLR

5.1.2 Maximum Likelihood Estimation

To estimate the Student’s t DLR model typically one should substitute the functional form of
\(D(y_t | Z_{t-1} X_t; \varphi_2) \) and \(D(X_t | Z_{t-1} X_t; \varphi_3) \) in equation (5.1) to obtain the likelihood function of the Student’s t DLR model. The logarithmic form of the likelihood function can then be differentiated to obtain the first order conditions. These can be solved to get the estimators of the parameters of interest. However, instead of following this approach we use an easier technique based on the reparametrization of the joint density. When \(Z_t \) is distributed multivariate Student’s t its density takes the form:

\[
D(Z_t) = \frac{\Gamma\left[\frac{1}{2}(\nu + k + 1)\right]}{(\pi \nu)^{\frac{k+1}{2}}} \left(\det \Sigma\right)^{-\frac{1}{2}} \left[1 + \frac{1}{\nu} (Z_t - \mu)\Sigma^{-1} (Z_t - \mu)\right]^{-\frac{1}{2}(\nu + k + 1)} \tag{5.4}
\]

Using results from Searle (1982 pg.258 and pg 260) the above equation can be rewritten as:

\[
D(Z_t) = \frac{\Gamma\left[\frac{1}{2}(\nu + k + 1)\right]}{(\pi \nu)^{\frac{k+1}{2}}} \sigma^2 (\det \Sigma_{22})^{-\frac{1}{2}} \left[1 + \frac{1}{\nu} (X_t - \mu_2)^\Sigma_{22}^{-1} (X_t - \mu_2) + \frac{1}{\nu \sigma^2} (y_t - \beta_0 - \beta' X_t)\right]^{-\frac{1}{2}(\nu + k + 1)} \tag{5.5}
\]

The advantage of this approach is that all the parameters of interest appear explicitly. The most important reason for adopting this approach however is that it facilitates the Student’s t DLR model in the case of Markov variance. By applying Searle’s results we can now write the
loglikelihood function as:

The Loglikelihood Function:

\[
\ln L(\theta; Z_1, Z_2, Z_3, ... Z_T) = T \ln \Gamma \left[\frac{1}{2} (\nu + k1 + 1) \right] - T \ln (\pi \nu) - TT \left[\frac{1}{2} (\nu) \right] + \frac{1}{2} T \ln (\det (L' L)) - \frac{1}{2} T \ln (\sigma^2) - \frac{1}{2} (\nu + k1 + 1) \sum_{t=2}^{T} \ln \det(\gamma_t)
\]

where \(\gamma_t = \left[1 + \frac{1}{\nu} (X_t^* - M_t^*)' \Sigma_{22}^{-1} (X_t^* - M_t^*) + \frac{1}{\nu \sigma^2} (y_t - c_0 - \beta_0^* x_t - \alpha' y_{t-p} - \beta' x_{t-p}) \right] \), \(y_{t-p} = (y_{t-1}, \ldots, y_{t-p})' \), \(x_{t-p} = (x_{t-1}, \ldots, x_{t-p})' \) and \(L/L = \Sigma_{22}^{-1} \).

For obtaining the derivatives we substitute \(c_0 \) with \(\mu_y - \beta_0^* \mu_x - \alpha \mu_y - \beta' \mu_x \). Differentiating the loglikelihood function (LLF) with respect to \(\beta_0, \alpha, \beta_1, \mu_y, \mu_x, \sigma \) and \(L \) we derive the following first order conditions:

1. \(\frac{\partial \text{LLF}}{\partial \beta_0} = \frac{\nu + k1 + 1}{\nu} \sum_{t=1}^{T} \frac{1}{\gamma_t} \frac{u_t}{\sigma^2} (x_t - \mu_x)' \)
2. \(\frac{\partial \text{LLF}}{\partial \beta_1} = \frac{\nu + k1 + 1}{\nu} \sum_{t=1}^{T} \frac{1}{\gamma_t} \frac{u_t}{\sigma^2} (x_t - \mu_x)' \)
3. \(\frac{\partial \text{LLF}}{\partial \mu_y} = \frac{\nu + k1 + 1}{\nu} \sum_{t=1}^{T} \frac{1}{\gamma_t} \left[(X_t^* - M_t^*)' L/L (iY) + \frac{u_t}{\sigma^2} (1 - \alpha') \right] \)
4. \(\frac{\partial \text{LLF}}{\partial \mu_x} = \frac{\nu + k1 + 1}{\nu} \sum_{t=1}^{T} \frac{1}{\gamma_t} \left[(X_t^* - M_t^*)' L/L (iX) + \frac{u_t}{\sigma^2} (\beta'_0 + \beta') \right] \)
5. \(\frac{\partial \text{LLF}}{\partial \sigma} = -\frac{T}{\sigma} + \frac{\nu + k1 + 1}{\nu} \frac{1}{\sigma^2} \sum_{t=1}^{T} \frac{1}{\gamma_t} u_t^2 \)
6. \(\frac{\partial \text{LLF}}{\partial \text{vech} L} = \frac{\nu + k1 + 1}{\nu} \sum_{t=1}^{T} \frac{1}{\gamma_t} (X_t^* - M_t^*)' \otimes (X_t^* - M_t^*)' \text{GH} (L' \otimes I_{k1}) G \)

where \(H \) is a selector matrix transforming \(\text{vech}(L' L) \) into \(\text{vech}(L' L) \). The reverse operation is performed by the selector matrix \(G \), and \(I_{k1} \) is a \((k1 \times k1)\) identity matrix. The matrix \(iY \) is an
indicator matrix that assigns the value of zero to all other variables apart from \(\mu_y \). Similarly \(iX \) is doing the same thing for \(\mu_x \), and all other symbols are defined as before.

The first order conditions are non-linear and have to be solved iteratively by a numerical procedure. It is worth pointing out at this stage that numerical algorithms are likely to encounter problems with positive definiteness of \(\Sigma_{22}^{-1} \) and \(\sigma^2 \). To tackle these problems we follow the approach used by Paczkowski (1997) for the Student’s \(t \) Autoregressive model. To obtain the derivative of \(\sigma^2 \) we take the derivative with respect to \(\sigma \) instead. This ensures that regardless of the value of \(\sigma \) the value of \(\sigma^2 \) will always be positive. We use the same technique for \(\Sigma_{22}^{-1} \). One can factorize \(\Sigma_{22}^{-1} \) as the product of two matrices, that is \(\Sigma_{22}^{-1} = L/L \) where L can be a symmetric matrix or a Cholesky factorization. In this case we assume that L is a symmetric matrix. These simple modifications allow us to obtain an operational model. The model is estimated using procedures written in GAUSS.

Before we proceed further we have a few observations about the standard errors of the estimates. Maximum likelihood estimation of this model yields estimates of \(\beta_0, \beta_1, \alpha, \mu_y, \mu_x, \sigma, L \). Asymptotic standard errors for these estimates are obtained from the inverse of the final Hessian. To obtain estimates of \(\Sigma_{22}^{-1} \) and their standard errors we rely on the invariance property of the maximum likelihood estimators. Note that \(\hat{\Sigma}_{22}^{-1} \) can be calculated using the fact that \(\hat{\Sigma}_{22}^{-1} = \hat{L}'\hat{L} \). It’s standard errors can be derived using the \(\delta \)-method\(^1\). The equation of the estimated variance-covariance matrix (vc) for the distinct elements of \(\hat{\Sigma}_{22}^{-1} \) is given by:

\[
vc(vech\Sigma_{22}^{-1}) = \left[H(I_{k12} + K_{k1,k1})(I_{k1} \otimes \hat{L}')G\right] \hat{\Delta} \left[H(I_{k12} + K_{k1,k1})(I_{k1} \otimes \hat{L}')G\right]'
\]

where \(\hat{\Delta} \) is the estimated variance-covariance matrix of the distinct elements of L, and \(K_{k1,k1} \) is a commutation matrix\(^2\).

\(^1\)The \(\delta \)-method is a convenient technique for approximating the distribution of an arbitrary function of a random variable, when the distribution of that variable is known. This method is useful for finding estimates and their approximate standard errors when the estimable model cannot be expressed in term of the parameters of interest. For more details on this see Oehlert G. W. (1992).

\(^2\)A commutation matrix \(K \) consists of re-arranged rows of an identity matrix, such that \(vecX = K_{mn}vecX' \), for any matrix \(X \) of dimensionality \((m \times n) \). For details see Magnus and Neudecker (1999).
5.2 Empirical Results

We begin this section by describing our data sets and providing the motivation for the Student’s \(t \) DLR model. This is followed by the empirical specification and the results. We provide the estimation results from the Normal and Student’s \(t \) DLR models, the Student’s \(t \) Autoregressive model and the GARCH-X model which allows for exogenous variables in the conditional variance equation.

5.2.1 Data and Motivation

In this study we use two exchange rate data sets which span different time periods. First we explore the data set used by McGuirk et al. (1993). It consists of the log differences of weekly interbank spot rates for the Japanese Yen (\(J\text{A}_t \)), German Mark (\(G\text{E}_t \)), Swiss Franc (\(S\text{W}_t \)) and British Pound (\(B\text{R}_t \)) vis-à-vis the U.S dollar. The weekly data were recorded every Wednesday over the period July 1973 through October 1991 which amounts to 953 observations.

The second data set consists of three European exchange rates whose features are described in detail in Chapter 3. We focus on the interrelationship between the Deutschemark (DEM) the French Franc (FRF) and the Swiss Franc (CHF). These were major currencies before the Euro and as shown in Chapter 3 they exhibit similar probabilistic features and are strongly and positively correlated with each other.

The move to the DLR framework is important for a number of reasons. The primary reason for exploring this model is the non-zero covariances among exchange rate innovations which indicate the need for simultaneous multivariate estimation for full efficiency. The DLR approach can be seen as an intermediate step before the multivariate framework which takes into account some contemporaneous co-variation between the different rates. Moreover evidence from economic theory, such as the portfolio-balance approach to exchange rates implies such covariations since new information coming to the market affects all dollar rates as agents’ asset demands shift and portfolios are rebalanced.

The third data set consists of daily closing price data on the Dow Jones Industrial Index over the period 23 August 1988 to 22 August 2000 representing 3130 observations. The Dow Jones
Industrial Price Index is comprised of 30 industrial companies’ stocks and represents about a fifth of the total value of the US stock market. We take log differences of the value of the index to convert the data into continuously compounded returns. This data set also contains the Three-month US treasury bill rate over the same period. It is believed that the T-bill rate is correlated with the cost of borrowing to firms, and may contain information that is relevant to the volatility of the Dow Jones industrial Index. A volatility model that incorporates the T-bill rate can potentially offer some structural or economic explanation for the volatility. This idea was explored by Engle and Patton (2001d) and Glosten et al. (1993). We report their findings in Section 5.2.2.

5.2.2 Empirical Specification and Results

In this section we present the empirical specifications and report estimation results based on the Normal DLR, the Student’s t DLR the Student’s t AR and the Normal GARCH-X models. We begin with the traditional homoskedastic Normal DLR model.

[A] Normal Dynamic Linear Regression Model (NDLR)

The Normal DLR model takes the form shown in equation (5.8). The reader can refer to Spanos (1986) for more details on the Normal DLR model.

$$y_t = \beta_0'x_t + \sum_{i=1}^{P} \alpha_i y_{t-i} + \sum_{i=1}^{P} \beta_i'x_{t-i} + u_t, \quad u_t/\tilde{\sigma}_{t-1} \sim N(0, \sigma^2), \quad t > p.$$ (5.8)

where $\tilde{\sigma}_{t-1} = \{\sigma(Y_{t-1}^0, X_t^0 = x_t^0)\}$ forms the conditioning information set which contains exogenous variables, the past history of those variables as well as the past history of y_t. The important difference between the Normal and Student’s t model is in the form of the conditional variance. The Normal specification cannot accommodate heteroskedasticity or non-linear dependence.

For the first exchange rate data set (1973-1991) we focus on two pairs of Dynamic Linear Regression models. The first pair consists of the German Mark and the Swiss Franc while the second includes the British Pound and the Japanese Yen. This choice was primarily made for comparison purposes. McGuirk et al. (1993) use this data set to investigate exchange rate dynamics. They find that a Student’s t AR model with 9 degrees of freedom was statistically adequate for the British
Table 5.3: Normal DLR: Exchange Rates 1973-1991

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>GE_t</th>
<th>SW_t</th>
<th>BR_t</th>
<th>JA_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_0</td>
<td>.073*</td>
<td>.0956*</td>
<td>-.515*</td>
<td>-.4623*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(46.79)</td>
<td>(46.79)</td>
<td>(-17.18)</td>
<td>(-17.18)</td>
<td></td>
</tr>
<tr>
<td>α_1</td>
<td>-.030</td>
<td>-.046</td>
<td>-.024</td>
<td>.0243</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-.94)</td>
<td>(-1.42)</td>
<td>(-.738)</td>
<td>(.750)</td>
<td></td>
</tr>
<tr>
<td>β_1</td>
<td>-.066*</td>
<td>-.109*</td>
<td>.0009</td>
<td>.0947*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.01)</td>
<td>(-3.39)</td>
<td>(.0276)</td>
<td>(2.93)</td>
<td></td>
</tr>
<tr>
<td>β_2</td>
<td>.0224</td>
<td>.0748*</td>
<td>.0008</td>
<td>-.0541</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(.79)</td>
<td>(2.02)</td>
<td>(.023)</td>
<td>(-1.754)</td>
<td></td>
</tr>
<tr>
<td>β_2</td>
<td>.0751*</td>
<td>.0124*</td>
<td>.002</td>
<td>.0308</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.66)</td>
<td>(3.344)</td>
<td>(.0546)</td>
<td>(.998)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the t-statistics
2 (*) refers to the rejection of the null hypothesis at the 5% level of significance

Pound and the Japanese Yen while for the German Mark and Swiss Franc 7 degrees of freedom were adequate. Results of the Normal DLR model with two lags are shown in Table 5.3. Observe that the contemporaneous variable is highly significant in all cases. For the pair of the German Mark and the Swiss Franc it seems that the second lags of both the dependent and the independent variables are also significant. This is not however the case with the British Pound and the Japanese Yen. A reason for this might be the fact that Switzerland and Germany are neighboring European economies while this is not the case with Great Britain and Japan.

We now discuss the results from the second exchange rate data set (1986-2000). In particular we look at three pairs of Dynamic Linear Regressions: Deutschemark with French Franc, Deutschemark with Swiss Franc and French Franc with Swiss Franc. The estimation results can be found in Table 5.4. Again we observe that the contemporaneous regressor in each case is highly significant. Also the first lag of the contemporaneous regressor seems to be significant except in the Swiss Franc on Deutschemark and Swiss Franc on French Franc case. A reason for this might be that Switzerland is not part of the European Union. Also over this period the other two economies were already preparing to adopt the Euro as their currency.

It should be pointed out however that before making any inferences and policy recommenda-
Table 5.4: Normal DLR: Exchange Rates 1986-2000

<table>
<thead>
<tr>
<th></th>
<th>DEM</th>
<th>FRF</th>
<th>DEM</th>
<th>CHF</th>
<th>FRF</th>
<th>CHF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_0$</td>
<td>0.9986*</td>
<td>0.9434*</td>
<td>0.8579*</td>
<td>1.009*</td>
<td>0.818*</td>
<td>1.014*</td>
</tr>
<tr>
<td></td>
<td>(110.712)</td>
<td>(110.7119)</td>
<td>(-69.79)</td>
<td>(69.794)</td>
<td>(60.568)</td>
<td>(60.568)</td>
</tr>
<tr>
<td>$\hat{\alpha}_1$</td>
<td>-1.775*</td>
<td>-2.042*</td>
<td>-0.687</td>
<td>-0.053</td>
<td>-1.08</td>
<td>-0.0669</td>
</tr>
<tr>
<td></td>
<td>(-4.822)</td>
<td>(-5.574)</td>
<td>(-1.879)</td>
<td>(-1.458)</td>
<td>(-2.948)</td>
<td>(-1.815)</td>
</tr>
<tr>
<td>$\hat{\alpha}_2$</td>
<td>-0.0047*</td>
<td>0.0112</td>
<td>-0.0188</td>
<td>-0.0276</td>
<td>-0.0018</td>
<td>0.0030</td>
</tr>
<tr>
<td></td>
<td>(0.1267)</td>
<td>(-3.049)</td>
<td>(-5.133)</td>
<td>(-7.549)</td>
<td>(-0.0499)</td>
<td>(0.0805)</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>0.1762*</td>
<td>0.2027*</td>
<td>0.0724*</td>
<td>0.0457</td>
<td>0.107*</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>(4.647)</td>
<td>(5.6971)</td>
<td>(2.1489)</td>
<td>(1.15034)</td>
<td>(3.260)</td>
<td>(1.399)</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>0.00132</td>
<td>0.0058</td>
<td>0.020</td>
<td>0.0362</td>
<td>0.0038</td>
<td>0.0058</td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.2379)</td>
<td>(0.5949)</td>
<td>(0.9123)</td>
<td>(0.1145)</td>
<td>(0.1416)</td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the t-statistics
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

To better understand the interpretation of the parameters in the conditional variance specification consider the case of including one exogenous variable x and two lags in the empirical specification. This implies that $X_t^\prime = (x_{t}, y_{t-1}, y_{t-2}, x_{t-1}, x_{t-2})^\prime$. The matrix on the left hand side of equation (5.9) represents the cross product terms between the five conditioning variables which are present in the conditional variance equation. The elements of the matrix on the right hand side represent the corresponding coefficient in front of the cross-product terms. For
instance l_{11} is the coefficient of x_t^2 and l_{21} is the coefficient of $x_t y_{t-1}$.

$$
\begin{bmatrix}
 x_t^2 & y_t^2 \\
 x_t y_{t-1} & y_{t-1}^2 \\
 x_t y_{t-2} & y_{t-1} y_{t-2} & y_{t-2}^2 \\
 x_t x_{t-1} & x_{t-1} y_{t-1} & y_{t-2} x_{t-1} & x_{t-1}^2 \\
 x_t x_{t-2} & x_{t-1} y_{t-2} & y_{t-2} x_{t-2} & x_{t-1} x_{t-2} & x_{t-2}^2
\end{bmatrix}
\rightarrow
\begin{bmatrix}
l_{11} \\
l_{21} \\
l_{22} \\
l_{31} \\
l_{32} \\
l_{33} \\
l_{41} \\
l_{42} \\
l_{43} \\
l_{44} \\
l_{51} \\
l_{52} \\
l_{53} \\
l_{54} \\
l_{55}
\end{bmatrix}
\tag{5.9}
$$

Table 5.5 presents the estimation results from the Student’s t DLR model with two lags for the 1973-1991 exchange rate data set. It is interesting to note that the contemporaneous variable is still highly significant and that the size of the coefficients is very similar to that of the Normal DLR model. This is not the case however with the rest of the parameters. Only the second autoregressive lag of the German Mark and the Japanese Yen remain significant and interestingly very similar in size to the Normal DLR estimates. The conditional variance coefficients indicate that the cross product terms involving the lags of the exogenous variable are significant. In particular the cross product of $y_{t-1} x_{t-1}$, and $x_{t-1} x_{t-2}$ are significant indicating that exogenous variables have significant information relevant to the volatility of the exchange rate returns.

We now discuss the results of the Student’s t DLR for the second exchange rate data set (1986-2000). Table 5.6 shows the relevant results for the pair of Deutschemark and Swiss Franc followed by Table 5.7 which presents the results for the pair of Deutschemark and Swiss Franc. Finally the estimation results for the French Franc and Swiss Franc are summarized in Table 5.8. Again observe that the contemporaneous variable in the conditional mean equation appears to be highly significant in all cases and is similar in size to the estimates of the Normal DLR model. The first autoregressive lag seems to be significant in most specifications with the exception of the DLR for the Swiss Franc, where none of the lagged variables in the conditional mean appears to be significant. The reason for this might be that the Swiss Franc does not exhibit as much temporal dependence and volatility as the other two series. Also recall the results of the Normal DLR model which indicates that the first lag of the exogenous variable is significant in the conditional mean. We only see this in the case of Student’s t DLR of French Franc on Deutschemark. In terms of the
<table>
<thead>
<tr>
<th>(y)</th>
<th>(GE_t)</th>
<th>t-stat</th>
<th>(SW_t)</th>
<th>t-stat</th>
<th>(BR_t)</th>
<th>t-stat</th>
<th>(JA_t)</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(SW_t)</td>
<td>(GE_t)</td>
<td>t-stat</td>
<td>(JA_t)</td>
<td>t-stat</td>
<td>(BR_t)</td>
<td>t-stat</td>
<td></td>
</tr>
<tr>
<td>(\beta_0)</td>
<td>.087*</td>
<td>(54.087)</td>
<td>1.0024*</td>
<td>(54.27)</td>
<td>-.5314*</td>
<td>(-16.334)</td>
<td>-.4647*</td>
<td>(-16.236)</td>
</tr>
<tr>
<td>(\alpha_1)</td>
<td>.027</td>
<td>(.776)</td>
<td>.0205</td>
<td>(.579)</td>
<td>.0043</td>
<td>(.124)</td>
<td>.0432</td>
<td>(1.227)</td>
</tr>
<tr>
<td>(\alpha_2)</td>
<td>.076*</td>
<td>(2.169)</td>
<td>.0385</td>
<td>(1.099)</td>
<td>.0269</td>
<td>(.784)</td>
<td>.1086*</td>
<td>(3.163)</td>
</tr>
<tr>
<td>(\beta_1)</td>
<td>-.0074</td>
<td>(-.235)</td>
<td>-.275</td>
<td>(-.687)</td>
<td>.003</td>
<td>(.081)</td>
<td>-.0286</td>
<td>(-.880)</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>-.0423</td>
<td>(-1.374)</td>
<td>-.0505</td>
<td>(-1.278)</td>
<td>.009</td>
<td>(.247)</td>
<td>.0215</td>
<td>(.677)</td>
</tr>
</tbody>
</table>

\[\hat{\beta}_0 = .078^* \]
\[\hat{\alpha}_1 = .027 \]
\[\hat{\alpha}_2 = .076^* \]
\[\hat{\beta}_1 = -.0074^* \]
\[\hat{\beta}_2 = -.0423^* \]

Notes:

1. The numbers in the brackets refer to the t-statistics.
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance.

Table 5.5: Student’s \(t \) DLR: Exchange Rates 1973-1991

conditional variance parameters we observe that all the cross product terms involving the lagged variables are significant in most specifications. It should be emphasized however that one should pass these models through a battery of misspecification tests to establish their statistical adequacy before making any inferences from them.
<table>
<thead>
<tr>
<th></th>
<th>DEM</th>
<th>t-stat</th>
<th></th>
<th>FRF</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRF</td>
<td></td>
<td></td>
<td>DEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_0$</td>
<td>1.0193*</td>
<td>(159.034)</td>
<td>.9552*</td>
<td>(158.512)</td>
<td></td>
</tr>
<tr>
<td>$\hat{\alpha}_1$</td>
<td>-.0792*</td>
<td>(-1.959)</td>
<td>-.0800*</td>
<td>(-1.983)</td>
<td></td>
</tr>
<tr>
<td>$\hat{\alpha}_2$</td>
<td>.0483</td>
<td>(1.237)</td>
<td>.0417</td>
<td>(1.075)</td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>.0077</td>
<td>(1.847)</td>
<td>.0814*</td>
<td>(2.083)</td>
<td></td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>-.0477</td>
<td>(-1.187)</td>
<td>-.0401</td>
<td>(-1.065)</td>
<td></td>
</tr>
<tr>
<td>μ_y</td>
<td>-.0001</td>
<td>(-.004)</td>
<td>-0.010</td>
<td>(-.035)</td>
<td></td>
</tr>
<tr>
<td>μ_x</td>
<td>-.0010</td>
<td>(-.035)</td>
<td>-0.001</td>
<td>(-.004)</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>.2195*</td>
<td>(31.894)</td>
<td>.2125*</td>
<td>(31.969)</td>
<td></td>
</tr>
<tr>
<td>l_{11}</td>
<td>.7484*</td>
<td>(28.468)</td>
<td>.7380*</td>
<td>(34.581)</td>
<td></td>
</tr>
<tr>
<td>l_{21}</td>
<td>.0010</td>
<td>(.019)</td>
<td>.0159</td>
<td>(.798)</td>
<td></td>
</tr>
<tr>
<td>l_{31}</td>
<td>-.1184*</td>
<td>(2.430)</td>
<td>-0.014</td>
<td>(-.068)</td>
<td></td>
</tr>
<tr>
<td>l_{41}</td>
<td>.0354</td>
<td>(.708)</td>
<td>-.0060</td>
<td>(-.307)</td>
<td></td>
</tr>
<tr>
<td>l_{51}</td>
<td>-.0868</td>
<td>(-1.821)</td>
<td>-.0368</td>
<td>(-1.888)</td>
<td></td>
</tr>
<tr>
<td>l_{12}</td>
<td>2.9304*</td>
<td>(28.786)</td>
<td>3.6784*</td>
<td>(33.858)</td>
<td></td>
</tr>
<tr>
<td>l_{22}</td>
<td>.1492*</td>
<td>(2.279)</td>
<td>.1609*</td>
<td>(2.345)</td>
<td></td>
</tr>
<tr>
<td>l_{32}</td>
<td>-.35766*</td>
<td>(-34.432)</td>
<td>-3.0452*</td>
<td>(-29.738)</td>
<td></td>
</tr>
<tr>
<td>l_{42}</td>
<td>-.1443*</td>
<td>(-2.147)</td>
<td>-.1668*</td>
<td>(-2.498)</td>
<td></td>
</tr>
<tr>
<td>l_{52}</td>
<td>2.8975*</td>
<td>(28.497)</td>
<td>3.6187*</td>
<td>(33.507)</td>
<td></td>
</tr>
<tr>
<td>l_{33}</td>
<td>-.1772*</td>
<td>(-2.629)</td>
<td>-.1386*</td>
<td>(-2.082)</td>
<td></td>
</tr>
<tr>
<td>l_{43}</td>
<td>-3.5134*</td>
<td>(-33.930)</td>
<td>-2.9967*</td>
<td>(-29.388)</td>
<td></td>
</tr>
<tr>
<td>l_{53}</td>
<td>3.1666*</td>
<td>(29.371)</td>
<td>3.4769*</td>
<td>(33.905)</td>
<td></td>
</tr>
<tr>
<td>l_{44}</td>
<td>.1532*</td>
<td>(2.217)</td>
<td>.1562*</td>
<td>(2.408)</td>
<td></td>
</tr>
<tr>
<td>l_{54}</td>
<td>3.1170*</td>
<td>(29.001)</td>
<td>3.4331*</td>
<td>(33.599)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the t-statistics
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 5.6: Student’s t DLR: Deutschmark and French Franc 1986-2000
<table>
<thead>
<tr>
<th>y</th>
<th>DEM</th>
<th>t-stat</th>
<th>CHF</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>CHF</td>
<td></td>
<td>DEM</td>
<td></td>
</tr>
<tr>
<td>β_0</td>
<td>.8602*</td>
<td>(66.910)</td>
<td>1.0140*</td>
<td>(67.401)</td>
</tr>
<tr>
<td>α_1</td>
<td>-.0371*</td>
<td>(-.949)</td>
<td>-.0276</td>
<td>(-.708)</td>
</tr>
<tr>
<td>α_2</td>
<td>-.0129</td>
<td>(-.331)</td>
<td>-.0075</td>
<td>(-.192)</td>
</tr>
<tr>
<td>β_1</td>
<td>.0411</td>
<td>(1.147)</td>
<td>.0204</td>
<td>(.482)</td>
</tr>
<tr>
<td>β_2</td>
<td>.0100</td>
<td>(.279)</td>
<td>.0223</td>
<td>(.527)</td>
</tr>
<tr>
<td>μ_y</td>
<td>-.0122</td>
<td>(.394)</td>
<td>-.0017</td>
<td>(-.050)</td>
</tr>
<tr>
<td>μ_x</td>
<td>-.0017</td>
<td>(-.050)</td>
<td>.0122</td>
<td>(.394)</td>
</tr>
<tr>
<td>σ</td>
<td>.4858*</td>
<td>(34.562)</td>
<td>.5275*</td>
<td>(34.342)</td>
</tr>
<tr>
<td>l_{11}</td>
<td>-.6759*</td>
<td>(-34.654)</td>
<td>.7345*</td>
<td>(34.703)</td>
</tr>
<tr>
<td>l_{21}</td>
<td>.0259</td>
<td>(.975)</td>
<td>-.0205</td>
<td>(-1.188)</td>
</tr>
<tr>
<td>l_{31}</td>
<td>-.0095</td>
<td>(.359)</td>
<td>-.0150</td>
<td>(-.875)</td>
</tr>
<tr>
<td>l_{41}</td>
<td>-.0288</td>
<td>(-1.168)</td>
<td>.0242</td>
<td>(1.325)</td>
</tr>
<tr>
<td>l_{51}</td>
<td>.0247</td>
<td>(.999)</td>
<td>-.0181</td>
<td>(-.990)</td>
</tr>
<tr>
<td>l_{22}</td>
<td>1.2788*</td>
<td>(25.965)</td>
<td>1.5287*</td>
<td>(36.699)</td>
</tr>
<tr>
<td>l_{32}</td>
<td>.0422</td>
<td>(1.241)</td>
<td>.0190</td>
<td>(.691)</td>
</tr>
<tr>
<td>l_{42}</td>
<td>-1.6237*</td>
<td>(-39.25)</td>
<td>-1.1263*</td>
<td>(-28.287)</td>
</tr>
<tr>
<td>l_{52}</td>
<td>.0475</td>
<td>(-1.488)</td>
<td>-.0134</td>
<td>(-.455)</td>
</tr>
<tr>
<td>l_{33}</td>
<td>1.2766*</td>
<td>(25.898)</td>
<td>1.5294*</td>
<td>(36.833)</td>
</tr>
<tr>
<td>l_{43}</td>
<td>-.0099</td>
<td>(-.311)</td>
<td>-.0393</td>
<td>(-1.331)</td>
</tr>
<tr>
<td>l_{53}</td>
<td>-1.6251*</td>
<td>(-39.425)</td>
<td>-1.1236*</td>
<td>(-28.331)</td>
</tr>
<tr>
<td>l_{44}</td>
<td>.9820*</td>
<td>(22.460)</td>
<td>1.7345*</td>
<td>(36.442)</td>
</tr>
<tr>
<td>l_{54}</td>
<td>.0123</td>
<td>(.411)</td>
<td>.0412</td>
<td>(1.294)</td>
</tr>
<tr>
<td>l_{55}</td>
<td>.9796*</td>
<td>(22.430)</td>
<td>1.7340*</td>
<td>(36.490)</td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the t-statistics
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 5.7: Student’s t DLR: Deutschemark and Swiss Franc 1986-2000
Table 5.8: Student’s t DLR: French Franc and Swiss Franc 1986-2000

<table>
<thead>
<tr>
<th>y</th>
<th>FRF</th>
<th>t-stat</th>
<th>CHF</th>
<th>t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>CHF</td>
<td></td>
<td>FRF</td>
<td></td>
</tr>
<tr>
<td>β_0</td>
<td>0.8159*</td>
<td>(59.359)</td>
<td>1.0337*</td>
<td>(59.525)</td>
</tr>
<tr>
<td>α_1</td>
<td>-0.0543*</td>
<td>(-1.376)</td>
<td>-0.0359</td>
<td>(-0.918)</td>
</tr>
<tr>
<td>α_2</td>
<td>0.0101</td>
<td>(0.262)</td>
<td>0.0173</td>
<td>(0.445)</td>
</tr>
<tr>
<td>β_1</td>
<td>0.0601</td>
<td>(1.731)</td>
<td>0.0222</td>
<td>(0.502)</td>
</tr>
<tr>
<td>β_2</td>
<td>-0.0088</td>
<td>(-0.256)</td>
<td>-0.0034</td>
<td>(-0.078)</td>
</tr>
<tr>
<td>μ_y</td>
<td>-0.0145</td>
<td>(0.490)</td>
<td>-0.0060</td>
<td>(0.178)</td>
</tr>
<tr>
<td>μ_x</td>
<td>0.0060</td>
<td>(0.178)</td>
<td>-0.0145</td>
<td>(0.490)</td>
</tr>
<tr>
<td>σ</td>
<td>0.5158*</td>
<td>(34.147)</td>
<td>0.5805*</td>
<td>(34.108)</td>
</tr>
<tr>
<td>l_{11}</td>
<td>-0.6779*</td>
<td>(-34.586)</td>
<td>0.7652*</td>
<td>(34.714)</td>
</tr>
<tr>
<td>l_{21}</td>
<td>0.0465</td>
<td>(1.673)</td>
<td>-0.0337*</td>
<td>(-1.943)</td>
</tr>
<tr>
<td>l_{31}</td>
<td>0.0150</td>
<td>(0.541)</td>
<td>-0.0167</td>
<td>(-0.964)</td>
</tr>
<tr>
<td>l_{41}</td>
<td>-0.0495</td>
<td>(-1.989)</td>
<td>-0.0416*</td>
<td>(2.209)</td>
</tr>
<tr>
<td>l_{51}</td>
<td>0.0210</td>
<td>(0.836)</td>
<td>-0.0194</td>
<td>(-1.036)</td>
</tr>
<tr>
<td>l_{12}</td>
<td>1.2325*</td>
<td>(25.241)</td>
<td>1.4048*</td>
<td>(36.770)</td>
</tr>
<tr>
<td>l_{32}</td>
<td>0.0588</td>
<td>(1.757)</td>
<td>0.0240*</td>
<td>(0.957)</td>
</tr>
<tr>
<td>l_{42}</td>
<td>-1.5250*</td>
<td>(-39.347)</td>
<td>-1.0198*</td>
<td>(-27.504)</td>
</tr>
<tr>
<td>l_{52}</td>
<td>-0.0778*</td>
<td>(-2.526)</td>
<td>-0.0077</td>
<td>(-0.279)</td>
</tr>
<tr>
<td>l_{33}</td>
<td>1.2178*</td>
<td>(25.016)</td>
<td>1.4014*</td>
<td>(36.783)</td>
</tr>
<tr>
<td>l_{43}</td>
<td>0.0016</td>
<td>(0.052)</td>
<td>-0.0600*</td>
<td>(-2.163)</td>
</tr>
<tr>
<td>l_{53}</td>
<td>-1.5201*</td>
<td>(-39.435)</td>
<td>-1.0109*</td>
<td>(-27.404)</td>
</tr>
<tr>
<td>l_{44}</td>
<td>0.8229*</td>
<td>(20.042)</td>
<td>1.6786*</td>
<td>(36.047)</td>
</tr>
<tr>
<td>l_{54}</td>
<td>0.0134</td>
<td>(0.475)</td>
<td>0.0571</td>
<td>(1.848)</td>
</tr>
<tr>
<td>l_{55}</td>
<td>0.8207*</td>
<td>(19.986)</td>
<td>1.6649*</td>
<td>(35.984)</td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the t-statistics.
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance.

Table 5.8: Student’s t DLR: French Franc and Swiss Franc 1986-2000
Next we present the results from the Student’s t AR model discussed in Chapter 3. Note that this model is not directly comparable to the Student’s t DLR model, since they are based on different information sets. However, it is worth comparing them to see the change in results when we retain the Distribution, Dependence and Heterogeneity assumptions while we expand the information set to include other relevant exogenous variables.

[C] Student’s t AR Model (STAR(p, p, ν))

The Student’s t AR model can be specified as follows: For more details on this model see Spanos (1990, 1994).

\[y_t = \beta_0 + \sum_{i=1}^{p} \beta_i y_{t-i} + u_t \quad p > 0, \quad t \in N \]
\hspace{1cm} (5.10)

where \(u_t = y_t - E(y_t|\mathcal{F}_{t-1}) \) is distributed \(St(0, \omega_t^2; \nu) \). The conditional variance, \(\omega_t^2 \) is given by:

\[\omega_t^2 = \left[\frac{\nu}{\nu + p - 2} \right] \sigma^2 \left[1 + \sum_{i=1}^{p} \sum_{j=1}^{p} q_{ij} [y_{t-i} - \mu] [y_{t-j} - \mu] \right] , \]
\hspace{1cm} (5.11)

\[q_{ij} = 0 \text{ for } |i - j| > p, \quad q_{ij} = q_{kl} \text{ for } |i - j| = |k - l| \]

where \(\mu = E(y_t), \nu > 2 \) is the degrees of freedom, \(\mathcal{F}_{t-1} = \sigma(Y_{t-1}^0) \) is the conditioning information set generated by the past history of \(y_t \).

We estimate the following models based on the above specification. For the exchange rate data set (1973-1991) we estimate a STAR(2,2,9) while for the British Pound and the Japanese Yen we estimate a STAR (2,2,7). We report the estimation results in Table 5.9. These suggest that the first two autoregressive lags are significant in the case of the German Mark and the Japanese Yen. It is interesting to note that in the case of the Student’s t DLR only the second autoregressive lags remain significant.

For the second exchange rate data set (1986-2000) we estimate a STAR(2,2,9) for Swiss Franc and the Deutschemark and a STAR(2,2,8) for the French Franc. The results are summarized in
<table>
<thead>
<tr>
<th>y</th>
<th>$\hat{\alpha}_1$</th>
<th>$\hat{\alpha}_2$</th>
<th>μ_y</th>
<th>σ</th>
<th>q_{11}</th>
<th>q_{21}</th>
<th>q_{31}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\nu = 9$</td>
<td>$\nu = 9$</td>
<td>$\nu = 7$</td>
<td>$\nu = 7$</td>
<td>$\nu = 9$</td>
<td>$\nu = 9$</td>
<td>$\nu = 9$</td>
</tr>
<tr>
<td></td>
<td>1.972</td>
<td>1.881</td>
<td>1.177</td>
<td>2.258</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0656</td>
<td>0.0541</td>
<td>0.0583</td>
<td>1.109</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0687^*</td>
<td>0.0797^*</td>
<td>2.443</td>
<td>3.443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2780^*</td>
<td>1.466^*</td>
<td>1.082</td>
<td>1.082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0271</td>
<td>-0.0394</td>
<td>-0.0445</td>
<td>-0.0176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(-.971)$</td>
<td>(-1.248)</td>
<td>(-1.173)</td>
<td>(-0.704)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2780^*</td>
<td>1.466^*</td>
<td>1.082</td>
<td>1.082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0271</td>
<td>-0.0394</td>
<td>-0.0445</td>
<td>-0.0176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(-.971)$</td>
<td>(-1.248)</td>
<td>(-1.173)</td>
<td>(-0.704)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The numbers in the brackets refer to the t-statistics
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 5.9: Student’s t AR: Exchange Rates 1973-1991

<table>
<thead>
<tr>
<th>y</th>
<th>DEM ($\nu = 9$)</th>
<th>FRF ($\nu = 8$)</th>
<th>CHF ($\nu = 9$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\hat{\alpha}_1$</td>
<td>$\hat{\alpha}_2$</td>
<td>μ_y</td>
</tr>
<tr>
<td></td>
<td>$\nu = 9$</td>
<td>$\nu = 9$</td>
<td>$\nu = 8$</td>
</tr>
<tr>
<td></td>
<td>-0.145</td>
<td>0.0809^*</td>
<td>-0.0078</td>
</tr>
<tr>
<td></td>
<td>$(-.374)$</td>
<td>(2.080)</td>
<td>(-1.461)</td>
</tr>
<tr>
<td></td>
<td>-0.0279</td>
<td>0.0164</td>
<td>-0.194 -0.0194</td>
</tr>
<tr>
<td></td>
<td>$(-.720)$</td>
<td>(2.096)</td>
<td>(1.720)</td>
</tr>
<tr>
<td></td>
<td>(0.0040)</td>
<td>1.3164^*</td>
<td>(1.971)</td>
</tr>
<tr>
<td></td>
<td>(0.0112)</td>
<td>$.546$</td>
<td>0.320</td>
</tr>
</tbody>
</table>

Notes:
1. t-statistics in parentheses
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 5.10: Student’s t AR: Exchange Rates 1986-2000
Table 5.10. Observe that the second lag is significant in all series.

In the Student’s t DLR specifications however, this was not the case. In fact only the first autoregressive lag was significant in some of the estimated models. The last class of models we consider is the Normal GARCH model which allows for exogenous variables in the conditional variance.

[D] Normal GARCH with Exogenous Variables

The conditional variance of the GARCH model with exogenous variables takes the form shown in equation (5.12).

$$h_t^2 = \alpha_0 + \sum_{i=1}^{p} a_i u_{t-i}^2 + \sum_{j=1}^{q} \gamma_j h_{t-j}^2, + \varphi X_t \quad (5.12)$$

and X_t represents the contemporaneous exogenous variable that we include in the conditional variance equation.

For easier comparisons with the results from the previous specifications we estimate a GARCH(1,1) model with two lags in the conditional mean and one exogenous variable in the conditional variance. This model will be denoted by AR(2)-GARCH(1,1)-X model. The results from the exchange rate data set (1973-1991) are reported in Table 5.11. Observe that the second autoregressive lag is significant but the exogenous variable in the conditional variance equation is not significant in any of the models. Also note that the last column (which refers to the estimation of Japanese Yen with the British Pound as the exogenous variable) is empty since the model had problems with convergence and returning estimates of the parameters. These results suggest that the exogenous variable does not contain any relevant information for the volatility of the series, as opposed to the results we obtain from the Student’s t DLR model. Table 5.12 summarizes the results from the second exchange rate data set (1986-2000). In this case we observe that the Deutschemark and the French Franc seem to carry information related to the volatility of the Swiss Franc.

\[^3\text{Note that although the specification of the Student’s } t \text{ AR in this chapter is the same as in Chapter 3, the number of parameters in the conditional variance is different here. We estimate } p \text{ unknown parameters while in Chapter 3 we estimated } p + 1.\]
<table>
<thead>
<tr>
<th>(y)</th>
<th>(y_t)</th>
<th>(x_t)</th>
<th>(y_t)</th>
<th>(x_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>-0.60</td>
<td>-0.045</td>
<td>-0.045</td>
<td>.</td>
</tr>
<tr>
<td>(1.463)</td>
<td>(-.978)</td>
<td>(1.00)</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>0.054</td>
<td>0.028</td>
<td>0.041</td>
<td>.</td>
</tr>
<tr>
<td>(1.636)</td>
<td>(.8)</td>
<td>(1.17)</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>0.095*</td>
<td>0.068*</td>
<td>0.048</td>
<td>.</td>
</tr>
<tr>
<td>(2.87)</td>
<td>(2.0)</td>
<td>(1.371)</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_0)</td>
<td>0.026</td>
<td>0.04</td>
<td>0.086</td>
<td>.</td>
</tr>
<tr>
<td>(1.733)</td>
<td>(1.818)</td>
<td>(3.739)</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_1)</td>
<td>0.090*</td>
<td>0.098*</td>
<td>0.094</td>
<td>.</td>
</tr>
<tr>
<td>(4.5)</td>
<td>(5.158)</td>
<td>(4.947)</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\hat{\gamma}_1)</td>
<td>0.902*</td>
<td>0.892*</td>
<td>0.867</td>
<td>.</td>
</tr>
<tr>
<td>(41)</td>
<td>(44.6)</td>
<td>(37.70)</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\hat{\phi})</td>
<td>0.003</td>
<td>-0.001</td>
<td>-0.007</td>
<td>.</td>
</tr>
<tr>
<td>(0.214)</td>
<td>(-.001)</td>
<td>(-.022)</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the t-statistics
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 5.11: Normal GARCH-X: Exchange Rates 1973-1991

<table>
<thead>
<tr>
<th>(y)</th>
<th>DEM</th>
<th>FRF</th>
<th>DEM</th>
<th>CHF</th>
<th>FRF</th>
<th>CHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\hat{\beta}_0)</td>
<td>.018</td>
<td>.021</td>
<td>-.018</td>
<td>-.021</td>
<td>-.003</td>
<td>-.018</td>
</tr>
<tr>
<td>(.462)</td>
<td>(.477)</td>
<td>(.196)</td>
<td>(.045)</td>
<td>(.077)</td>
<td>(.155)</td>
<td></td>
</tr>
<tr>
<td>(\hat{\beta}_1)</td>
<td>-.028</td>
<td>-.056</td>
<td>-.027</td>
<td>-.002</td>
<td>-.057</td>
<td>-.02</td>
</tr>
<tr>
<td>(-.636)</td>
<td>(-1.436)</td>
<td>(-.6)</td>
<td>(-.043)</td>
<td>(-1.462)</td>
<td>(.071)</td>
<td></td>
</tr>
<tr>
<td>(\hat{\beta}_2)</td>
<td>.076*</td>
<td>.074</td>
<td>.069</td>
<td>.039</td>
<td>.068</td>
<td>.04</td>
</tr>
<tr>
<td>(1.949)</td>
<td>(1.897)</td>
<td>(1.816)</td>
<td>(.003)</td>
<td>(1.659)</td>
<td>(1.21)</td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_0)</td>
<td>.252</td>
<td>.290</td>
<td>.149</td>
<td>.024*</td>
<td>.216</td>
<td>.019</td>
</tr>
<tr>
<td>(1.605)</td>
<td>(1.895)</td>
<td>(1.461)</td>
<td>(2.182)</td>
<td>(1.478)</td>
<td>(1.727)</td>
<td></td>
</tr>
<tr>
<td>(\hat{\alpha}_1)</td>
<td>.069*</td>
<td>.093*</td>
<td>.057*</td>
<td>.</td>
<td>.084</td>
<td>.</td>
</tr>
<tr>
<td>(2.76)</td>
<td>(3.20)</td>
<td>(2.375)</td>
<td>.</td>
<td>(2.8)</td>
<td>.</td>
<td></td>
</tr>
<tr>
<td>(\hat{\gamma}_1)</td>
<td>.824*</td>
<td>.779*</td>
<td>.88*</td>
<td>.091*</td>
<td>.821*</td>
<td>.993*</td>
</tr>
<tr>
<td>(\hat{\phi})</td>
<td>-.023</td>
<td>-.026</td>
<td>.017</td>
<td>.050</td>
<td>-.003</td>
<td>.049</td>
</tr>
<tr>
<td>(.676)</td>
<td>(.867)</td>
<td>(.548)</td>
<td>(3.71)</td>
<td>(.0937)</td>
<td>(4.08)</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The numbers in the brackets refer to the t-statistics
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

103
Next we consider the third data set which consists of daily returns of the Dow Jones index and the T-bill rate. Economic theory suggests that the T-bill rate might contain information relevant to the volatility of the Dow Jones. For easier comparisons with the univariate specification for the Dow Jones Price index in Chapter 3 we use three lags and 4 degrees of freedom in the Student’s t DLR specification. Recall that in Chapter 3 we found that a STAR(3,3,4) was statistically adequate for the Dow Jones. Table 5.13 summarizes the results from the Normal DLR (NDLR) and the Student’s t DLR (StTDLR). Note that we only report the significant coefficients for the conditional variance equation. We observe some important differences between the two models. In the Normal DLR the exogenous variable (T-bill rate) is not significant but its third lag is significant. Also the first autoregressive lag for the Dow Jones is significant. The picture is very different for the Student’s t DLR model. In this case the interest rate is significant and the third lag of the Dow Jones is also significant in the conditional mean specification. For the conditional variance a lot of the cross product terms which involve the lags of both variables are significant.

Now consider the GARCH model with exogenous variables estimated by Engle and Patton (2001d) for comparison purposes. In particular Engle and Patton (2001d) consider the following model:

\[y_t = \beta_0 + u_t \]
\[h_t^2 = \omega + \sum_{i=1}^{p} a_i u_{t-i}^2 + \sum_{j=1}^{q} \gamma_j h_{t-j}^2 + \phi X_{t-1} \]

where \(X_{t-1} \) represents the lagged level of the three-month treasury bill rate.

We reproduce their results in Table 5.14. It is clear from their results that while the impact of the T-bill rate is small (.003), it is quite significant. Engle and Patton claim that the “positive signs suggests that high interest rates are generally associated with higher levels of equity return volatility”. This result was also documented earlier by Glosten et al. (1993) who find that T-bill rate is positively related to equity return volatility.
<table>
<thead>
<tr>
<th></th>
<th>NDLR t-stat</th>
<th>StTDLR t-stat</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>.2787 (1.084)</td>
<td>-.7690* (-2.381)</td>
</tr>
<tr>
<td>$\hat{\alpha}_1$</td>
<td>-.6544* (-1.976)</td>
<td>.0316 (1.639)</td>
</tr>
<tr>
<td>$\hat{\alpha}_2$</td>
<td>.3368 (1.016)</td>
<td>-.0259 (-1.339)</td>
</tr>
<tr>
<td>$\hat{\alpha}_3$</td>
<td>.0414 (.1612)</td>
<td>-.0545* (-2.841)</td>
</tr>
<tr>
<td>$\hat{\beta}_1$</td>
<td>.0168 (.9395)</td>
<td>.6694 (1.506)</td>
</tr>
<tr>
<td>$\hat{\beta}_2$</td>
<td>-.0185 -1.034</td>
<td>.2224 (.501)</td>
</tr>
<tr>
<td>$\hat{\beta}_3$</td>
<td>-.0435* (-2.437)</td>
<td>-.1181 (-.370)</td>
</tr>
<tr>
<td>μ_y</td>
<td>.0716 (10.439)</td>
<td></td>
</tr>
<tr>
<td>μ_x</td>
<td>5.0910 (182.459)</td>
<td></td>
</tr>
<tr>
<td>σ</td>
<td>.07065 (64.292)</td>
<td></td>
</tr>
<tr>
<td>l_{11}</td>
<td>19.5916* (63.437)</td>
<td></td>
</tr>
<tr>
<td>l_{51}</td>
<td>-12.5391* (-45.158)</td>
<td></td>
</tr>
<tr>
<td>l_{61}</td>
<td>-4.2620* (-18.769)</td>
<td></td>
</tr>
<tr>
<td>l_{71}</td>
<td>-3.1263* (-16.633)</td>
<td></td>
</tr>
<tr>
<td>l_{22}</td>
<td>1.4148* (64.495)</td>
<td></td>
</tr>
<tr>
<td>l_{33}</td>
<td>1.4155* (64.480)</td>
<td></td>
</tr>
<tr>
<td>l_{73}</td>
<td>-.0494* (-2.184)</td>
<td></td>
</tr>
<tr>
<td>l_{44}</td>
<td>1.4058* (64.248)</td>
<td></td>
</tr>
<tr>
<td>l_{55}</td>
<td>27.9140* (63.276)</td>
<td></td>
</tr>
<tr>
<td>l_{65}</td>
<td>-11.5175* (-37.295)</td>
<td></td>
</tr>
<tr>
<td>l_{75}</td>
<td>-4.2104* (-18.602)</td>
<td></td>
</tr>
<tr>
<td>l_{66}</td>
<td>28.0014* (63.311)</td>
<td></td>
</tr>
<tr>
<td>l_{76}</td>
<td>-12.5838* (-44.913)</td>
<td></td>
</tr>
<tr>
<td>l_{77}</td>
<td>19.5633* (63.503)</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the t-statistics
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 5.13: Normal DLR and Student DLR: Dow Jones and T-bill rate

<table>
<thead>
<tr>
<th>GARCH(1,1) -X model</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH t-stat</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>β_0</td>
</tr>
<tr>
<td>ω</td>
</tr>
<tr>
<td>$\hat{\alpha}_1$</td>
</tr>
<tr>
<td>$\hat{\gamma}_1$</td>
</tr>
<tr>
<td>φ</td>
</tr>
</tbody>
</table>

Notes:
1. The numbers in the brackets refer to the t-statistics
2. (*) refers to the rejection of the null hypothesis at the 5% level of significance

Table 5.14: Normal GARCH(1,1)-X: Dow Jones and T-bill rate
The Student’s t DLR results however suggest that the current T-bill rate is significant in both the conditional mean and the conditional variance equation as shown in Table 5.13. Furthermore the cross products of the T-bill rate with its lags are also significant in the conditional variance equation.

5.3 Conclusion

This chapter has developed the Student’s t Dynamic Linear Regression for modeling volatility by using the PR methodology. The main advantage of this model is that it is defined in terms of observable random variables and their lags, and not the errors as is the case with the GARCH models, making the inclusion of relevant exogenous variables a natural part of the model set up. The Student’s t DLR can be viewed as a generalization of the Student’s t AR model presented in Chapter 3 since it allows us to explain univariate volatility in terms of: (i) volatility in the past history of the series itself as well as (ii) volatility in other relevant exogenous variables.

The proposed model utilizes statistical information as well as economic theory information in a statistically coherent way to explore volatility modeling. Statistical information comes in the form of the three reduction assumptions (i) Student’s t, (ii) Markov (p) and (iii) Second Order Stationarity, whereas theory information comes in the form of other exogenous variables that might contain information relevant to the volatility of some series. Another advantage of this model over the existing GARCH type formulations is that it does not require any positivity restrictions on the coefficients or any additional memory assumptions for the stability of the conditional variance.

Empirical results of this chapter suggest that the Student’s t DLR model provides a promising way of modeling volatility. Moreover it raises some questions regarding the appropriateness of the existing GARCH specifications which simply include an exogenous variable in the conditional variance equation. The very different estimation results from the GARCH type models and the Student’s t DLR illustrate the importance of appropriate model choice and indicate the need for formal misspecification tests to check the validity of each specification. Finally the Student’s t DLR can provide us with useful insights for the specification of a multivariate volatility model and takes us one step closer to the multivariate Student’s t model which is the subject of the next chapter.
Chapter 6

The Student’s t VAR Model

6.1 Introduction

The task of modeling multivariate volatility has occupied much of the finance literature for the last two decades. This body of research has produced a wide variety of multivariate models and specifications. One major trend has been to extend the univariate GARCH family of models to the multivariate case, though this frequently leads to formulations that are difficult to estimate due to the large number of parameters involved. Consequently the main focus has shifted to devising strategies for reducing the number of estimable parameters, while ensuring positive definiteness of the variance-covariance matrix along with sensible parametrizations. However, most of the multivariate GARCH models based on this approach are not successful in financial applications for two main reasons: (i) either they involve unrealistic assumptions on the parameters that cannot be confirmed by the data, (ii) or they constrain the modeler to estimating systems of limited dimension. In fact Ding and Engle (2001) make the following remark about modeling speculative prices:

“It has now become common knowledge that the risk of the financial market, which is mainly represented by the variance of individual stock returns and the covariance between different assets or with the market, is highly forecastable. The research in this area however is far from complete and the application of different econometric models is just at its beginning”.

107
Clearly, the need for a methodological framework that enables us to derive better models which are statistically adequate as well as empirically successful is of paramount importance.

In this chapter we propose an alternative approach to modeling multivariate volatility in speculative prices, which follows the PR methodology. We extend the traditional Normal, Linear, Homoskedastic VAR in the direction of non-Normal distributions, in particular, we use the Student’s t distribution. The theoretical specification for the multivariate Student’s t VAR is derived in the following sections. The main motivation behind this choice has been the desire to develop models which enable us to capture the ‘stylized facts’ of leptokurticity, non-linear dependence and heteroskedasticity observed in speculative price data\(^1\). Another important reason for adopting the PR approach is that it gives rise to coherent models. In other words, models developed using the PR methodology ensure positive definiteness without requiring any additional or complicated coefficient restrictions. A third reason for using this approach is that it is ideal for bridging the gap between the statistical and theoretical volatility models of interest in Finance such as the CAPM model.

We begin by introducing our notation and present some useful results on the matrix t distribution, Toeplitz matrices and matrix algebra in Section 6.2. In this section we also introduce the differential approach to matrix calculus. These results will be subsequently used for deriving the specification of the Student’s t VAR model, which is accomplished in Section 6.3. In this section we also discuss the maximum likelihood estimation of this model. Section 6.4 compares the Student’s t VAR model with the traditional Normal, Linear, Homoskedastic VAR and the most popular GARCH type formulations. A comparison with the univariate Student’s t AR model discussed in Chapter 3 is also provided. Finally, Section 6.5 concludes by summarizing the main theoretical points of this chapter.

6.2 Statistical Preliminaries

Before proceeding further we introduce notation and present relevant results on the matrix variate Student’s t distribution. We then state some important results on Toeplitz matrices, which will be

\(^1\)An overview of the PR methodology can be found in Chapter 2. In Chapter 3 stylized facts pertaining to speculative price data are discussed in the context of univariate volatility models.
subsequently used in the derivation of the Student’s t VAR model. This section also contains an assortment of definitions and useful results on matrix algebra and matrix calculus. The material on matrix algebra presented here can be found in any standard book on this topic like Dhrymes (2000) and Lütkepohl (1996). The matrix derivative results in this section are largely taken from Magnus and Neudecker (1999).

6.2.1 Matrix Variate t distribution

Multivariate statistical methods have been extensively used in the literature, with most of the analysis relying heavily on the multivariate Normal distribution. The main reason for this has been the mathematical tractability and the application of the central limit theorem which states that even when the original data is not multivariate Normal, the sampling distribution of certain scaled statistics can be approximated by the Normal. It was also observed that the assumption of independence of multivariate observations is usually violated, especially for multivariate time series data and stochastic processes. These instances motivated the introduction of the matrix variate Normal distribution. For an excellent presentation of new results and developments in the continuous matrix variate distribution theory see Gupta and Nagar (1999).

Until recently the dominance of the Normal among the continuous multivariate distributions was more marked than that of the Normal among the continuous univariate distributions. The need however, for other usable multivariate distributions was recognized since the early 1970s, and spurred the growth in research related to non-Normal multivariate distributions. The matrix t distribution which is of interest to us, was first introduced by Kshirsagar (1961). He showed that the unconditional distribution of the usual estimator of the matrix of regression coefficients has a matrix variate t distribution. The results on the matrix variate t distribution presented below are taken from Gupta and Nagar (1999). We begin with the definition of a random matrix, followed by the definition of the matrix variate t distribution. We then argue that the multivariate t is just a special case of the matrix t distribution.

Definition 1: The matrix $Z_{T \times m}$ consisting of Tm elements $z_{11}(), z_{12}(), \ldots, z_{Tm}()$ which are real valued functions defined on the sample space S, is a real random matrix if the range $R^{T \times m}$ of
\[
\begin{pmatrix}
 z_{11}() & \ldots & z_{1m}() \\
 \vdots \\
 z_{T1}() & \ldots & z_{Tm}()
\end{pmatrix}, \text{ consists of Borel sets of } Tm\text{-dimensional real space and if, for each}
\]

Borel set \(B \) of real \(Tm \)-tuples, arranged in a matrix

\[
\begin{pmatrix}
 z_{11} & \ldots & z_{1m} \\
 \vdots \\
 z_{T1} & \ldots & z_{Tm}
\end{pmatrix}, \text{ in } \mathbb{R}^{T \times m},
\]

the set

\[
\left\{ s \in S : \begin{pmatrix}
 z_{11}(s_{11}) & \ldots & z_{1m}(s_{1m}) \\
 \vdots \\
 z_{T1}(s_{T1}) & \ldots & z_{Tm}(s_{Tm})
\end{pmatrix} \in B \right\}
\]

is an event in \(S \).

More specifically, the next definition imposes the Student’s \(t \) distribution on the random matrix.

Definition 2: The random matrix \(Z \ (T \times m) \) is said to have a matrix variate \(t \)-distribution with parameters \(M, V, \Omega \) and \(\nu \) if its p.d.f. can be expressed as follows:

\[
\begin{align*}
\frac{\Gamma_T\left(\frac{1}{2}(\nu+m+T-1)\right)}{\pi^{\frac{Tm}{2}}\Gamma_{\nu}\left(\frac{1}{2}(\nu+T-1)\right)} \det(V)^{-\frac{1}{2}m} \det(\Omega)^{-\frac{1}{2}T} \\
\det(I_m + \Omega^{-1}(Z - M)V^{-1}(Z - M))^{-\frac{1}{2}(\nu+m+T-1)}
\end{align*}
\]

(6.1)

where \(Z \in \mathbb{R}^{T \times m}, M \in \mathbb{R}^{T \times m}, \Omega \in \mathbb{R}^{m \times m} > 0, V \in \mathbb{R}^{T \times T} > 0 \) and \(\nu > 0 \).

The matrix \(M \) represents the matrix of means for each observation. We denote the variance-covariance matrices by \(\Omega \) and \(V \) which have also been referred to as spread matrices by Dickey, Dawid and Kadane (1986). Note that if we interpret \(T \) as the number of observations and \(m \) as the number of variables, then \(\Omega \) represents the contemporaneous variance-covariance matrix and \(V \) represents the temporal variance-covariance matrix. The degree of freedom parameter is denoted by \(\nu \) and \(\Gamma_T \) is the multivariate gamma function\(^2\). The matrix variate \(t \) distribution will be denoted by:

\[
Z \sim Z_{T,m}(\nu, M, V, \Omega)
\]

\(^2\)The multivariate gamma function takes the following form:

\[
\Gamma_T(\nu) = \pi^{\frac{T(T-1)}{2}} \prod_{j=1}^{T} \Gamma \left[\nu - \frac{1}{2}(j - 1) \right], \text{Re}(h) > \frac{1}{2}(T - 1).
\]
Remark 1: The multivariate Student’s t distribution is a special case of the matrix variate Student’s t distribution. Consider the case when \(m = 1 \), that is when we have a single variable over \(T \) time periods (alternatively consider \(T = 1 \), i.e., when we have \(m \) variables at the same point in time). It is easy to see that the matrix variate t distribution now reduces to a multivariate t distribution. In other words, the matrix formulation is general enough that it includes the multivariate distribution as a special case. More specifically, when \(m = 1 \), \(Z \) becomes a \((T \times 1)\) vector and \(M \) becomes a \((T \times 1)\) vector denoted by \(\mu \). The temporal variance-covariance matrix is still represented by \(V \), whereas \(\Omega \) now becomes a scalar denoted by \(\omega \). This is shown in our next definition.

Definition 3: The multivariate t distribution can be expressed as follows:

\[
\frac{\Gamma \left[\frac{1}{2} (\nu + T) \right]}{\pi^{T/2} \Gamma \left[\frac{1}{2} (\nu) \right]} \det (V)^{-\frac{1}{2}} \omega^{-\frac{T}{2} \nu} \left(1 + \frac{1}{\omega} (Z - \mu)' V^{-1} (Z - \mu) \right)^{-\frac{1}{2} (\nu + T)} , \ t \in \mathbb{R}^T .
\]

and will be denoted by \(t \sim St_T(\nu, \omega, \mu, V) \).

We now define some matrix operations and their properties that will be quite useful to us later. Vectors and matrices will be denoted by boldface characters while we reserve the normal characters for scalars. We start with the definition of trace followed by some of its properties.

Definition 4: The trace of a square \((n \times n)\) matrix \(A \), denoted by \(tr(A) \) or \(trA \), is the sum of its diagonal elements:

\[
tr A = \sum_{i=1}^{n} a_{ii} .
\]

Some of the more important properties of the trace operator are stated in the next lemma.

Lemma 1: Properties of the Trace operator.

1. \(tr (A + B) = tr (A) + tr (B) . \)
2. \(tr (\lambda A) = \lambda tr A \) where \(\lambda \) is a scalar.
3. \(tr (A') = tr (A) . \)
4. $\text{tr}(AB) = \text{tr}(BA)$. Note that matrices AB and BA are both square matrices but are not required to have the same order.

We now present the definition of the Kronecker product of matrices which transforms two matrices $A = (a_{ij})$ and $B = (b_{st})$ into a matrix $C = (a_{ij}b_{st})$.

Definition 5: Let A be an $m \times n$ matrix and B an $p \times q$ matrix. The $mp \times nq$ matrix written as $A \otimes B$ is called the Kronecker product of matrices A and B and is defined as:

\[
A \otimes B = \begin{bmatrix}
a_{11}B & \cdots & a_{1n}B \\
\vdots & \ddots & \vdots \\
a_{m1}B & \cdots & a_{mn}B
\end{bmatrix}
\]

We continue to the $\text{vec}(\cdot)$ operator which converts a matrix into a vector by stacking its columns one underneath the other.

Definition 6: Let X be an $(m \times n)$ matrix. Then $\text{vec}(X)$ is an $mn \times 1$ vector defined as:

\[
\text{vec}(X) = \begin{pmatrix}
X_1 \\
\vdots \\
X_n
\end{pmatrix}
\]

Finally, we present some useful properties of the vec operator in the next lemma. This lemma lays down the expressions connecting the trace, Kronecker product and the vec operator.

Lemma 2: Properties of the vec operator.

1. $\text{vec}(a^t) = \text{vec}(a) = a$ for any column vector a.

2. $\text{vec}(ab^t) = b \otimes a$ for any column vectors a and b (not necessarily of the same order).

3. $(\text{vec}(A))^t \text{vec}(B) = \text{tr}(A'B)$ where A and B are matrices of the same order.

4. $\text{vec}(ABC) = (C' \otimes A) \text{vec}(B)$
5. \[\text{vec}(AB) = (B' \otimes I_m) \text{vec}(A) \]
\[= (B' \otimes A) \text{vec}(I_m) = (I_q \otimes A) \text{vec}(B) \]

where \(A \) is an \((m \times n)\) matrix and \(B \) is an \((n \times q)\) matrix.

The next set of lemmas state some useful properties of the matrix variate \(t \) distribution.

Lemma 3: [Gupta and Nagar (1999), Theorem 4.3.1, pg.135]

Let \(Z \sim Z_{T,m}(\nu, M, V, \Omega) \), then

\[E(Z) = M \quad \text{and} \quad \text{Cov}(\text{vec}(Z')) = \frac{1}{(\nu-2)}V \otimes \Omega, \quad \nu > 2. \]

The above lemma defines the mean and variance-covariance matrix for the matrix variate \(t \) distribution. Our next lemma shows how to use rows and column partitions for deriving the form of the marginal and conditional distributions starting from the matrix variate \(t \) distribution. This technique is relevant for the derivation of the Student’s \(t \) VAR model.

Lemma 4: [Gupta and Nagar (1999), Theorem 4.3.9]

Let \(Z \sim Z_{T,m}(\nu, M, V, \Omega) \).

1. Partition \(Z \) as follows: \(Z = \begin{pmatrix} Z_{1r} \\ Z_{2r} \end{pmatrix} \), where \(Z_{1r} \) is a \((T_1 \times m)\) matrix and \(Z_{2r} \) is a \((T_2 \times m)\) and \(T_1 + T_2 = T \).

2. \(M \) can be partitioned in the same way as \(Z \). So \(M = \begin{pmatrix} M_{1r} \\ M_{2r} \end{pmatrix} \), where \(M_{1r} \) and \(M_{2r} \) have the same dimensions as \(Z_{1r} \) and \(Z_{2r} \) respectively.

3. \(V \) is partitioned as follows: \(V = \begin{pmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{pmatrix} \), where \(V_{11} \) is \((T_1 \times T_1)\), \(V_{12} \) is \((T_1 \times T_2)\), \(V_{21} \) is \((T_2 \times T_1)\) and \(V_{22} \) is \((T_2 \times T_2)\).

4. Finally, \(\Omega \) need not be partitioned since we are partitioning in terms of rows.
Then,

(a) the functional form of marginal distribution of this row partition denoted by $Z_{2r} \sim Z_{T_2} (\nu, M_{2r}, V_{22}, \Omega)$ can be represented as follows:

$$f_1(Z_{2r}) = \frac{\Gamma_{T_2} \left[\frac{1}{2} (\nu + m + T_2 - 1) \right]}{\pi^{\frac{1}{2}mT_2} \Gamma_{T_2} \left[\frac{1}{2} (\nu + T_2 - 1) \right]} \det (V_{22})^{-\frac{1}{2}m} \det (\Omega)^{-\frac{1}{2}T_2} \det (I_m + \Omega^{-1}(Z_{2r} - M_{2r})' V_{22}^{-1} (Z_{2r} - M_{2r}))^{-\frac{1}{2}(\nu + m + T_2 - 1)}$$

(b) Similarly, the conditional distribution is denoted as

$$Z_{1r} | Z_{2r} \sim Z_{T_1,m} \left(\begin{array}{c} \nu + T_2, M_{1r} + V_{12} V_{22}^{-1} (Z_{2r} - M_{2r}), V_{11,2}, \Omega (I_m + \Omega^{-1}(Z_{2r} - M_{2r})' V_{22}^{-1} (Z_{2r} - M_{2r})) \end{array} \right)$$

where $V_{11,2} = V_{11} - V_{12} V_{22}^{-1} V_{21}$, and the conditional distribution’s functional form is given by:

$$f(Z_{1r} | Z_{2r}) = \frac{\Gamma_{T_1} \left[\frac{1}{2} (\nu + m + T - 1) \right]}{\pi^{\frac{1}{2}mT_1} \Gamma_{T_1} \left[\frac{1}{2} (\nu + T - 1) \right]} \det (I_m + \Omega^{-1}(Z_{2r} - M_{2r})' V_{22}^{-1} (Z_{2r} - M_{2r}))^{-\frac{1}{2}T} \det (\Omega)^{-\frac{1}{2}T_1} \det ((V_{11,2})^{-\frac{1}{2}m}) \det (I_m + \Omega^{-1}(Z_{2r} - M_{2r})' V_{22}^{-1} (Z_{2r} - M_{2r}))^{-1} \Omega^{-1}(Z_{1r} - M_{1r} - V_{12} V_{22}^{-1} (Z_{2r} - M_{2r}))' V_{11,2}^{-1}(Z_{1r} - M_{1r} - V_{12} V_{22}^{-1} (Z_{2r} - M_{2r}))^{-\frac{1}{2}(\nu + m + T - 1)}$$

Remark 2: Row partitions (of the type shown above) can be used to model the temporal interdependencies between the variables. Recall that Ω represents the contemporaneous variance covariance matrix and therefore need not be partitioned. Note that since we condition on Z_{2r} the degree of freedom parameter now becomes $\nu + T_2$. Column partitions can be done in a similar way.

Using the above lemma on row partitions we can express the matrix variate t distribution as a product of multivariate densities. By letting $T_1 = 1$, $T_2 = T - 1$, $Z_{1r} = Z_1$ and $Z_{2r} = (Z_2, Z_3, \ldots Z_T)$, as before the conditional density of this row partition becomes:
\[Z_1 | Z_{2r} \sim Z_{1,m} \left(\begin{array}{c} \nu + T - 1, M_{1r} + V_{12} V_{22}^{-1}(Z_{2r} - M_{2r}), \\ \Omega(I_m + \Omega^{-1}(Z_{2r} - M_{2r})V_{22}^{-1}(Z_{2r} - M_{2r})'), V_{11} \end{array} \right) \]

Observe that we can repeat this procedure \((T - 1)\) times sequentially for all variables \(Z_i, i = 2, \ldots, T - 1\). Then we can decompose the density of \(Z\) as a product of \((T - 1)\) conditional distributions and one marginal distribution as shown below:

\[f(Z) = f_1(Z_1 | Z_2, Z_3, \ldots Z_T) f_2(Z_2 | Z_3, \ldots Z_T) \ldots f_2(Z_{T-1} | Z_T) f_T(Z_T) \]

where every density on the right hand side is an \(m\) dimensional multivariate \(t\) density. Information in the matrix \(t\) distribution can thus be expressed by the product of \(T\) \((m-\text{dimensional})\) Student \(t\) densities. This decomposition will be crucial in the derivation of the Student’s \(t\) VAR model.

Next we present some useful results of Toeplitz matrices and their inverses.

6.2.2 Some Important Results on Toeplitz Matrices

Toeplitz matrices appear in a wide variety of applications including structural engineering, econometrics, seismology, etc. The structure of these matrices\(^3\) allows for a reduction in the number of parameters and is thus useful in estimation and testing. In econometrics we encounter Toeplitz matrices in time series analysis of stationary stochastic processes and in particular, the variance-covariance matrices of such processes usually have a Toeplitz structure. We start with the definition of a Toeplitz matrix.

Definition 7: A matrix \(V_T\) \((T \times T)\) is called real Toeplitz matrix if its elements obey the rule \(v_{ij} = v_{i-j}\) for all \(i, j = 1, \ldots, T\), and \(v_{ij} \in \mathbb{R}\). The matrix \(V_T\) has the following structure:

\(^3\)For an exhaustive survey of the properties of Toeplitz matrices see Mukherjee and Maiti (1988), and Pustyl’nikov (1984).
The Toeplitz matrices we encounter in econometric applications are often symmetric and positive definite. So next we define a symmetric Toeplitz matrix.

Definition 8: A matrix \(V_T \) \((T \times T)\) is called real symmetric Toeplitz matrix if its elements obey the rule \(v_{ij} = v_{|i-j|} \) for all \(i, j = 1, \ldots, T \). The matrix \(V_T \) is a function of \(T \) parameters i.e., \(V_T = V_T(v_0, v_1, \ldots, v_{T-1}) \) and is centrosymmetric\(^4\). It has the following structure:

\[
V_T = \begin{pmatrix}
 v_0 & v_1 & v_2 & \cdots & v_{T-2} & v_{T-1} \\
 v_{-1} & v_0 & v_1 & \cdots \\
 v_{-2} & v_{-1} & v_0 & \cdots \\
 \vdots & \vdots & \vdots & \ddots & \cdots \\
 v_{T-2} & \cdots & v_0 & v_1 \\
 v_{T-1} & \cdots & v_1 & v_0
\end{pmatrix}
\]

Another important issue that received a lot of attention in the literature is the problem of inversion of matrices with Toeplitz structure. This is of particular interest to econometricians, since Toeplitz matrices with banded inverses arise in studying variance-covariance matrices of autoregressive and moving average processes (see Barrett (1984)). Hence, we now present the definition of a \(p \)-banded matrix.

Definition 9: A matrix \(Q \) is \(p \)-banded if \(q_{ij} = 0 \) for \(|i-j| > p \). For \(p = 2 \), the matrix \(Q \) can be written as follows:

\[A T \times T matrix V is centrosymmetric if v_{ij} = v_{T+1-i,T+1-j} for all i, j = 1, \ldots, T.\]
The next lemma states the conditions that make the inverse of a Toeplitz matrix a p-banded matrix.

Lemma 5: [Proposition 1 Spanos (1990), pg. 12]

Let $V_T = [v_{i-j}]_{i,j=0}^{T-1}$ be a non-singular, symmetric Toeplitz matrix, i.e.

$$
V_T = \begin{pmatrix}
 v_0 & v_1 & v_2 & \ldots & v_{T-2} & v_{T-1} \\
 v_1 & v_0 & v_1 & \ldots & v_{T-3} & v_{T-2} \\
 v_2 & v_1 & v_0 & \ldots & v_{T-4} & v_{T-3} \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 v_{T-2} & \ldots & v_0 & v_1 & v_0 \\
 v_{T-1} & \ldots & v_1 & v_0 & v_1
\end{pmatrix}
$$

such that $|v_k| \leq c\lambda^k$, $0 < c < \infty$, $0 < \lambda < 1$, $k = 1, 2, \ldots$

Then $Q_T = V_T^{-1}$:

(a) is a p-banded matrix i.e., $q_{ij} = 0$ for $|i - j| > p$.

(b) $q_{ij} = q_{km}$ for $|i - j| = |k - m| > 0$ for ordered pairs $(i, j) \neq (k, m)$.

Hence for $p = 2$,
\[Q_T = \begin{bmatrix} q_{11} & q_{12} & q_2 & 0 & 0 & \ldots & 0 & 0 \\ q_{12} & q_{22} & q_1 & q_2 & 0 & \ldots & 0 & 0 \\ q_2 & q_1 & q_0 & q_1 & q_2 & \ldots & 0 & 0 \\ 0 & q_2 & q_1 & q_0 & q_1 & \ldots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & 0 & 0 & \ldots & q_1 & q_2 \\ 0 & 0 & 0 & 0 & 0 & \ldots & q_{22} & q_{12} \\ 0 & 0 & 0 & 0 & 0 & \ldots & q_{12} & q_{11} \end{bmatrix} \]

Note that \(q_{ij} = 0 \) for \(|i - j| > p \) and \(q_{ij} \) is a function of \(|i - j|\) for \(|i - j| < p \), except in the \(p \times p \) submatrix in the upper left and lower right corners of \(Q_T \). These two submatrices are mirror images of each other and contain terms that are different from the rest of the matrix. Moreover, each of these matrices is symmetric along its main diagonal. In fact, \(Q_T \) is a quasi-Toeplitz and persymmetric\(^5\) matrix. For \(p = 2 \), the number of distinct elements in \(Q_T \) is 6 and when \(p = 3 \) it is 10. In general note that the number of distinct elements in the \(Q_T \) matrix is \(\frac{(p+1)(p+2)}{2} \).

6.2.3 Matrix Calculus and Differentials

The purpose of this sub-section is to introduce the notion of the differential for obtaining partial derivatives that involve matrix, vector and scalar functions of scalar, vector and matrix variables. It is has been argued that this approach based on the differential (which is different from the traditional matrix derivatives approach) is ideally suited for the type of multivariate functions that we encounter in econometrics\(^6\). We begin by defining the differential and then presenting the First Identification Theorem which is the corner stone of the differential approach since it is used to obtain the derivative (the Jacobian matrix) from the differential.

Definition 10 Let \(f : S \to \mathbb{R}^m \) be a function defined on a set \(S \) in \(\mathbb{R}^n \). Let \(c \) be an interior point of \(S \), and let \(B(c; r) \) be an \(n \)-ball lying in \(S \). Let \(u \) be a point in \(\mathbb{R}^n \) with \(\|u\| < r \), so that

\(^5\)A \((T \times T)\) matrix \(V \) is persymmetric if it is symmetric with respect to the diagonal from the upper right hand corner to the lower left hand corner. A quasi-Toeplitz matrix is a matrix that has a Toeplitz like structure.

\(^6\)For more on the advantages of this approach and how it differs from the traditional one see the introductory chapters in Magnus and Neudecker (1999).
\[c + u \in B(c; r). \text{ If there exists a real } m \times n \text{ matrix } A, \text{ depending on } c \text{ but not on } u, \text{ such that } f(c + u) = f(c) + Ac(u) + r_c(u) \text{ for all } u \in \mathbb{R}^n \text{ with } \|u\| < r, \text{ and } \lim_{u \to 0} \frac{r_c(u)}{\|u\|} = 0, \quad (6.4) \]

then the function \(f \) is said to be differentiable at \(c \) and \(r_c(u) \) is the remainder term in the first order Taylor’s expansion, which is of smaller order than \(u \) as \(u \to 0 \). The \(m \times n \) matrix \(A(c) \) is then called the (first) derivative of \(f \) at \(c \), and the \(m \times 1 \) vector \(df(c; u) = A(c)u \), which is a linear function of \(u \) is called the (first) differential of \(f \) at \(c \) (with increment \(u \)).

We now state the primary result used in the differential approach.

Lemma 6 : [First Identification Theorem, Magnus and Neudecker, (1999) pg. 87]

(a) For vector function: Let \(f : S \to \mathbb{R}^m \) be a vector function defined on a set \(S \) in \(\mathbb{R}^m \), and differentiable at an interior point \(c \) of \(S \). Let \(u \) be a real \(n \times 1 \) vector. Then

\[df(c; u) = (Df(c)) u, \]

where \(df(c; u) \) represents the differential at \(c \) and \(Df(c) \) is an \(m \times n \) matrix whose elements \(D_jf_i(c) \) are the partial derivatives of \(f \) evaluated at \(c \).

(b) For matrix functions: Let \(F : S \to \mathbb{R}^{m \times p} \) be a matrix function defined on a set \(S \) in \(\mathbb{R}^{n \times q} \), and differentiable at an interior point \(C \) of \(S \). Then

\[\text{vec}dF(C; U) = A(C) \text{vec}U, \]

for all \(U \in \mathbb{R}^{n \times q} \) if and only if \(DF(C) = A(C) \).

This theorem has great practical value since computations with differentials are relatively easy and once we have found the differential the value of the partial derivatives can be immediately determined. Another result that we use throughout is the extension of the chain rule for matrix functions. This is stated in the next lemma.
Lemma 7: [Chain Rule for Matrix Functions, Magnus and Neudecker, (1999)]

Let S be a subset of $\mathbb{R}^{n \times q}$, and assume that $F : S \rightarrow \mathbb{R}^{m \times p}$ is differentiable at an interior point C of S. Let T be a subset of $\mathbb{R}^{m \times p}$ such that $F(X) \in T$ for all $X \in S$, and assume that $G : T \rightarrow \mathbb{R}^{r \times s}$ is differentiable at an interior point $B = F(C)$ of T. Then the composite function $H : S \rightarrow \mathbb{R}^{r \times s}$ defined by $H(X) = G(F(X))$ is differentiable at C, and $DH(C) = (DG(B))(DF(C))$.

Next we present some fundamental rules for differentiating matrices.

Basic rules for matrix differential calculus: Let U and V be matrix functions, a be a real constant and A a matrix of real constants. Then the following rules always apply.

1. $dA = 0$
2. $d(aU) = adU$
3. $d(U + V) = dU + dV$
4. $d(U - V) = dU - dV$
5. $d(UV) = (dU)V + U(dV)$
6. $dU' = (dU)'$
7. $dvecU = vecdU$
8. $dtrU = trdU$
9. $d\log(\det U) = trU^{-1}dU$

In econometrics we frequently encounter problems which involve partial derivatives of matrix, vector and scalar functions of matrix, vector or scalar variables. In this chapter we will use the tools provided by the first identification theorem and the chain rule to derive the first order conditions for our maximum likelihood function in Section 6.3.2. The first identification theorem works in the following way: (i) Given a matrix function of a matrix variable $F(X)$, we first compute the differential of $F(X)$. (ii) Then vectorize $F(X)$ to obtain the form $dvecF(X) = A(X)dvecX$. From this we can then determine the derivative which is represented by $DF(X) = A(X)$,
The maximum likelihood function is a scalar function of potentially scalar, vector and matrix variables. Consequently, to obtain the partial derivatives from $DF(X)$ we use the result stated below:

$$D\phi(X) = \left(\text{vec} \left(\frac{\partial \phi(X)}{\partial(X)} \right) \right)'$$

where $\phi(.)$ represents a scalar function and X is a matrix variable.

6.3 Student’s t VAR Model

In this section we specify the Student’s t Vector Autoregressive Model using the Probabilistic Reduction approach. The VAR representation enables us to model the dynamic interdependence between the variables in Z_t, since every variable depends linearly on the history of all the other variables. This is particularly important in Financial Econometrics, since it provides a realistic and sensible model that can capture the dynamic interrelationship between the volatilities of the different variables. Moreover, the choice of Student’s t distribution implies a particular functional form for the conditional variance which enables us to model the empirical regularities of leptokurticity, non-linear dependence, heteroskedasticity and variance heterogeneity that is observed in speculative price data.

6.3.1 Specification

In the context of the Probabilistic Reduction approach, the VAR can be viewed as the statistical\(^7\) model, that provides a summary of the systematic information in the observed multivariate process $\{Z_t, t \in T\}$. The operational VAR model is specified by imposing certain reduction assumptions on the joint distribution of the vector stochastic process $\{Z_t, t \in T\}$. The reduction assumptions are derived from the probabilistic features of the underlying stochastic process and can be summarized into three categories: Distributional assumption, Dependence and (time) Heterogeneity assumptions. For the Student’ t VAR model the reduction assumptions are given by:

\(^7\)Note that in the context of the PR approach the statistical model need not coincide with the economic theory model under investigation.

121
1. Distribution: Matrix variate t

Let Z be a $(T \times m)$ matrix of m variables over T time periods. The joint distribution of the underlying vector stochastic process $\{Z_t, \; t \in \mathbb{T}\}$ is a matrix variate t distribution. Using Lemma 3 from Section 6.2 it can be expressed as follows:

$$
vec(Z_0) = \begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_T \end{pmatrix} \sim \text{St}_{T,m} \left(\begin{pmatrix} \mu(1) \\ \mu(2) \\ \vdots \\ \mu(T) \end{pmatrix}, \begin{pmatrix} v_{11}\Omega & v_{12}\Omega & v_{13}\Omega & \cdots & v_{1T}\Omega \\ v_{21}\Omega & v_{22}\Omega & v_{23}\Omega & \cdots & v_{2T}\Omega \\ v_{31}\Omega & v_{32}\Omega & v_{33}\Omega & \cdots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{T1}\Omega & v_{T2}\Omega & \cdots & \cdots & v_{TT}\Omega \end{pmatrix}; \nu \right) \quad (6.6)
$$

where $Z_t = (Z_{t1}, Z_{t2}, \ldots, Z_{tm})'$, and $\mu(t) = (\mu_1, \mu_2, \ldots, \mu_m)'$ are $(m \times 1)$ vectors, V is a $(T \times T)$ temporal covariance matrix, Ω is an $(m \times m)$ contemporaneous variance-covariance matrix and $\text{Cov}(vec(Z')) = \frac{1}{\nu^2} (V \otimes \Omega)$ is a $(Tm \times Tm)$ matrix.

2. Dependence: Markov(p)

We assume a Markov process of order p so as to allow for any weak form of linear dependence that might be present in the data. This means that the conditional mean of Z_t can be described by a Markov (p) process.

3. Heterogeneity: Second Order Stationarity

This conditions allows us to express the first two moments. We can write the mean as:

$$E(Z_t) = \mu(t) = \mu \quad \text{for all } t \in \mathbb{T}.$$
Since Ω is the contemporaneous covariance matrix, stationarity can only be seen in the temporal covariance matrix V

\[
\begin{pmatrix}
v_{11}\Omega & v_{12}\Omega & v_{13}\Omega & \ldots & v_{1T}\Omega \\
v_{21}\Omega & v_{22}\Omega & v_{23}\Omega & \ldots & v_{2T}\Omega \\
v_{31}\Omega & v_{31}\Omega & v_{33}\Omega & \ldots & \\
\vdots & \vdots & \vdots & \ddots & \\
v_{T1}\Omega & v_{T2}\Omega & v_{TT}\Omega
\end{pmatrix}
\]

Stationarity

\[
\begin{pmatrix}
v_{0}\Omega & v_{1}\Omega & v_{2}\Omega & \ldots & v_{T-1}\Omega \\
v_{1}\Omega & v_{0}\Omega & v_{1}\Omega & \ldots & v_{T-2}\Omega \\
v_{2}\Omega & v_{1}\Omega & v_{0}\Omega & \ldots & \\
\vdots & \vdots & \vdots & \ddots & \\
v_{T-1}\Omega & v_{T-2}\Omega & v_{T-3}\Omega & \ldots & v_{0}\Omega
\end{pmatrix}
\]

We can see from the above that after imposing stationarity matrix V becomes a symmetric Toeplitz matrix and $V \otimes \Omega$ becomes a Block Toeplitz matrix. Taken together these assumption imply that this matrix t distribution can be represented by:

\[
\begin{pmatrix}
Z_1 \\
Z_2 \\
\vdots \\
Z_T
\end{pmatrix}
\sim \text{St}_{T,m}
\begin{pmatrix}
\begin{pmatrix}\mu \\ \mu \end{pmatrix}v_{0}\Omega & v_{1}\Omega & v_{2}\Omega & \ldots & v_{T-1}\Omega \\
v_{1}\Omega & v_{0}\Omega & v_{1}\Omega & \ldots & v_{T-2}\Omega \\
v_{2}\Omega & v_{1}\Omega & v_{0}\Omega & \ldots & \\
\vdots & \vdots & \vdots & \ddots & \\
v_{T-2}\Omega & v_{T-3}\Omega & v_{T-4}\Omega & \ldots & v_{0}\Omega \\
v_{T-1}\Omega & v_{T-2}\Omega & v_{T-3}\Omega & \ldots & v_{1}\Omega \\
\end{pmatrix}; \nu
\]

Using these assumptions the reduction can be performed in the following way:

\[A\]

A matrix of the form

\[
\begin{pmatrix}
A_1 & A_{q+1} & \ldots & A_{2q-1} \\
A_2 & A_1 & \ldots & A_{2q-2} \\
\vdots & \vdots & \ddots & \\
A_q & \ldots & A_{q+1} & A_1
\end{pmatrix}
\]

with $A_{ij} = A_{i+k,j+k}$ for all i, j, k, is defined as a Block Toeplitz matrix. Here the A_{ij} are ($p \times p$) matrices.
\[D(\mathbf{Z}_1, \mathbf{Z}_2, \mathbf{Z}_3, \ldots \mathbf{Z}_T; \psi(t)) = D_1(\mathbf{Z}_1; \varphi_1) \prod_{t=2}^{T} D(\mathbf{Z}_t | \mathbf{Z}_{t-1}, \mathbf{Z}_{t-2}, \ldots \mathbf{Z}_1; \varphi(t)) \]

\[M(p) = D(\mathbf{Z}_p; \varphi_1(t)) \prod_{t=p+1}^{T} D(\mathbf{Z}_t | \mathbf{Z}_{t-1}, \mathbf{Z}_{t-2}, \ldots \mathbf{Z}_{t-p}; \varphi_2(t)) \]

\[SS = D(\mathbf{Z}_p; \varphi_1) \prod_{t=p+1}^{T} D(\mathbf{Z}_t | \mathbf{Z}_{t-p-1}; \varphi_2) \]

where \(\mathbf{Z}_{t-p-1} := (\mathbf{Z}_{t-1}, \mathbf{Z}_{t-2}, \ldots, \mathbf{Z}_{t-p}) \) denotes the past history of \(\mathbf{Z}_t \) and \(\mathbf{Z}_p \equiv (\mathbf{Z}_1, \ldots, \mathbf{Z}_p) \) denotes the initial conditions. Also \(\psi(t), \varphi_1, \) and \(\varphi_2 \) denote the parameters in the joint, marginal and conditional distributions respectively. The first equality shows that the joint distribution can be decomposed into a product of \((T-1)\) conditional distributions and one marginal distribution. The assumption of Markov\((p)\) changes the conditioning information set to \((\mathbf{Z}_{t-1}, \mathbf{Z}_{t-2}, \ldots, \mathbf{Z}_{t-p})\), thus solving the problem of changing information set for each distribution. The third equality shows that under the assumption of second order stationarity, the statistical parameters \(\varphi_1 \) and \(\varphi_2 \) are time invariant. This leads to a reduction in the number of unknown parameters. Finally to characterize the probability model and hence the specification of the conditional moments and the statistical VAR model, we need to consider the functional form of the conditional distribution \(D(\mathbf{Z}_t | \mathbf{Z}_{t-p}; \varphi) \).

For this reason we invoke Lemma 4 from the previous section to perform the row partitions.

Let \(\mathbf{Z} \) be a \((T \times m)\) matrix where \(T \) denotes the time period and \(m \) the number of variables. We can then partition \(\mathbf{Z} \) in the following way:

\[\mathbf{Z} = \begin{pmatrix} \mathbf{Z}_{t-1}^0 \\ \mathbf{Z}_t \end{pmatrix}, \quad \text{where} \quad \mathbf{Z}_t \text{ a (1 x m) vector and} \quad \mathbf{Z}_{t-1}^0 \text{ is a ((T - 1) x m) matrix of the past history of all the variables in} \mathbf{Z}_t. \quad \text{The matrix of means can be partitioned in the same way:} \]

\[\mathbf{M} = \begin{pmatrix} \mathbf{M}_{t-1}^0 \\ \mu_t \end{pmatrix}, \quad \text{where} \quad \mu_t \text{ and} \quad \mathbf{M}_{t-1}^0 \text{ have the same dimensions as} \mathbf{Z}_t \text{ and} \quad \mathbf{Z}_{t-1}^0 \text{ respectively.} \]

Note that \(\mu_t \) is a row vector of the means of the different variables at time \(t \), while \(\mathbf{M}_{t-1}^0 \) is a matrix of the past history of the means. However, because of the stationarity assumption the means at different points in time are the same. Using Lemma 4 the temporal covariance matrix \(\mathbf{V} \)
is partitioned as follows:

$$\mathbf{V} = \begin{pmatrix} \mathbf{V}_{11} & \mathbf{V}_{12} \\ \mathbf{V}_{21} & \mathbf{V}_{22} \end{pmatrix} = \begin{pmatrix} v_0 & v_1 & v_2 & \ldots & v_{T-2} \\ v_1 & v_0 & v_1 & \ldots \\ v_2 & v_1 & v_0 & \ldots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{T-2} & \ldots & v_0 & \vdots & \vdots \\ v_{T-1} & \ldots & v_{T-2} & \ldots & v_0 \end{pmatrix} \begin{pmatrix} v_{T-1} \\ \vdots \\ v_1 \\ [v_0] \end{pmatrix}$$

Observe that \mathbf{V}_{11} is a $((T-1) \times (T-1))$ symmetric Toeplitz matrix, \mathbf{V}_{12} is a $((T-1) \times 1)$ column vector, \mathbf{V}_{21} is the transpose of \mathbf{V}_{12}, and \mathbf{V}_{22} is now a scalar denoted by v_0. Consequently $V_{22,1}$ is now a scalar since:

$$V_{22,1} = \mathbf{V}_{22} - \mathbf{V}_{21} \left(\mathbf{V}_{11} \right)^{-1} \mathbf{V}_{12}$$

$$= v_0 - \begin{pmatrix} v_{T-1} & \ldots & v_1 \end{pmatrix} \begin{pmatrix} v_0 & v_1 & v_2 & \ldots & v_{T-2} \\ v_1 & v_0 & v_1 & \ldots \\ v_2 & v_1 & v_0 & \ldots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{T-2} & \ldots & v_0 & \vdots & \vdots \end{pmatrix}^{-1} \begin{pmatrix} v_{T-1} \\ \vdots \\ v_1 \end{pmatrix}$$

We denote $V_{22,1}$ by σ^2. Also from Lemma 5 the inverse of \mathbf{V}_{11} is a p-banded matrix denoted by \mathbf{Q}_{t-1}^0. Finally \mathbf{Q}, that is the contemporaneous variance-covariance matrix need not be partitioned since we are partitioning in terms of rows (which in this case is time).

The functional form of the conditional distribution assuming p lags\(^9\) can thus be expressed as:

\(^9\)By assuming Markov of order p, we need to consider only the past history up to p periods.
\[f(Z_t|Z_{t-1}^0) = \frac{\Gamma(\frac{1}{2}(\nu+m+T-1))}{\pi^{\frac{m}{2}}\Gamma(\frac{1}{2}(\nu+T-1))} \det(I_m + \Omega^{-1}(Z_{t-1}^{t-p} - M_{t-1}^{t-p})'Q_{t-1}^{t-p}(Z_{t-1}^{t-p} - M_{t-1}^{t-p}))^{-\frac{1}{2}} \det(\Omega)^{-\frac{1}{2}} \]

\[\det((\sigma^2)^{-\frac{1}{2}m}) \det(I_m + (I_m + \Omega^{-1}(Z_{t-1}^{t-p} - M_{t-1}^{t-p})'Q_{t-1}^{t-p}(Z_{t-1}^{t-p} - M_{t-1}^{t-p}))^{-1} \]

\[\Omega^{-1}(Z_t - \mu_t - V_{21}Q_{t-1}^{t-p}(Z_{t-1}^{t-p} - M_{t-1}^{t-p}))' \]

\[(\sigma^2)^{-\frac{1}{2}(\nu+m+T-1)} \]

(6.8)

where \(m \) is the number of variables in \(Z_t \). Notice that this is similar to the conditional distribution that we had in Lemma 4. In order to re-write the above in a simpler way. Both \(C_t \) and \(D_t \) are \(m \times m \) matrices and can be defined as follows:

\[C_t = \left[(I_m + \Omega^{-1}(Z_{t-1}^{t-p} - M_{t-1}^{t-p})'Q_{t-1}^{t-p}(Z_{t-1}^{t-p} - M_{t-1}^{t-p})) \right] \]

\[D_t = \left(C_t + \left[\frac{1}{\sigma^2} \Omega^{-1}U_t^tU_t \right] \right) \]

We define \(U_t \) which is an \(1 \times m \) vector as follows:

\[U_t = [Z_t - \mu(I_m - B_11_{mp,m} - (B_1^tZ_{t-1}^0))]' \]

which is an \(1 \times m \) vector. Note that \(\Omega^{-1} \), is an \(m \times m \), symmetric and p.d. matrix, \((Q_{t-1}^{t-p}) \), is a \(p \times p \) symmetric and p.d. matrix, and \(\sigma^2 \), is a positive scalar. Finally note that \(B_1 \), is an \(mp \times m \) matrix of coefficients \(\mu \), is an \(1 \times m \) vector of means, \(1_{mp,m} \), is an \(mp \times m \) matrix of ones, \(1_{1 \times p} \), is a \(1 \times p \) vector of ones, \(Z_{t-1}^p \), is an \(p \times m \) matrix of data and \(Z_{t-1}^0 \), is an \(mp \times 1 \) vector of data.

This allows us to rewrite equation 6.8 as:

\[f(Z_t|Z_{t-1}^0) = \frac{\Gamma(\frac{1}{2}(\nu+m+T-1))}{\pi^{\frac{m}{2}}\Gamma(\frac{1}{2}(\nu+T-1))} \det(C_t)^{-\frac{1}{2}} \det(\Omega)^{-\frac{1}{2}} \]

\[\det((\sigma^2)^{-\frac{1}{2}m}) \det(C_t + \left[\frac{1}{\sigma^2} \Omega^{-1}U_t^tU_t \right])^{-\frac{1}{2}(\nu+m+T-1)} \]

(6.9)

126
The following proposition enables us to specify the Student’s \(t \) VAR model based on the first two moments of \(f(Z_t|Z_{t-1}^0) \).

Proposition 1 Let \(\{Z_t, t \in \mathbb{T}\} \) be a Student’s \(t \) with \(\nu (\nu > 1) \) degrees of freedom, stationary stochastic process with stable vector autoregressive representation, then the first two moments of \(f(Z_t|Z_{t-1}^0) \) take the following form:

The conditional mean can be expressed as:

\[
E(Z_t|\sigma(Z_{t-1})) = B_0 + \sum_{i=1}^{p} B_i Z_{t-i} + U_t, \quad t \in \mathbb{N} \tag{6.10}
\]

where \(p \) is the number of lags in the conditional mean because of the Markov(\(p \)) assumption. The conditional variance-covariance matrix can be written as:

\[
Cov(Z_t|\sigma(Z_{t-1})) = \Omega(I_m + \Omega^{-1} \sum_{i=1}^{p} \sum_{j=1}^{p} q_{ij}(Z_{t-i} - \mu)(Z_{t-j} - \mu)) \tag{6.11}
\]

where \(q_{ij} = 0 \) for \(|i - j| > p \), \(q_{ij} = q_{kl} \) for \(|i - j| = |k - l| \).

Proof. The result follows from lemma 4:

\[
E(Z_t/\sigma(Z_{t-1})) = M_{1r} + V_{12}V_{22}^{-1}(Z_{2r} - M_{2r})
\]

\[
= \mu_t - V_{21}Q_{t-1}^0(Z_{t-1} - M_{t-1}^0)
\]

\[
= \mu_t - B_0 Z_{t-1} - U_t
\]

\[
Cov(Z_t/\sigma(Z_{t-1})) = \Omega(I_m + \Omega^{-1}(Z_{2r} - M_{2r})V_{22}^{-1}(Z_{2r} - M_{2r}'))
\]

\[
= \Omega \left(I_m + \Omega^{-1} \left(Z_{t-1} - M_{t-1} \right) V_{t-1}^{-1} \left(Z_{t-1} - M_{t-1} \right) \right)
\]

From lemma (5) \(Q(i, j)_{t-1}^{l-1} \) is \(p \)-banded and ‘quasi-Toeplitz’, giving rise to:
Student’s t Vector Autoregressive Model

\[
E(Z_t | \sigma(Z_{t-1})) = B_0 + \sum_{i=1}^{p} B_i Z_{t-i} + U_t, \quad t \in \mathbb{N}
\]
(6.12)

\[
\text{Cov}(Z_t | \sigma(Z_{t-1})) = \left[\frac{\nu}{\nu + mp - 2} \right] \Omega(I_m + \Omega^{-1} \sum_{i=1}^{p} \sum_{j=1}^{p} q_{ij}(Z_{t-i} - \mu)(Z_{t-j} - \mu) \right]
\]
(6.13)

where \(q_{ij} = 0 \) for \(|i - j| > p \), \(q_{ij} = q_{kl} \) for \(|i - j| = |k - l| \).

The conditional mean is a linear function of the conditioning variables like the Normal VAR(1) process. The conditional variance however, is heteroskedastic and thus can capture the observed second order dependence. Moreover, we do not need to worry about positive definiteness of the conditional variance and coefficient restrictions. The conditional variance is a quadratic function of the past conditioning information, ensuring positive definiteness. Also, overparametrization does not seem to be a problem any more since there are only \(p \) unknown \(q_{ij} \)s and \(m(m+1)/2 \) parameters in \(\Omega \). The conditional mean and the conditional variance parametrizations are interrelated. In particular the parameters (the \(B \) matrix and the and \(q_{ij} \)) are both defined in terms of the \((Q_T) \) matrix.

Example 1: For the purpose of exposition we will now show the VAR(1) case. In this case the reduction takes the form:

\[
D(Z_1, \ldots, Z_T; \psi(t)) = D_1(Z_1; \varphi_1) \prod_{t=2}^{T} D(Z_t | Z_{t-1}, Z_{t-2}, \ldots Z_1; \varphi_2(t))
\]

\[
\overset{M(1)}{=} D(Z_1; \varphi(t)) \prod_{t=2}^{T} D(Z_t | Z_{t-1}; \varphi_2(t))
\]

\[
\overset{SS}{=} D(Z_1; \varphi_1) \prod_{t=2}^{T} D(Z_t | Z_{t-1}; \varphi_2) \quad (Z_1, Z_2, Z_3, \ldots Z_T) \in \mathbb{R}^{mT}
\]
(6.14)

The specific expressions for \(D(Z_t | Z_{t-1}; \varphi) \) can be obtained using the results of the previous section. The Student’s \(t \) VAR(1) model can be fully specified as shown in Table 6.1. It is interesting
I. Statistical GM: \(Z_t = B_0 + B_1 Z_{t-1} + U_t, \ t \in \mathbb{T}. \)

[1] \(D_t = \{Z_{t-1}^0\} \) is the relevant conditioning information set with
- \(\mu_t = E(Z_t | Z_{t-1}^0) = B_0 + B_1 Z_{t-1} \): the systematic component, and
- \(U_t = Z_t - E(Z_t | Z_{t-1}) \): the non-systematic component.

[2] \(\phi := (B_0, B_1, \Omega, V_{11}), \) are the statistical parameters of interest, where
\[
B_0 = E(Z_t) - B_1 E(Z_{t-1}), \quad B_1 = [\text{cov}(Z_{t-1})]^{-1} \text{cov}(Z_t, Z_{t-1}).
\]

[3] The roots of \(\text{det} [I_m \lambda - B_1] = 0 \) have modulus less than one.

[4] No a priori restrictions on \(\phi := (B_0, B_1, V_{11}, \Omega). \)

[5] \(\text{Rank}(Z_1, ..., Z_T) = m. \)

II. Probability model: \(\Phi = \{D(Z_t | Z_{t-1}; \phi), \ \phi := (B_0, B_1, V_{11}, \Omega), \ Z_t \in \mathbb{R}^m\}. \)

\[
\begin{align*}
(\text{i}) \quad D(Z_t | Z_{t-1}; \phi) \text{ is Student's } t, \\
(\text{ii}) \quad E(Z_t | Z_{t-1}; \phi) = B_0 + B_1 Z_{t-1} \text{ is linear in } Z_{t-1}, \\
(\text{iii}) \quad \text{Cov}(Z_t | Z_{t-1}) = \left[\frac{\nu}{\nu + m - 2}\right] \Omega(I_m + \Omega^{-1}(Z_{t-1} - \mu)^\prime V_{11}^{-1}(Z_{t-1} - \mu)) \text{ is heteroskedastic.}
\end{align*}
\]

[6] The parameters \(\phi := (B_0, B_1, V_{11}, \Omega) \) are t-invariant.

III. Sampling model:
- \(\{Z_1, Z_2, ..., Z_T\} \) is a Markov/stationary sample drawn from \(D(Z_t | Z_{t-1}^0; \phi) t \in \mathbb{T}. \)

Table 6.1: The PR Approach: Student’s \(t \) VAR(1) Specification

to see how the reduction assumptions relate to the probabilistic assumptions of the Student’s \(t \) VAR model. This is shown in Table 6.2.
Reduction Assumptions:
\[\{ Z_t, t \in T \} \]

Model Assumptions:
\[\{(Z_t | Z_{t-1}; \varphi), t \in T \} \]

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student’s t</td>
<td>(D(Z_t</td>
</tr>
<tr>
<td>Markov</td>
<td>((U_t</td>
</tr>
<tr>
<td>Stationarity</td>
<td>The parameters ((B_0, B_1, V_{11}, \Omega)) are (t)-invariant.</td>
</tr>
</tbody>
</table>

Table 6.2: Reduction and Probability Model Assumptions: Student’s t VAR

6.3.2 Maximum Likelihood Estimation

The likelihood function is based on the sequential decomposition of the joint distribution \(D(Z_1, Z_2, Z_3, ..., Z_T; \psi(t)) \) as defined by the Probabilistic Reduction assumptions mentioned earlier. After imposing the assumptions of Markov\((p)\) and Stationarity, and assuming that the past information can be summarized by the last observations this reduction takes the form:

\[
D(Z_1, Z_2, Z_3, ..., Z_T; \psi(t)) = D(Z_p; \varphi_1) \prod_{t=p+1}^{T} D(Z_t | Z_{t-1}^{t-p}; \varphi_2)
\]

where \(Z_{t-1}^{t-p} := (Z_{t-1}, Z_{t-2}, ..., Z_{t-p}) \) denotes the past history of \(Z_t \) and \(Z_p \equiv (Z_1, ..., Z_p) \) denotes the initial conditions. The log likelihood takes its usual form

\[
\ln L(\theta; Z_1, Z_2, Z_3, ..., Z_T) \propto D(Z_p; \varphi_1) \prod_{t=p+1}^{T} D(Z_t | Z_{t-1}^{t-p}; \varphi_2)
\]

This allows us to write the likelihood function as shown on the next page:
The Loglikelihood Function:

\[
\ln L(\theta; Z_1, Z_2, Z_3, \ldots Z_T) = (T - 1) \ln \Gamma\left[\frac{1}{2} (\nu + m + T - 1)\right] - \frac{1}{2} m (T - 1) \ln (\pi) \\
- (T - 1) \Gamma\left[\frac{1}{2} (\nu + T - 1)\right] + \frac{1}{2} (T - 1) \ln (\det (\Omega^{-1})) \\
- \frac{1}{2} m (T - 1) \ln (\det \sigma^2) - \frac{1}{2} \sum_{t=2}^{T} \ln \det (C_t) - \frac{1}{2} \sum_{t=2}^{T} \ln \det (D_t)
\]

(6.15)

The first three terms can be treated as a constant and the log-likelihood can be rewritten as:

\[
\ln L(\theta; Z_1, Z_2, Z_3, \ldots Z_T) = \text{constant} + \frac{1}{2} (T - 1) \ln (\det (\Omega^{-1}))
\]

\[
- \frac{1}{2} m (T - 1) \ln (\det \sigma^2) - \frac{1}{2} \sum_{t=2}^{T} \ln \det (C_t) - \frac{1}{2} \sum_{t=2}^{T} \ln \det (D_t)
\]

Recall that \(\Omega^{-1} \) is an \(m \times m \) symmetric and p.d matrix, and \((Q_{t-1}^{t-p}) \) is a \(p \times p \) symmetric and p.d matrix, while \(\sigma^2 \) is a positive scalar. Both \(D_t \) and \(C_t \) are \(m \times m \) matrices that have been defined as follows:

\[
C_t = \left[(I_m + \Omega^{-1} (Z_{t-1}^{t-p} - \mu \cdot 1_{1 \times p}) (Q_{t-1}^{t-p}) (Z_{t-1}^{t-p} - \mu \cdot 1_{1 \times p})' \right]
\]

and

\[
D_t = \left(C_t + \left[\frac{1}{\sigma^2} \Omega^{-1} U_t U_t' \right] \right)
\]

we define \(U_t \) which is an \(m \times 1 \) vector as follows:

\[
U_t = [Z_t - (I_m - B_1 1_{mp,m}) \mu - B_1 Z_{t-1}^{t-p}]
\]

Finally note that \(B_1 \) is an \(m \times mp \) matrix of coefficients, \(\mu \) is an \(m \times 1 \) vector of means, \(1_{mp,m} \) is a \(mp \times m \) matrix of ones, \(1_{1 \times p} \) is a \(1 \times p \) vector of ones, \(Z_{t-1}^{t-p} \) is an \(m \times p \) matrix of data, and \(z_{t-1}^{t-p} \) is an \(mp \times 1 \) vector of data.

To estimate the unknown parameters, this likelihood needs to be maximized with respect to \(B_1, \Omega^{-1}, Q_{t-1}^{t-p}, \mu \) and \(\sigma^2 \), i.e., we need the partial derivatives shown below.

\[
\frac{\partial \ln L}{\partial B_1} \quad \frac{\partial \ln L}{\partial \Omega^{-1}} \quad \frac{\partial \ln L}{\partial (Q_{t-1}^{t-p})} \quad \frac{\partial \ln L}{\partial \mu} \quad \frac{\partial \ln L}{\partial \sigma^2}
\]
Proposition 2: The first order conditions for the log likelihood function are as follows:

\[
\frac{\partial L_{nl}}{\partial \sigma^2} = -\frac{1}{2}m(T - 1) \frac{1}{\sigma^2} + \frac{1}{2} \sum_{t=2}^{T} trD_t^{-1} \frac{1}{\sigma^2} \Omega^{-1} U_t U_t' = 0 \quad (6.16)
\]

\[
\frac{\partial L_{nl}}{\partial (Q_{t-1}^0)} = -\frac{1}{2} \sum_{t=2}^{T} (A_{t-1}' \Omega^{-1} (C_{t-1}^{-1}) A_{t-1}) - \frac{1}{2} \sum_{t=2}^{T} (A_{t-1}' \Omega^{-1} (D_t^{-1}) A_{t-1}) = 0 \quad (6.17)
\]

\[
\frac{\partial L_{nl}}{\partial (\Omega^{-1})} = \left(\begin{array}{c}
\frac{1}{2} (T - 1) (\Omega) - \frac{1}{2} \sum_{t=2}^{T} (I_m C_t^{-1} (A_{t-1} (Q_{t-1}^0 A_{t-1}')) \\
- \frac{1}{2} \sum_{t=2}^{T} (I_m D_t^{-1} (A_{t-1} (Q_{t-1}^0 A_{t-1}')) + (I_m D_t^{-1} (U_t U_t'))
\end{array} \right) = 0 \quad (6.18)
\]

\[
\frac{\partial L_{nl}}{\partial (B_1)} = \left(\begin{array}{c}
- \frac{1}{2} \sum_{t=2}^{T} I_m \left(U_t' \frac{1}{\sigma^2} \Omega^{-1} D_t^{-1} I_m \right) (I_{mk,m\mu} - Z_{t-1}^0') \\
- \frac{1}{2} \sum_{t=2}^{T} I_m \left(U_t' \frac{1}{\sigma^2} \Omega^{-1} D_t^{-1} I_m U_t \right) (I_{mk,m\mu} - Z_{t-1}^0')
\end{array} \right) = 0 \quad (6.19)
\]

\[
\frac{\partial L_{nl}}{\partial \mu} = \left(\begin{array}{c}
\frac{1}{2} \sum_{t=2}^{T} \left[I_m \left(Q_{t-1}^0 A_{t-1}' C_t^{-1} \Omega^{-1} \right)' \cdot 1_{1 \times k} \right] + \left[I_m \left(Q_{t-1}^0 A_{t-1}' \left(\Omega' \right)^{-1} \left(C_t^{-1} \right)' \right)' \cdot 1_{1 \times k} \right] \\
- \frac{1}{2} \sum_{t=2}^{T} \left[I_m \left(Q_{t-1}^0 A_{t-1}' D_t^{-1} \Omega^{-1} \right)' \cdot 1_{1 \times k} \right] + \left[I_m \left(Q_{t-1}^0 A_{t-1}' \left(\Omega' \right)^{-1} \left(D_t^{-1} \right)' \right)' \cdot 1_{1 \times k} \right] \\
- \frac{1}{2} \sum_{t=2}^{T} \left(U_t' D_t^{-1} \frac{1}{\sigma^2} \Omega^{-1} (B_1 1_{mk,m} - I_m) \right)' + \left(U_t' \frac{1}{\sigma^2} \Omega^{-1} (D_t^{-1}) \cdot (B_1 1_{mk,m} - I_m) \right)'
\end{array} \right) = 0 \quad (6.20)
\]

Proof. Here we show the proofs for \(\frac{\partial L_{nl}}{\partial \sigma^2} \) and \(\frac{\partial L_{nl}}{\partial (Q_{t-1}^0)} \). The rest are shown in the Appendix.

(a) Partial derivative for \(\sigma^2 \): We need to consider only the relevant terms in the likelihood function. Following Magnus and Neudecker (1999) we are concerned only with the differential of \(\sigma^2 \). So, using the fact that \(d \ln \det(D_t) = \det(D_t)^{-1}d \det(D_t) \) we obtain

\[
d \ln L = -\frac{1}{2}m(T - 1) \frac{1}{\sigma^2} - \frac{1}{2} \sum_{t=2}^{T} \det(D_t)^{-1}d \det(D_t)
\]

Recall that \(d \det(D_t) = \det(D_t) trD_t^{-1}dD_t \). Hence, we get

\[
d \ln \det(D_t) = \det(D_t)^{-1} \det(D_t) trD_t^{-1}dD_t
\]

\[
= trD_t^{-1}dD_t
\]
Substituting the fact that \(D_t = (\mathbf{C}_t + [\frac{1}{\sigma^2} \mathbf{Q}^{-1} U_t U_t^\prime]) \), we obtain

\[
d\mathbf{D}_t(\sigma^2) = d\mathbf{C}_t + [d(\sigma^2)^{-1} \mathbf{Q}^{-1} U_t U_t^\prime] = 0 - \frac{1}{\sigma^2} \mathbf{Q}^{-1} U_t U_t^\prime
\]

This allows us to write the partial derivative as

\[
\frac{\partial \ln L}{\partial \sigma^2} = -\frac{1}{2} m (T - 1) \frac{1}{\sigma^2} + \frac{1}{2} \sum_{t=2}^T \text{tr} \mathbf{D}_t^{-1} \frac{1}{\sigma^4} \mathbf{Q}^{-1} U_t U_t^\prime = 0
\]

(b) **Partial Derivative for \(Q_{t-1}^0 \):** Focusing on the relevant terms in the likelihood function allows us to write the differential as

\[
d \ln L = -\frac{1}{2} \sum_{t=2}^T \ln \det(\mathbf{C}_t) - \frac{1}{2} \sum_{t=2}^T \ln \det(\mathbf{D}_t)
\]

Consider the first term on the right hand side. Using Property 9 of the differentials we can express this as: \(d \ln \det(\mathbf{C}_t) = \det(\mathbf{C}_t)^{-1} \det(\mathbf{C}_t) tr \mathbf{C}_t^{-1} d\mathbf{C}_t = tr \mathbf{C}_t^{-1} d\mathbf{C}_t \). Recall that \(tr(A'B) = vec(A)' vec(B) \) and from Lemma 2 we know that \(vec(ABC) = (C' \otimes A) vec(B) \). Applying these two properties we have

\[
d \ln \det(\mathbf{C}_t) = tr \mathbf{C}_t^{-1} d\mathbf{C}_t = vec(\mathbf{C}_t^{t-1})' vec(d\mathbf{C}_t)
\]

Next define \(A_{t-1} = (\mathbf{Z}_{t-1}^0 - \mathbf{\mu} \ast \mathbf{1}_{1 \times k}) \). This allows us to express \(\mathbf{C}_t \) as \([\mathbf{I}_m + \mathbf{Q}^{-1} A_{t-1} (\mathbf{Q}_{t-1}^0) A_{t-1}']\). Hence we have \(vec(d\mathbf{C}_t(\mathbf{Q}_{t-1}^0)) = vec(d\mathbf{I}_m) + vec(\mathbf{Q}^{-1} A_{t-1} (d\mathbf{Q}_{t-1}^0) A_{t-1}') \) which we can write as \(vec(d\mathbf{C}_t(\mathbf{Q}_{t-1}^0)) = 0 + (A_{t-1} \otimes \mathbf{Q}^{-1} A_{t-1}) vec(d\mathbf{Q}_{t-1}^0) \). Using Lemma 2 again and the fact that \([vec(ABC)]' = [(C' \otimes A) vec(B)]' = vec(B)'(C' \otimes A)' = vec(B)'(C \otimes A)' \), we can obtain

\[
d \ln \det(\mathbf{C}_t) = vec(\mathbf{C}_t^{t-1})' vec(d\mathbf{C}_t)
\]

Note that this can be rewritten as \(vec(\mathbf{C}_t^{t-1})' (A_{t-1} \otimes \mathbf{Q}^{-1} A) dvec(\mathbf{Q}_{t-1}^0) \). With some more manip-
ulation we now obtain
\[\frac{\partial \ln \det(C_t)}{\partial (Q_{t-1}^0)} = (A'_{t-1} \Omega'^{-1} (C'_{t-1}) A_{t-1}) \]

Now we will consider the second term \(\frac{1}{2} \sum_{t=2}^{T} d \ln \det(D_t) \) in the likelihood function. Note that \(Q_{t-1}^0 \) appears in \(D_t \) only through \(C_t \). Consequently, \(d \ln \det(D_t) = tr(D_t^{-1} d D_t) = vec(D_t^{-1})' vec(dD_t) \), which can be written as \(vec(D_t^{-1})' vec(dC_t) \) as the constant terms will vanish from the differential. Following a similar reasoning outlined above we have \(\frac{\partial \ln \det(D_t)}{\partial (Q_{t-1}^0)} = (A'_{t-1} \Omega'^{-1} (D_t'^{-1}) A_{t-1}) \). Invoking the first identification theorem, we can now combine the two terms and obtain the partial derivative of \(Q_{t-1}^0 \):

\[\frac{\partial Lnl}{\partial (Q_{t-1}^0)} = -\frac{1}{2} \sum_{t=2}^{T} (A'_{t-1} \Omega'^{-1} (C'_{t-1}) A_{t-1}) - \frac{1}{2} \sum_{t=2}^{T} (A'_{t-1} \Omega'^{-1} (D_t'^{-1}) A_{t-1}) = 0. \]

This completes the proof.

Clearly the first order conditions shown above are non-linear in the parameters and cannot be solved explicitly. They need to be evaluated iteratively by some numerical algorithm. Moreover, the second order conditions are analytically intractable.

6.4 Statistical Model Comparisons

In this section we provide a comparison between the parametrizations of the conditional variance-covariance matrix arising from the Student’s \(t \) VAR model and some of the most popular multivariate GARCH type models. In particular we compare these two types of models in terms of their properties and specific restrictions (if any). We also compare the Normal VAR model to the Student’s \(t \) VAR simply to bring out the drawbacks of the former for modeling the empirical regularities in speculative prices. This serves to illustrate how by changing one of the reduction assumptions, namely the distribution assumption from Normal to Student’s \(t \) can lead to a specification that can accommodate the probabilistic nature of such data. First we compare the Student’s \(t \) AR specification presented in Chapter 3 to the Student’s \(t \) VAR formulation. This is an especially interesting comparison since both parametrizations are based on the PR approach.
Student’s t AR Model vs Student’s t VAR Model

The Student’s t AR model has the following conditional variance:

$$
\omega_t^2 \equiv \left[\frac{\nu}{\nu + (t-1) - 2} \right] \sigma^2 \left[1 + \sum_{i=1}^{t-1} \sum_{j=-p}^{p} q_{ij} [y_{t-i} - \mu] [y_{t-j-i} - \mu] \right], \quad (6.21)
$$

where, $q_{ij} = 0$ for $|i - j| > p$, $q_{ij} = q_{kl}$ for $|i - j| = |k - l|$.

The Student’s t VAR conditional covariance matrix can be expressed as:

$$
\text{Cov}(Z_t / \sigma(Z_{t-1})) = \left[\frac{\nu}{\nu + m(t-1) - 2} \right] \Omega(1_m + \Omega^{-1} \sum_{i=1}^{t-1} \sum_{j=-p}^{p} q_{ij}(Z_{t-i} - \mu)'(Z_{t-j-i} - \mu)) \quad (6.22)
$$

where, $q_{ij} = 0$ for $|i - j| > p$, $q_{ij} = q_{kl}$ for $|i - j| = |k - l|$.

Apart from the obvious differences in the dimensionalities we observe some important similarities in their conditional variance specification. First they are both heteroskedastic since they involve a quadratic function of the past conditioning information. Second they both involve a term t in the denominator, thus allowing the conditional variance and covariances to be heterogeneous. The degree of freedom parameter changes from $\left(\frac{\nu}{\nu + (t-1) - 2} \right)$ in the univariate case to $\left(\frac{\nu}{\nu + m(t-1) - 2} \right)$ in the multivariate case. This makes intuitive sense since we are now conditioning on the past history of not just one variable but all m variables.

Next we consider the variance-covariance matrix of the Normal/Linear/Homoskedastic VAR\(^\text{10}\) which takes the following form:

$$
\text{Cov}(Z_t | Z_{t-1}) = \Omega^N
$$

where $\Omega^N = \Sigma(0) - \Sigma'(0)\Sigma(0)^{-1}\Sigma(1)$.$^\text{11}$

By looking at this specification it is clear that it cannot accommodate the stylized facts of second

\(^\text{10}\)For more on the Normal VAR model see Chapter 2.

\(^\text{11}\)Note that this Ω^N will be used to denote the variance-covariance matrix for the Normal VAR whereas Ω is used for the Student’s t variance-covariance matrix.
order dependence and leptokurticity observed in speculative price data since Normality can only accommodate first order dependence. The way to overcome this problem from the PR approach is to postulate an alternative distribution, which embodies these features of the data. The Student’s t distribution seems to be a natural choice since it is more leptokurtic than the Normal. Moreover, it gives rise to a conditional variance-covariance specification as shown by equation (6.13), that can capture higher order dependence by allowing for dynamic heteroskedasticity.

We now provide theoretical comparisons with the multivariate GARCH type parametrizations. We start with the Vech model. Recall that the general form of the conditional covariance matrix of an m-dimensional Normal GARCH(p, q) model can be written as:

\[
Vech(H_t) = vech(\Sigma) + \sum_{i=1}^{q} A_i vech(\varepsilon_{t-i}\varepsilon'_{t-i}) + \sum_{j=1}^{p} B_j vech(H_{t-j})
\]

The number of parameters in the Vector GARCH is: \((m (m + 1)/2) [1 + (p + q) (m (m + 1)/2)] \) = \(O(m^4) \). On the other hand the number of parameters in the Student’s t VAR covariance matrix is \((m (m + 1)/2) + p + 1 \), which is considerably lower. To make the multivariate GARCH formulations operational a number of different restrictions are imposed on the parameters which gives rise to a variety of formulations for the conditional variance-covariance matrix. This, in turn raises the question of ensuring positive definiteness. The Student’s t VAR model however overcomes both of these problems. Positive definiteness is ensured by definition, and parsimony is ensured by jointly modeling the conditional mean and variance parameters since they are interrelated through the Q^0_{t-1} matrix.

The diagonal formulation shown below is one example of imposing unrealistic coefficient restrictions. By setting \(p = q = 1 \) and imposing diagonality on \(A_i \) and \(B_j \), every element of \(H_t \) can be written as:

\[
h_{ijt} = \sigma_{ij} + a_{ij}\varepsilon_{i(t-1)}\varepsilon_{j(t-1)} + b_{ij}h_{ij(t-1)} \quad i, j = 1, 2, \ldots N
\]

giving us the diagonal specification. Though the total number of parameters reduces to \((p + q + 1) (m (m + 1)/2) = O(m^2) \), there is also a corresponding loss in terms of interpretation of the model since it ignores cross variable volatility interactions which was the main motivation for the multivariate framework. Another popular model is the BEKK specification which ensures positive
definiteness but still involves a large number of parameters given by: \((1 + (p + q)K)m^2 = O(m^2)\). Although this represents a considerable reduction in the number of parameters over the unrestricted \(Vech\) formulation, often in applied work the diagonal forms of this model are estimated. Finally, a widely used model in the multivariate literature is the Constant Conditional Correlations model proposed by Bollerslev (1990) which imposes the restriction that the conditional correlations should be time invariant. This specification reduces the number of parameters to \(m(m + 1)/2 + m\), making estimation much easier. However the assumption of constant conditional correlations is rarely tested, and when tested, is often found to be violated. In contrast, the Student’s \(t\) VAR model allows for time varying correlations, and positive definiteness without requiring additional coefficient restrictions.

It is also worth pointing out that in the univariate volatility literature Bollerslev (1987) proposed the Student’s \(t\) GARCH model by replacing the Normality on the distribution of the error with that of the Student’s \(t\). This model has also been extended to the multivariate case. Besides, the univariate Student’s \(t\) distribution for the error term adopted by Bollerslev is not the same as that derived from the joint distribution of the observable random variables. To sum up, it seems that theoretically the Student’s \(t\) VAR is indeed an improvement over the existing multivariate GARCH type parametrizations.

6.5 Conclusion

In this chapter we develop the Student’s \(t\) VAR model by adopting the PR methodology. We start with the most general description of the information in our data, captured in a matrix variate distribution of all the relevant observable random variables over the entire sample period. Based on the type of stylized facts shown in Chapter 3 about speculative prices we impose a set of probabilistic assumptions on the matrix variate distribution: (1) Student’s \(t\), (2) Markov dependence and (3) Second Order Stationarity. By invoking these assumptions information in the matrix variate \(t\) is reduced to an operational distribution — the multivariate Student’s \(t\) which gives rise to the Student’s \(t\) VAR model. This combination of informed and specific assumptions about the observable phenomenon gives rise to reliable inference and provides a sound basis for theory appraisal.

Our approach synthesizes statistical and theory information in a statistically coherent frame-
work and proposes a model that deals effectively with several key issues raised in the multivariate volatility literature. In particular, it ensures positive definiteness of the variance-covariance matrix without requiring any unrealistic or contradictory coefficient restrictions. The Student’s t VAR model12 also provides a parsimonious description of the variance covariance matrix by jointly modeling the conditional mean and conditional variance parameters.

The theoretical results of this chapter can be viewed as the first step in demonstrating the improvements over the existing multivariate GARCH type models. The conditional variance-covariance formulation arising from the Student’s t VAR model is compared with those in the existing multivariate GARCH literature. We show that in contrast to the GARCH parametrizations, in this formulation the conditional variance-covariance matrix is a quadratic recursive function of all the past history of all variables. This not only ensures positive definiteness but most importantly it provides a convenient framework for analyzing non-linear dependence in the multivariate framework.

12An important advantage of the Student’s t VAR model derived from the PR perspective is that it can be easily extended to the multivariate dynamic linear regression. This type of model can capture both the dynamic interdependence as well as the contemporaneous volatilities between different variables.
Chapter 7

Conclusion

Over the last 20 years extensive research in the area of volatility modeling has given rise to numerous univariate and multivariate volatility models. Developments in the volatility literature were largely driven by emerging stylized facts about financial data, increased availability of data, acceleration in computing power as well as the need to investigate fundamental questions in finance such as asset pricing and the trade off between risk and return.

While the univariate GARCH type models have performed reasonably well in empirical work, they have been criticized on several grounds. Perhaps the most important criticism has been their lack of economic theory justification. As Pagan (1996) puts it “to get GARCH you need to begin with GARCH”. Multivariate models on the other hand relate to economic theory much better but share some of the problems of univariate models. In particular, their specification is ad hoc, successful estimation requires parameter restrictions for ensuring positive definiteness and variance stability and most of these models assume a Normal distribution which enters the specification through the error term. In addition to the problems mentioned above, the existing multivariate models suffer from overparametrization, which limits their usefulness in empirical work and often require unrealistic assumptions that cannot be confirmed by the data.

In this dissertation we investigate volatility modeling using the Student’s t distribution. We adopt the PR approach to statistical model specification for deriving univariate and multivariate volatility models to address some of the shortcomings of the existing literature. We begin by reviewing the existing volatility literature. In particular we revisit the univariate and multivariate GARCH
family of models and evaluate their strengths and weaknesses using the PR perspective. Next we illustrate the PR methodology by estimating the Student’s t Autoregressive model for univariate volatility. We compare and contrast the results to those of the most popular GARCH models. Then we take another step to develop the Student’s t DLR model by using the PR approach. We illustrate this approach by using two exchange rate returns data sets and a data set which includes the Dow Jones Industrial index and the T-bill rate. Moreover we compare the empirical results of the Student’s t DLR to those of the Normal DLR, the Student’s t AR and the GARCH-X model.

The next step takes us in the multivariate framework which is the subject of Chapter 6. We propose an alternative approach to modeling multivariate volatility which follows the PR methodology. The theoretical specification of the Student’s t VAR is derived. We discuss the maximum likelihood estimation of this model and derive the first order conditions. To bring out the salient features of this model we also provide a comparison between the conditional variance-covariance specification which arises from this model and those of the most popular GARCH formulations. In Chapter 4 we make a digression from the central theme of the dissertation to examine some issues related to the degree of freedom parameter in the Student’s t distribution. This is done through a simulation study.

The contributions of this dissertation are threefold. The first contribution is in terms of methodology. We show that the PR approach to econometric modeling offers a useful framework in the context of which a number of univariate and multivariate models can be explored. The essential ingredients of the PR approach and the advantages it offers over the existing modeling techniques can be seen throughout the dissertation. An important component of the PR approach is the use of graphical techniques. In Chapter 3 we demonstrate the importance of graphical techniques by providing a link between the probabilistic features of the data and the reduction assumptions required for the specification of the Student’s t AR model. Another important component of the PR methodology is misspecification testing. Empirical analysis in Chapter 3 has shown that the Student’s t AR specifications for the exchange rate returns and the Dow Jones returns outperform the GARCH type specifications on statistical adequacy grounds. These findings have important policy implications since inferences from misspecified models can lead to misleading recommendations.

The second contribution of this dissertation is the development of the Student’s t DLR model using the PR methodology. The proposed model can be viewed as a generalization of the Student’s
AR model that includes information on the past history of a series as well as other exogenous variables for explaining volatility. It is much richer since it combines statistical and economic theory information in a systematic way. This idea is an important one since the existing GARCH type models are defined in terms of the errors and make the inclusion of any other exogenous variables hard to justify. By developing a model which is specified in terms of the relevant observable random variables we overcome this problem. Moreover empirical results in Chapter 5 suggest that the Student’s t DLR model is a promising way of modeling volatility.

The third contribution is the derivation of a new multivariate volatility model — the Student’s t VAR model. By following the PR approach we propose a model which deals effectively with some of the theoretical issues raised by the multivariate GARCH family of models. In particular it resolves the problem of overparametrization by jointly modeling the conditional mean and the conditional variance functions. In contrast to the multivariate GARCH formulations the conditional variance-covariance matrix is a quadratic function of the past history of all variables which ensures positive definiteness without requiring any unrealistic and contradictory coefficient restrictions.

The short digression in Chapter 4 provides some interesting insights about the degree of freedom parameter in the Student’s t distribution. First, simulation results reveal that the sample kurtosis coefficient provides a biased and inconsistent estimator of the degree of freedom parameter. Secondly we find that the Student’s t GARCH model provides a biased and inconsistent estimator of the degree of freedom parameter. This finding points to the danger of using the estimated degrees of freedom parameter to assess the degree of kurtosis.

The assumption of Student’s t distribution offers certain advantages for volatility modeling but also has some limitations. First, this is a symmetric distribution and secondly it has a very specific form of heteroskedasticity — quadratic form. Empirical evidence however has also indicated the need for asymmetric volatility models for capturing the “leverage effect”. This may be a limitation of the Student’s t distribution but not of the PR framework. The PR approach lends itself to further extensions to non-symmetric distributions such as the exponential and the Pareto. Moreover, using a quadratic form of the observable random variables to model the conditional variance seems to better model the heteroskedasticity present in financial data.

The present study can be extended in several directions. One obvious direction would be
to develop a program for estimating the Student’s t VAR model and investigate its empirical performance compared to that of the traditional Normal VAR and the multivariate GARCH type formulations. A second important extension would be in the direction of model selection based on misspecification testing. Misspecification testing has not been fully explored in this dissertation but is an important component of the PR approach. Future work on the Student’s t DLR and the Student’s t VAR model must address the misspecification testing issue to ensure robust results and reliable statistical inference. This dissertation is a first step towards deriving statistical models that fit the data well and relate to economic theory well in the sense that they can provide estimates for the underlying theoretical model.
Bibliography

151

152

Appendix A

Student’s t VAR Derivatives

The likelihood function for the Student’s t VAR model is:

\[
\ln L (\theta; Z_1, Z_2, Z_3, \ldots Z_T) = (T - 1) \ln \Gamma \left[\frac{1}{2} (\nu + m + T - 1) \right] - \frac{1}{2} m(T - 1) \ln (\pi)
\]

\[-(T - 1) \Gamma \left[\frac{1}{2} (\nu + T - 1) \right] + \frac{1}{2} (T - 1) \ln (\det (\Omega^{-1}))
\]

\[-\frac{1}{2} m(T - 1) \ln (\det \sigma^2) - \frac{1}{2} \sum_{t=2}^{T} \ln \det (C_t) - \frac{1}{2} \sum_{t=2}^{T} \ln \det (D_t).
\]

Note that in this appendix we assume Markov dependence of order k. The first three terms can be treated as a constant and hence the Likelihood function can be rewritten as:

\[
\ln L (\theta; Z_1, Z_2, Z_3, \ldots Z_T) = \text{constant} + \frac{1}{2} (T - 1) \ln (\det (\Omega^{-1}))
\]

\[-\frac{1}{2} m(T - 1) \ln (\det \sigma^2) - \frac{1}{2} \sum_{t=2}^{T} \ln \det (C_t) - \frac{1}{2} \sum_{t=2}^{T} \ln \det (D_t).
\]

where

\[
C_t = \left[I_m + \Omega^{-1} (Z_{t-1} - \mu \ast 1_{1 \times k}) (Q_{t-1}^0) (Z_{t-1} - \mu \ast 1_{1 \times k})' \right], \quad \text{and}
\]
\[
D_t = \left(C_t + \left[\frac{1}{\sigma^2} \Omega^{-1} U_t U'_t \right] \right)
\]

Note that both \(D_t \) and \(C_t \) are \(m \times m \) matrices. Also, \(U_t \) which is an \(m \times 1 \) vector is defined as \(U_t = [Z_t - (I_m - B_1 1_{mk,m})\mu - B_1 z_{t-1}^0] \). Consequently we have:

\[
U_t U'_t = \begin{pmatrix}
Z_t Z'_t - Z_t \mu' I_m - \mu Z'_t + \mu \mu' \\
+ [Z_t \mu' 1_{m,mk} - Z_t z_{t-1}^0 - \mu \mu' 1_{m,mk} + \mu z_{t-1}^0 \mu'] B'_1 \\
+ B_1 [1_{mk,m} \mu' Z'_t - 1_{mk,m} \mu' \mu' - z_{t-1}^0 Z'_t + z_{t-1}^0 \mu'] \\
+ B_1 [1_{mk,m} \mu' 1_{m,mk} - 1_{mk,m} \mu' z_{t-1}^0 - z_{t-1}^0 \mu' 1_{m,mk} + z_{t-1}^0 z_{t-1}^0 \mu'] B'_1
\end{pmatrix}
\]

We now quickly define the other components of the likelihood function. Here \(\Omega^{-1} \) is an \(m \times m \) symmetric and p.d. matrix, \((Q_{t-1}^0) \) is a \(k \times k \) symmetric and p.d. matrix, \(\sigma^2 \) is a positive scalar, \(B_1 \) is an \(m \times mk \) matrix of coefficients, \(\mu \) is an \(m \times 1 \) vector of means, \(1_{mk,m} \) is a \(mk \times m \) matrix of ones, \(1_{1 \times k} \) is a \(1 \times k \) vector of ones, \(Z_{t-1}^0 \) is an \(m \times k \) matrix of data, and finally \(z_{t-1}^0 \) is an \(mk \times 1 \) vector of data.

We need to the following derivatives:

\[
\begin{align*}
\frac{\partial L_n}{\partial B_1} & , \quad \frac{\partial L_n}{\partial \Omega^{-1}} \bigg|_{(Q_{t-1}^0)} & , \quad \frac{\partial L_n}{\partial \mu} \bigg|_{\Omega^{-1}} & , \quad \frac{\partial L_n}{\partial \sigma^2}
\end{align*}
\]

Here we compute the derivatives of the likelihood function with respect to \(\Omega^{-1} \), \(B_1 \) and \(\mu \) using the differential approach.

(c) **Partial Derivative for \(\Omega^{-1} \)**: Once again we concentrate on the relevant terms of the likelihood function to get

\[
d\ln L = \frac{1}{2} (T-1) d\ln(\det(\Omega^{-1})) - \frac{1}{2} \sum_{t=2}^T d\ln(\det(C_t)) - \frac{1}{2} \sum_{t=2}^T d\ln(\det(D_t))
\]

The first term is easy and can be written \(\frac{\partial \ln L}{\partial \Omega^{-1}} = \frac{1}{2} (T-1) (\Omega^{-1})^{-1} = \frac{1}{2} (T-1) (\Omega) \), where the second expression is immediate from the symmetry of \(\Omega \). Moving on to the second term we know
that \(d \ln \det(C_t) = \text{tr} C_t^{-1} dC_t = \text{vec}(C_t^{-1})' \text{vec}(dC_t) \). Recall that \(A_{t-1} = (Z_{t-1}^0 - \mu. * 1_{1 \times k}) \) and using this we can write

\[
C_t = [(I_m + \Omega^{-1} A_{t-1} (Q_{t-1}^0) A_{t-1}') \Omega].
\]

Once again we invoke Lemma 2 to obtain \(\text{vec}(dC_t(\Omega^{-1})) = ((A_{t-1} (Q_{t-1}^0) A_{t-1}') \otimes I_m) \text{vec}(d\Omega^{-1}) \). This allows us to write

\[
d \ln \det(C_t) = \text{vec}(C_t^{-1})'((A_{t-1} (Q_{t-1}^0) A_{t-1}') \otimes I_m) d\text{vec}(\Omega^{-1})
\]

\[
= \text{vec}(I_m C_t^{-1} (A_{t-1} (Q_{t-1}^0) A_{t-1}')) d\text{vec}(\Omega^{-1})
\]

where the second expression is obtained just by rearranging terms. Finally we can write down the derivative of the second term as follows

\[
\frac{\partial \ln \det(C_t)}{\partial \Omega^{-1}} = (I_m C_t^{-1} (A_{t-1} (Q_{t-1}^0) A_{t-1}'))
\]

Moving on to the third term we have \(d \ln \det(D_t) = \text{tr} D_t^{-1} dD_t = \text{vec}(D_t'^{-1})' \text{vec}(dC_t) + \text{vec}(D_t'^{-1})' \text{vec}([\frac{1}{\sigma^2} d\Omega^{-1} U_t U_t']) \). For the first term in this expression (since it is just like the one immediately above) we already know that \(\frac{\partial \ln \det(D_t)}{\partial \Omega^{-1}} = (I_m D_t'^{-1} (A_{t-1} (Q_{t-1}^0) A_{t-1}) \). Concentrating on the second part we have

\[
\text{vec}
\left[
\frac{1}{\sigma^2} d\Omega^{-1} U_t U_t'
\right] =
\left[
(U_t U_t')' \otimes I_m
\right] \text{vec} \Omega^{-1}.
\]

Consequently, \(\text{vec}(D_t'^{-1})' \text{vec}([\frac{1}{\sigma^2} d\Omega^{-1} U_t U_t']) = \text{vec}(I_m D_t'^{-1} (U_t U_t')') d\text{vec} \Omega^{-1} \). This allows us to write the derivative as

\[
\frac{\partial \ln \det(D_t)}{\partial \Omega^{-1}} = (I_m D_t'^{-1} (U_t U_t')')
\]

Finally, we get the expression shown in the proposition by adding all three terms.

\[
\frac{\partial \ln l}{\partial \Omega^{-1}} = \frac{1}{2} (T - 1) (\Omega) - \frac{1}{2} \sum_{t=2}^{T} (I_m C_t'^{-1} (A_{t-1} (Q_{t-1}^0) A_{t-1}'))
\]

\[
- \frac{1}{2} \sum_{t=2}^{T} (I_m D_t'^{-1} (A_{t-1} (Q_{t-1}^0) A_{t-1}')) + (I_m D_t'^{-1} (U_t U_t')')
\]

158
(d) **Differential for** B_1: We now have $d \ln L = -\frac{1}{T} \sum_{t=2}^{T} d \ln \det(D_t)$, where as before we can write $d \ln \det(D_t) = tr D_t^{-1} dD = vec(D_t^{-1})' vec(dD_t)$. Before taking the derivative we first expand to simplify this expression. So,

$$vec(dD_t(B_1)) = vec\left(dC_t + \left[\frac{1}{\sigma^2} \Omega^{-1} d(U_t U_t') \right] \right) = vec\left[\frac{1}{\sigma^2} \Omega^{-1} d(U_t U_t') \right].$$

Using **Lemma 2** and the fact that $vec U_t' = vec U_t$, we can write this as

$$vec(dD_t(B_1)) = \left(I_m \otimes \frac{1}{\sigma^2} \Omega^{-1} \right) \left[(I_m \otimes U_t) + (U_t \otimes I_m) \right] vecdU_t$$

Simplifying further we get:

$$vec(dD_t(B_1)) = \left(I_m \otimes \frac{1}{\sigma^2} \Omega^{-1} \right) \left[(I_m \otimes U_t) + (U_t \otimes I_m) \right] \left[(I_{mk,m\mu} - Z_{t-1}^0) \otimes I_m \right] vecdB_1.$$

Thus,

$$d \ln \det(D_t) = vec(D_t^{-1})' \left(I_m \otimes \frac{1}{\sigma^2} \Omega^{-1} \right) \left[(I_m \otimes U_t) + (U_t \otimes I_m) \right] \left[(I_{mk,m\mu} - Z_{t-1}^0) \otimes I_m \right] vecdB_1$$

The first term can be rewritten and simplified as shown below.

$$\begin{align*}
vec \left(\frac{1}{\sigma^2} \Omega^{-1} (D_t'^{-1}) I_m \right)' (I_m \otimes U_t) \left[(I_{mk,m\mu} - Z_{t-1}^0) \otimes I_m \right] vecdB_1 \\
= vec \left[U_t' \left(\frac{1}{\sigma^2} \Omega^{-1} D_t'^{-1} I_m \right) I_m \right]' \left[(I_{mk,m\mu} - Z_{t-1}^0) \otimes I_m \right] vecdB_1 \\
= vec \left[I_m \left(U_t' \left(\frac{1}{\sigma^2} \Omega^{-1} D_t'^{-1} I_m \right) I_m \right) \left(I_{mk,m\mu} - Z_{t-1}^0 \right)' \right] vecdB_1.
\end{align*}$$

Similarly rewriting and simplifying the second term we obtain:

$$\begin{align*}
vec \left(\frac{1}{\sigma^2} \Omega^{-1} (D_t'^{-1}) I_m \right) (U_t \otimes I_m) \left[(I_{mk,m\mu} - Z_{t-1}^0) \otimes I_m \right] vecdB_1 \\
= vec \left[I_m \left(U_t' \left(\frac{1}{\sigma^2} \Omega^{-1} D_t'^{-1} I_m \right)' \right) \left(I_{mk,m\mu} - Z_{t-1}^0 \right)' \right] vecdB_1
\end{align*}$$
Adding up these two terms we get

\[
\frac{\partial \ln L}{\partial (B_1)} = -\frac{1}{2} \sum_{t=2}^{T} I_m \left(\frac{1}{\sqrt{T}} \Omega^{-1} D_t^{-1} I_m \right) (I_{mk,m} - Z_{t-1}^0)'
\]

\[
= -\frac{1}{2} \sum_{t=2}^{T} I_m' \left(\frac{1}{\sqrt{T}} \Omega^{-1} D_t^{-1} I_m' U_t \right) (I_{mk,m} - Z_{t-1}^0)'
\]

which completes the proof.

(e) **Differential for \(\mu \):** The relevant expression for us is

\[
d \ln L = -\frac{1}{2} \sum_{t=2}^{T} d \ln \det(C_t) - \frac{1}{2} \sum_{t=2}^{T} d \ln \det(D_t)
\]

Recall that \(C_t = [(I_m + \Omega^{-1} A_{t-1} (Q_{t-1}^0) A_{t-1}')] \) where \(A_{t-1} = (Z_{t-1}^0 - \mu \ast 1_{1 \times k}) \). Then we have

\[
d \ln \det(C_t) = tr C_t^{-1} [dI_m + d(\Omega^{-1} A_{t-1} Q_{t-1}^0 A_{t-1}')] \]

and using the properties of the trace operator we can write this as

\[
d \ln \det(C_t) = tr \left[C_t^{-1} \Omega^{-1} d(A_{t-1}) Q_{t-1}^0 A_{t-1}' + tr \left[C_t^{-1} \Omega^{-1} A_{t-1} Q_{t-1}^0 d(A_{t-1})' \right] \right].
\]

Next using the fact that \(tr(AB) = vec(A')^\top vec(B) \), we get

\[
d \ln \det(C_t) = tr \left[vec \left(Q_{t-1}^0 A_{t-1}' C_t^{-1} \Omega^{-1} \right) \right]' dvec A_{t-1} + tr \left[vec \left(Q_{t-1}^0 A_{t-1}' (\Omega')^{-1} (C_t')^{-1} \right) \right]' dvec A
\]

Note that \(dvec A_{t-1} = vecd A_{t-1} = vecd \left[Z_{t-1}^0 - \mu \ast 1_{1 \times k} \right] = vec \left[-d(\mu) 1_{1 \times k} + \mu \left(d1_{1 \times k} \right) \right] \).

Using Lemma 2, we can simplify this further to get

\[
dvec A_{t-1} = - \left(1_{1 \times k}' \otimes I \right) dvec \mu
\]

Substituting this for \(dvec A_{t-1} \) in \(d \ln \det(C_t) \) we get

\[
d \ln \det(C_t) = -vec \left[I_m' \left(Q_{t-1}^0 A_{t-1}' C_t^{-1} \Omega^{-1} \right)' 1_{1 \times k}' \right] dvec \mu
\]
-vec \left[I_m' \left(Q_{t-1}^0 A_{t-1}' (\Omega')^{-1} (C_t')^{-1} \right)' 1_{1\times k}' \right] dvec \mu

The partials of this expression are:

- \left[I_m' \left(Q_{t-1}^0 A_{t-1}' C_t^{-1} \Omega^{-1} \right)' 1_{1\times k}' \right] - \left[I_m' \left(Q_{t-1}^0 A_{t-1}' (\Omega')^{-1} (C_t')^{-1} \right)' 1_{1\times k}' \right].

We now move to the second term, i.e. to solve for \(d \ln \det(D_t) \). Recall \(D_t = [C_t + \frac{1}{\sigma^2} \Omega^{-1} (U_t U_t')] \).

So \(d \ln \det(D_t) = tr D_t^{-1} d C_t + tr D_t^{-1} d \left(\frac{1}{\sigma^2} \Omega^{-1} U_t U_t' \right) \). The first term: \(tr D_t^{-1} d C_t \) can be written as \(tr D_t^{-1} \left[d I_m + d (\Omega^{-1} A_t Q_{t-1}^0 A_{t-1}') \right] \). Following the technique above this can be written as

\[
\begin{align*}
 d \ln \det(D_t) &= -vec \left[I_m' \left(Q_{t-1}^0 A_{t-1}' D_t^{-1} \Omega^{-1} \right)' 1_{1\times k}' \right] dvec \mu \\
 &\quad -vec \left[I_m' \left(Q_{t-1}^0 A_{t-1}' (\Omega')^{-1} (D_t')^{-1} \right)' 1_{1\times k}' \right] dvec \mu
\end{align*}
\]

Thus the partials for this are given by:

\[
- \left[I_m' \left(Q_{t-1}^0 A_{t-1}' D_t^{-1} \Omega^{-1} \right)' 1_{1\times k}' \right] - \left[I_m' \left(Q_{t-1}^0 A_{t-1}' (\Omega')^{-1} (D_t')^{-1} \right)' 1_{1\times k}' \right].
\]

We move on to the second term to and write this as

\[
\begin{align*}
 tr D_t^{-1} \left[1/\sigma^2 \Omega^{-1} (U_t U_t') \right] &= tr D_t^{-1} \left[1/\sigma^2 \Omega^{-1} U_t (d U_t') + U_t (d U_t') \right] \\
 &= tr \left[(U_t') D_t^{-1} 1/\sigma^2 \Omega^{-1} d U_t \right] + tr \left[U_t' \Omega^{-1} 1/\sigma^2 (D_t')^{-1} (d U_t) \right]
\end{align*}
\]

where the last term is obtained by simplifying and using the properties of the trace operator.

However, \(U_t(\mu) = [Z_t - (I_m - B_1 1_{mk,m}) \mu - B_1 Z_{t-1}^0] \).

So \(d U_t = [d Z_t - (I_m - B_1 1_{mk,m}) d \mu - d (B_1 Z_{t-1}^0)] = [(B_1 1_{mk,m} - I_m) d \mu] \).

We now substitute this to get \(tr D_t^{-1} d \left[1/\sigma^2 \Omega^{-1} (U_t U_t') \right] = tr \left[(U_t') D_t^{-1} 1/\sigma^2 \Omega^{-1} (B_1 1_{mk,m} - I_m) d \mu \right] + tr \left[U_t' \Omega^{-1} 1/\sigma^2 (D_t')^{-1} (B_1 1_{mk,m} - I_m) d \mu \right] \). Hence

\[
tr D_t^{-1} d \left[1/\sigma^2 \Omega^{-1} (U_t U_t') \right] = \left[vec \left(U_t' D_t^{-1} 1/\sigma^2 \Omega^{-1} (B_1 1_{mk,m} - I_m) \right) \right]' dvec \mu
\]
\[
vec(U_0^t \Omega^{-1} \frac{1}{\sigma^2} (D_t^{-1} (B_1 1_{mk,m} - I_m))') \text{ dvec}\mu
\]

The partials for this are \((U_t^t D_t^{-1} \frac{1}{\sigma^2} \Omega^{-1} (B_1 1_{mk,m} - I_m))' + (U_t^t \Omega^{-1} \frac{1}{\sigma^2} (D_t^{-1} (B_1 1_{mk,m} - I_m))').\)

Adding up all the partials from all the relevant derivatives we get

\[
\frac{\partial L_{nl}}{\partial (\mu)} = \frac{1}{2} \sum_{t=2}^{T} \left[I_m' \left(Q_{t-1}^0 A_{t-1}' C_t^{-1} \Omega^{-1} \right)' 1_{1 \times k} \right] + \left[I_m' \left(Q_{t-1}^0 A_{t-1}' (\Omega')^{-1} (C_t')^{-1} \right)' 1_{1 \times k} \right] - \frac{1}{2} \sum_{t=2}^{T} \left[I_m' \left(Q_{t-1}^0 A_{t-1}' D_t^{-1} \Omega^{-1} \right)' 1_{1 \times k} \right] + \left[I_m' \left(Q_{t-1}^0 A_{t-1}' (\Omega')^{-1} (D_t')^{-1} \right)' 1_{1 \times k} \right] - \frac{1}{2} \sum_{t=2}^{T} \left(U_t^t D_t^{-1} \frac{1}{\sigma^2} \Omega^{-1} (B_1 1_{mk,m} - I_m))' + (U_t^t \Omega^{-1} \frac{1}{\sigma^2} (D_t^{-1} (B_1 1_{mk,m} - I_m))' \right)
\]

This completes the proof.
Vita

Maria S. Heracleous was born on August 9, 1974, in Nicosia, Cyprus. In 1993 she went to the London School of Economics to pursue studies in economics. After completing her Bachelor of Science degree in Econometrics and Mathematical Economics, in July 1996, she continued with graduate studies at the London School of Economics. She completed her Master of Science degree in Econometrics and Mathematical Economics in July 1997 and returned to Cyprus, where she worked with the firm ACNielsen and the University of Cyprus. In August 1998 she joined the Ph.D. program in Economics at Virginia Polytechnic Institute and State University. She completed the requirements for her Ph.D. in Economics in August 2003.