Graphic Organizers:
Toward Organization and Complexity of Student Content Knowledge

Carol E. Watson

Dissertation Submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Curriculum and Instruction

Cheri Triplett, Co-Chair
Larry Harris, Co-Chair
Mary Alice Barksdale
Brenda Brand
Jane Abraham

August 26, 2005
Blacksburg, Virginia

Keywords: Graphic Organizer, Organization, Complexity, Instructional Strategies
Graphic Organizers:

Toward Organization and Complexity of Student Content Knowledge

Carol E. Watson

ABSTRACT

Within the current national atmosphere of accountability and high-stakes testing, many teachers are changing their instruction to return to more traditional strategies that emphasize rote memorization. As a result, classroom curriculum and student learning are narrowing. This study sought to explore the potential of graphic organizers as an instructional strategy to expand student content knowledge beyond rote memorization to include more organized, complex, meaningful learning.

For the purpose of this study, graphic organizers are described as visual displays of concepts, their component parts, and the relationships among their parts. This study was conducted over a six week period in a third grade classroom in a rural elementary school in Virginia. Ten focus students were identified for in-depth data collection on their learning process as recorded during science instruction.

Although existing research strongly supports graphic organizer effectiveness as an instructional strategy toward general student achievement, little is known about the type of learning they support or the process by which students’ knowledge develops. Thus, this research utilized qualitative methodological strategies in order to investigate this process. Data collection methods included field notes, student artifacts, and participant interviews. Constant comparative methodology was employed to analyze data. The theoretical framework of constructivism, espousing that newly acquired information is
connected to prior knowledge forming complex, organized networks of conceptual understanding, guided this qualitative study.

Findings resulted in emergent themes including student motivation, simplicity, efficiency, visual hierarchical organization, reconstructing knowledge, and cooperative socialization. Documentation of the learning process as opposed to a comparison of pre/post measurements clearly indicated that student thinking gradually became more complex and organized in nature. As students worked with graphic organizers, and participated in study activities, their knowledge moved from a form of listing facts to resemble more complex, interconnected networks.

Implications of this study for practice include appropriate instruction and practice for students with graphic organizers as a strategy and a tool, value as an assessment tool, and potential for use with complex classroom populations. Suggestions for future research are given for teacher training on how to use graphic organizers effectively, interdisciplinary use of graphic organizers within one context, potential benefit for struggling and diverse learners, a continuing focus on process as opposed to product, and an examination of the connection between graphic organizer activities and sorting.
Contents

Chapter 1
Introduction

- Rationale
 - Graphic Organizers: Organizing Complex Knowledge
- Defining Terms
 - Graphic Organizers
 - Organization
 - Complexity
- Theoretical Framework: Constructivism
- Summary

Chapter 2
Review of the Literature

- Historical Development
 - Origin
 - Early Variations
 - Recent Modifications
- Research Results
 - Early Findings
 - Developmental Findings
 - Recent Findings: Complexity and Organization
- Significance of this Research Study

Chapter 3
Methodology

- Introduction
- Participants
- Role of the Researcher
- Materials and Procedures
- Data Collection and Analysis
 - Field Notes
 - Artifacts
 - Interviews
 - Students
 - Teachers
- Data Analysis
- Establishing Credibility
- Limitations

Chapter 4
Description of Findings

- Individual Student Processes
 - Foxer
 - Buggy
 - Peel
 - Subzero
 - Uranus
 - Jackie Chan
Trunks
Siberious Wilderous
Daisy
Crazy
Classroom Teacher Perspectives
Mrs. H
Mrs. B
Emergent Themes
Motivation
Simplicity
Efficiency
Visual Hierarchical Organization
Reconstructing Knowledge
Non-factual Information
Visual Symmetry
Amount of Knowledge Communicated
Incorporation of Prior Knowledge
Adjustments to Knowledge Structure
Cooperative Socialization

Chapter 5

Discussion

Answering the Guiding Question
Evolving From Listing Facts to Complex Networks
Hierarchical Organization
Reconstruction Knowledge
Outcomes Beyond the Scope of the Question
Motivation
Hands-on Manipulatives
Simplicity and Efficiency
Cooperative Socialization
Vehicle to Communicate Knowledge

Limitations
Hawthorne Effect
Researcher Bias
School Context

Implications
Practice
Sufficient Instruction and Practice
Graphic Organizers as an Assessment Tool
Individualized Instruction Within Complex Classrooms

Future Research
Appropriate Implementation and Use
Interdisciplinary Immersion
Struggling Learners
Academically Diverse Classroom Populations
Process-Not Product
Connection Between Graphic Organizers and Sorting

Summary

References

Appendices

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>informed consent (parent)</td>
</tr>
<tr>
<td>B</td>
<td>informed consent (teacher participant)</td>
</tr>
<tr>
<td>C</td>
<td>timeline for fieldwork</td>
</tr>
<tr>
<td>D</td>
<td>curriculum</td>
</tr>
<tr>
<td>E</td>
<td>instructional resources</td>
</tr>
<tr>
<td>F</td>
<td>instructional materials for Natural Resources</td>
</tr>
<tr>
<td>G</td>
<td>instructional materials for Sources of Energy</td>
</tr>
<tr>
<td>H</td>
<td>instructional materials for Forms of Energy</td>
</tr>
<tr>
<td>I</td>
<td>sample lesson plans</td>
</tr>
<tr>
<td>J</td>
<td>complete transcript of class discussion</td>
</tr>
<tr>
<td>K</td>
<td>Foxer’s artifacts</td>
</tr>
<tr>
<td>L</td>
<td>Buggy’s artifacts</td>
</tr>
<tr>
<td>M</td>
<td>Peel’s artifacts</td>
</tr>
<tr>
<td>N</td>
<td>Subzero’s artifacts</td>
</tr>
<tr>
<td>O</td>
<td>Uranus’ artifacts</td>
</tr>
<tr>
<td>P</td>
<td>Jackie Chan’s artifacts</td>
</tr>
<tr>
<td>Q</td>
<td>Trunks’ artifacts</td>
</tr>
<tr>
<td>R</td>
<td>Siberius Wilderous’ artifacts</td>
</tr>
<tr>
<td>S</td>
<td>Daisy’s artifacts</td>
</tr>
<tr>
<td>T</td>
<td>Crazy’s artifacts</td>
</tr>
<tr>
<td>U</td>
<td>interview questions (student)</td>
</tr>
<tr>
<td>V</td>
<td>interview questions (teachers)</td>
</tr>
<tr>
<td>W</td>
<td>artifact analysis rubric</td>
</tr>
<tr>
<td>X</td>
<td>sample artifact analysis rubrics</td>
</tr>
</tbody>
</table>

Page numbers are provided for each item.