A Distributed Active Vibration Absorber (DAVA) for Active-Passive Vibration and Sound Radiation Control

Pierre E. Cambou

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements of the degree of

Master of Science in Mechanical Engineering

Chris R. Fuller, Chair
Leonard Meirovitch
Harry H. Robershaw

September 7, 1998
Blacksburg, Virginia

Keywords: Sound, Vibration, Dynamic Absorber, Variational Method, Genetic Algorithm, Active Control

Copyright 1998, Pierre E. Cambou
This thesis presents a new active-passive treatment developed to reduce structural vibrations and/or their associated radiated sound. It is a contribution to the research of efficient and low cost devices that implement the advantages of active and passive noise control techniques. A theoretical model has been developed to investigate the potential of this new "active-passive distributed absorber". The model integrates new functions that make it extremely stable numerically. Using this model, a genetic algorithm has been used to optimize the shape of the active-passive distributed absorber. Prototypes have been designed and built and their potential investigated. The device subsequently developed can be described as a skin that can be mechanically and electrically tuned to reduce unwanted vibration and/or sound. It is constructed from the piezoelectric material polyvinylidene fluoride (PVDF) and thin layers of lead. The tested device is designed to weight less than 10% of the main structure and has a resonance frequency around 1000 Hz. Experiments have been conducted on a simply supported steel beam (24"x2"x1/4"). Preliminary results show that the new treatment outperforms active-passive point absorbers and conventional constrained layer damping material. The compact design and its efficiency make it suitable for many applications especially in the transportation industry. This new type of distributed absorber is totally original and represent a potential breakthrough in the field of acoustics and vibration control.
to my grandmother
I would like to express my deepest gratitude and thanks to my advisor Dr. Chris R. Fuller, for his support and guidance throughout my research at Virginia Tech.

I would like to give my sincere thanks to François Charette, Cathy Guigou, Marty Johnson, and Steve Booth for their support and the hands-on knowledge I learn from them.

I would like to extend my gratitude to Dr. Leonard Meirovitch and Dr. Harry Robershaw for their excellent lectures during my program, helpful advice and comments for developing this thesis, and for serving on my committee.

I would like to give a special thanks to Dr. Wagstaff and The Université de Technologie de Compiègne for giving me the opportunity to come and study abroad.

I would like to thank the Office of Naval Research (ONR) for founding the research presented in this thesis.

I would like to thank my family for their support during these two years away from them. I probably never had done it without their encouragement.

Finally, I would like to thank my friends Alice, Lori, Stephanie, Florence, Sheila, and Thierry who make me enjoy my stay in the United States.
Table of Contents

Abstract ... iii
Dedication ... v
Acknowledgments .. vii
Table of Contents ... ix
List of Figures .. xi
List of Tables ... xv
List of Symbols ... xvii

Introduction .. 1

Chapter 1. Literature review
1.1 Structural radiation control .. 3
1.2 Tunable vibration absorber .. 5
1.3 Distributed TVA ... 6

Chapter 2. Theoretical principles
2.1 Vibration absorbers ... 9
2.2 Variational approach ... 21
2.3 Genetic algorithm ... 27

Chapter 3. Numerical simulations
3.1 The beam .. 33
3.2 Piezoelectric layer ... 41
3.3 Constrained layer damping ... 43
3.4 Absorbers .. 48
3.5 Distributed absorber with varying mass distribution ... 57

Chapter 4. Prototypes and Results

4.1 Distributed absorber with constant mass distribution ... 63
4.2 Distributed absorber with optimal mass distribution ... 82

Conclusion and Recommendations .. 89

References ... 91

Appendix A. Radiated power computation ... 97
Appendix B. Constrained layer on cantilever beam ... 99
Appendix C. Point absorber on SS beam .. 101
Appendix D. Integrals .. 105
Appendix E. Models .. 113

Vita ... 123
List of Figures

2.1 Undamped vibration absorber on a single degree of freedom structure 10
2.2 Response of system with/without tuned absorber .. 10
2.3 Active-passive absorber .. 11
2.4 The inertial actuator from AVC can be used as an active-passive absorber 12
2.5 Details for the PCB “inertial actuator” .. 13
2.6 Three vs. one absorber on a simply supported beam 13
2.7 Displacement of the beam presented figure 2.6 ... 15
2.8 Absorber impedance ($M_a=1$ and $Q_a=5$) .. 16
2.9 Two tunable vibration absorbers on a simply supported beam 17
2.10 Tuning optimum for sound radiation control .. 18
2.11 Distributed absorber concept ... 20
2.12 Diagram for derivation process using a variational method 21
2.13 Obtaining a solution and choosing a set of trial functions 24
2.14 Presentation of the 10 first $Psin_r$ functions ... 26
2.15 Coding and decoding a chromosome ... 28
2.16 Reproduction probability of three individuals ... 30
2.17 Example of crossover and mutation .. 31
3.1 Modeled system ... 34
3.2 Displacement field of the beam ... 35
3.3 Simply supported experimental beam with piezoelectric actuator 39
3.4 Diagram of a piezoelectric layer on a beam .. 41
3.5 Displacement field for a constrained layer .. 43
3.6 Clamped-free beam with full ACLD treatment .. 45
3.7 Damping of a beam using a constrained layer ... 46
3.8 Displacement field of a beam with a point absorber 48
3.9 Displacement field of a small absorber on a beam ... 50
3.10 Distributed active vibration absorber with constant mass distribution 52
3.11 Configuration for absorber model validation .. 54
3.12 Acoustic response of a beam with an absorber .. 56
3.13 Comparison between four different models .. 56
3.14 Toward a distributed absorber ... 58
3.15 Distributed absorber with varying mass distribution ... 60
3.16 Comparison between two models of distributed absorber 61
4.1 DAVA prototype design .. 64
4.2 Prototype #1 .. 65
4.3 Motion under electrical excitation .. 65
4.4 Motion under mechanical excitation .. 66
4.5 Elastic layer with connector .. 67
4.6 Prototype #2 distributed absorber with constant mass distribution 68
4.7 Riveted connection to the positive electrode of the PVDF 69
4.8 PVDF taking its corrugated shape ... 69
4.9 PVDF taking its corrugated shape, hold in place with clothes pegs 70
4.10 Plastic sheets on both side of the corrugated PVDF 70
4.11 Experimental setup for validation of active behavior 71
4.12 Frequency response of a self-excited distributed absorber 72
4.13 Harmonics for a self-excited distributed absorber at 1000Hz 73
4.14 Experimental beam setup with baffles ... 74
4.15 End of the beam without the baffles .. 75
4.16 Experimental setup for testing the DAVA ... 75
4.17 Beam with a 6” distributed absorber .. 77
4.18 Simulation of the same setup ... 77
4.19 Experimental setup for active control experiment ... 78
4.20 Schematic layout of controller and test rig ... 79
4.21 Active control experiment with distributed absorber (constant mass distribution) 80
4.22 Mass distribution optimized for the radiated power [800 1200] Hz 82
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.23</td>
<td>Discretized mass for the distributed absorber, prototype #3</td>
<td>83</td>
</tr>
<tr>
<td>4.24</td>
<td>Distributed absorber with optimal mass distribution</td>
<td>84</td>
</tr>
<tr>
<td>4.25</td>
<td>Active control experiment with distributed absorber (optimal mass distribution)</td>
<td>85</td>
</tr>
<tr>
<td>4.26</td>
<td>Beam with distributed absorber (optimal mass) and constrained layer</td>
<td>86</td>
</tr>
<tr>
<td>4.27</td>
<td>Simulation of the best possible control</td>
<td>88</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.I</td>
<td>Properties used for simulation</td>
<td>14</td>
</tr>
<tr>
<td>2.II</td>
<td>Coefficients for (2.3)</td>
<td>25</td>
</tr>
<tr>
<td>2.III</td>
<td>Coefficients for (2.4)</td>
<td>25</td>
</tr>
<tr>
<td>3.I</td>
<td>Beam used for the validation</td>
<td>39</td>
</tr>
<tr>
<td>3.II</td>
<td>Resonance frequencies of a SS beam</td>
<td>40</td>
</tr>
<tr>
<td>3.III</td>
<td>Comparison with adjusted model</td>
<td>41</td>
</tr>
<tr>
<td>3.IV</td>
<td>Properties of modeled system</td>
<td>46</td>
</tr>
<tr>
<td>3.V</td>
<td>Absorber for model comparison</td>
<td>55</td>
</tr>
<tr>
<td>4.I</td>
<td>Parameters for active control</td>
<td>80</td>
</tr>
<tr>
<td>4.II</td>
<td>Optimization with a genetic algorithm</td>
<td>82</td>
</tr>
<tr>
<td>4.III</td>
<td>Coefficients for the mass distribution</td>
<td>83</td>
</tr>
<tr>
<td>4.IV</td>
<td>Summary of the vibration reductions obtained experimentally (dB) for frequency band [100 1600]Hz</td>
<td>85</td>
</tr>
<tr>
<td>4.V</td>
<td>Constrained layer damping properties</td>
<td>87</td>
</tr>
</tbody>
</table>
List of Symbol

<table>
<thead>
<tr>
<th>Upper case</th>
<th>Lower case</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Axial displacement coefficient (m)</td>
<td>S Order of precision for mass distribution (-)</td>
</tr>
<tr>
<td>B Transversal displacement coefficient (m)</td>
<td>S_t Strain (IEEE compact notation) (m/m)</td>
</tr>
<tr>
<td>C Shear angle coefficient or mass layer displacement coefficient (- or m)</td>
<td>T_1 Stress (IEEE compact notation) (Pa)</td>
</tr>
<tr>
<td>D Dynamic effect coefficient (rad/s)</td>
<td>U Total displacement in the 1 direction (m)</td>
</tr>
<tr>
<td>E Energy (J)</td>
<td>V Volume (m3)</td>
</tr>
<tr>
<td>F Force (N)</td>
<td>W Total displacement in the 3 direction (m)</td>
</tr>
<tr>
<td>G_3 Electric Field (IEEE compact notation) (V/m)</td>
<td>Y Young modulus (Pa)</td>
</tr>
<tr>
<td>H Enthalpy density (J/m3)</td>
<td>Z Mechanical impedance (Ns/m)</td>
</tr>
<tr>
<td>K Stiffness (N/m)</td>
<td></td>
</tr>
<tr>
<td>L Length (m)</td>
<td></td>
</tr>
<tr>
<td>M Mass (Kg)</td>
<td></td>
</tr>
<tr>
<td>P Order of precision for axial displacement (-)</td>
<td></td>
</tr>
<tr>
<td>Q Order of precision for transversal displacement (-)</td>
<td></td>
</tr>
<tr>
<td>R Order of precision for shear angle or mass layer displacement (-)</td>
<td></td>
</tr>
<tr>
<td>b Beam width</td>
<td></td>
</tr>
<tr>
<td>c_{11} Module of Elasticity (IEEE compact notation) (Pa)</td>
<td></td>
</tr>
<tr>
<td>d Mass distribution coefficient (-)</td>
<td></td>
</tr>
<tr>
<td>e_{11} Piezoelectric Stress/Charge coefficient (IEEE compact notation) (N/Vm)</td>
<td></td>
</tr>
<tr>
<td>f Unknown function (-)</td>
<td></td>
</tr>
<tr>
<td>h Thickness (m)</td>
<td></td>
</tr>
<tr>
<td>m Index (-)</td>
<td></td>
</tr>
</tbody>
</table>
Index (-)

Displacement in the 1 direction of the beam neutral axis (m)

Displacement in the 3 direction of the beam neutral axis (m)

Coordinate in the 1 direction (m)

Coordinate in the 3 direction (m)

Subscripts or Superscripts

1 Axial direction

3 Transversal direction

5 Shear plane

a Absorber

b Beam

c Visco-elastic layer

e Elastic layer

k Kinetic energy

m Mass layer

Potential energy

Index (-)

Index (-)

Index (-)

Resonance

Structure

Transpose operator

Piezoelectric layer

Greek letters

Tuning ratio (-)

Psin coefficient (1/m)

Psin coefficient (-)

Psin coefficient (1/m)

Psin coefficient (-)

Difference operator

Variational operator

Piezoelectric material permittivity (F/m)

Density (Kg/m³)

Time (s)

Angular frequency (rad/s)

Poisson ratio (-)