Crystallization and Melting Behavior of Linear Polyethylene and Ethylene/Styrene Copolymers and Chain Length Dependence of Spherulitic Growth Rates for Poly(ethylene oxide) Fractions

Zhenyu Huang

(Abstract)

The crystallization and melting behavior of linear polyethylene and of a series of random ethylene/styrene copolymers was investigated using a combination of classical and temperature modulated differential scanning calorimetry. In the case of linear polyethylene and low styrene content copolymers, the temporal evolutions of the melting temperature, degree of crystallinity, and excess heat capacity were studied during crystallization. The following correlations were established: 1) the evolution of the melting temperature with time parallels that of the degree of crystallinity, 2) the excess heat capacity increases linearly with the degree of crystallinity during primary crystallization, reaches a maximum during the mixed stage and decays during secondary crystallization, 3) the rates of shift of the melting temperature and decay of the excess heat capacity lead to apparent activation energies that are very similar to these reported for the crystal α_c relaxation by other techniques. Strong correlations in the time domain between the secondary crystallization and the evolution of the excess heat capacity suggest that the reversible crystallization/melting phenomenon is associated with molecular events in the melt-crystal fold interfacial region.

In the case of higher styrene content copolymers, the multiple melting behavior at high temperature is investigated through studies of the overall crystallization kinetics, heating rate effects and partial melting. Low melting crystals can be classified into two categories according to their melting behavior, superheating and reorganization characteristics. Low styrene content copolymers still exhibit some chain folded lamellar structure. The shift of the low melting temperature with time in this case is tentatively
explained in terms of reorganization effects. Decreasing the crystallization temperature or increasing the styrene content leads to low melting crystals more akin to fringed-micelles. These crystals exhibit a lower tendency to reorganize during heating. The shift of their melting temperature with time is attributed to a decrease in the conformational entropy of the amorphous fraction as a result of constraints imposed by primary and secondary crystals.

To further understand the mechanism of formation of low melting crystals, quasi-isothermal crystallization experiments were carried out using temperature modulation. The evolution of the excess heat capacity was correlated with that of the melting behavior. On the basis of these results, it is speculated that the generation of excess heat capacity at high temperature results from reversible segmental exchange on the fold surface. On the other hand, the temporal evolution of the excess heat capacity at low temperature for high styrene content copolymers is attributed to the reversible segment attachment and detachment on the lateral surface of primary crystals. The existence of different mechanisms for the generation of excess heat capacity in different temperature ranges is consistent with the observation of two temperature regimes for the degree of reversibility inferred from quasi-isothermal melting experiments.

In a second project, the chain length and temperature dependences of spherulitic growth rates were studied for a series of narrow fractions of poly(ethylene oxide) with molecular weight ranging from 11 to 917 kg/mol. The crystal growth rate data spanning crystallization temperatures in regimes I and II was analyzed using the formalism of the Lauritzen-Hoffman (LH) theory. Our results are found to be in conflict with predictions from LH theory. The K_g ratio increases with molecular weight instead of remaining constant. The chain length dependence of the exponential prefactor, G_0, does not follow the power law predicted by Hoffman and Miller (HM). On this basis, the simple reptation argument proposed in the HM treatment and the nucleation regime concept advanced by the LH model are questioned. We proposed that the observed I/II regime transition in growth rate data may be related to a transition in the friction coefficient, as postulated by the Brochard-de Gennes slippage model. This mechanism is also consistent with recent calculations published by Toda in which both the rates of surface nucleation and substrate completion processes exhibit a strong temperature dependence.
Dedicated to my parents Huang, Bin and Shi, Mingzheng
For their everlasting support and love
Acknowledgements

I wish to acknowledge the guidance, support, appreciation, and critical discussions for my work as provided during the last 5 years by:

- my advisor, Dr. Hervé Marand, whose patience, guidance, inspiration and endless encouragement were critical for the development of this work. He showed me how to do a beautiful work and present it in a logical way. He has also been a tremendous help in my paper and thesis writing and presentation.
 - Dr. T. Daniel Crawford, Dr. William Ducker, Dr. Alan R. Esker, Dr. Timothy E. Long for kindly serving on my committee and for their important suggestions and remarks in my original proposal and research program.
 - Dr. Garth L. Wilkes, Dr. Thomas C. Ward, Dr. David Dillard, Dr. James E. McGrath, Dr. Judy Riffle, Dr. William Ducker, and Dr. T. Daniel Crawford, who have given inspirational courses in polymer science and physical chemistry.
 - Dr. Michael Rubinstein from UNC for bringing our attention to Brochard–de Gennes model, which was very important for us to propose a new mechanism to explain regime transition.
 - Dr. Jiannong (Jay) Xu, whose great help was critical for me to start these two projects.
 - Mr. Steve McCartney for helping out with the AFM and SEM studies.
 - Mr. Tom Glass for providing solid state NMR training and helpful discussions.
 - the fellow students in Prof. Marand's group, Dr. Azar Alizadeh, Dr. Seungman Sohn, Robin Farmer, Sean Christian, Amit Kumar, Matthew Lamm, Brian Okerberg, Julie Uan-Zo-Li, Christopher Fratini, Jianying Lou, for their help and support over the last five years.

I would like to thank the Dow Chemical Company for providing the ethylene/styrene samples and their financial support on the project. Partial financial support from ACS Petroleum Research Fund is also appreciated.
Special thanks are due to my little cousin, Zhenghua, for her continuous encouragement when I was struggling to find a position.

Most importantly, I would like to extend sincere thanks to my parents, Bin Huang and Mingzheng Shi, for their constant encouragement, unconditional support and love throughout my life, without which this would not have been possible.
Table of Contents

Chapter 1 Introduction ... 1

Chapter 2 Literature Review ... 5
 2.1 Morphology of Semi-crystalline Polymers 5
 2.2 Thermodynamics of Polymer Crystallization 8
 2.3 Kinetic Theory of Polymer Crystallization 9
 2.3.1 Lauritzen-Hoffman (LH) Surface Nucleation Theory 10
 2.3.2 Rough Surface Theory ... 19
 2.4 Copolymer Crystallization Theory ... 22
 2.5 Reference .. 25

Chapter 3 Isothermal Lamellar Thickening in Linear Polyethylene:
 Correlation between the Evolution of the Degree of Crystallinity and
 the Melting Temperature .. 29
 3.1 Introduction ... 29
 3.2 Experimental Section ... 29
 3.3 Results and Discussion ... 31
 3.4 Conclusion ... 45
 3.5 Reference ... 46

Chapter 4 Study of Crystallization Processes in Ethylene – Styrene
 Copolymers by Conventional DSC and Temperature Modulated
 Calorimetry: Linear Polyethylene and Low Styrene Content
 Copolymers .. 48
 4.1 Introduction ... 48
 4.2 Experimental Section ... 50
 4.2.1 Materials ... 50
 4.2.2 Differential Scanning Calorimetry (DSC) 51
 4.2.3 Temperature-Modulated Calorimetry 51
 4.3 Results ... 53
 4.3.1 Study of the Melting Behavior after Isothermal Crystallization by
 DSC ... 54
Chapter 4 Study of Crystallization and Melting Processes in Ethylene –

4.3.1.1 DSC Melting Trace……………………………………………….54
4.3.1.2 Evolution of Melting Temperature with Crystallization Time… 55
4.3.1.3 Correspondence between Melting Temperature and
Crystallinity……………………………………………………. 61
4.3.2 Quasi-isothermal Temperature Modulated Calorimetry……………... 63
4.3.2.1 Evolution of the Excess Heat Capacity during Crystallization…63
4.3.2.2 Correlation between Excess Heat Capacity and Crystallinity…. 63
4.3.2.3 Characterization of Decay of Excess Heat Capacity —
KWW Analysis………………………………………………… 67
4.4 Discussion………………………………………………………………….. 68
4.4.1 Characterization of Lamellar Thickening……………………………. 73
4.4.2 The Mechanism of Reversible Crystallization and Melting — Fold or
Lateral Surface Processes?…………………………………………… 76
4.5 Conclusions……………………………………………………………….. 79
4.6 Reference………………………………………………………………... 81

Chapter 5 Study of Crystallization and Melting Processes in Ethylene –
Styrene Copolymers by Conventional DSC and Temperature
Modulated Calorimetry: High Styrene Content Copolymers…… 84
5.1 Introduction………………………………………………………………. 84
5.2 Experimental Section………………………………………………………. 87
5.3 Results……………………………………………………………………… 88
5.3.1 DSC Studies of the Melting Behavior Subsequent to Isothermal
Crystallization………………………………………………………….. 88
5.3.2 Overall Isothermal Crystallization Kinetics………………………… 90
5.3.3 Heating Rate Studies…………………………………………………. 91
5.3.4 Partial Melting Experiments……………………………………….. 96
5.3.5 Generation of Excess Heat Capacity under Quasi-Isothermal
Conditions…………………………………………………………. 100
5.3.6 Quasi-Isothermal Melting Experiments……………………………. 103
5.4 Discussion…………………………………………………………………. 108
5.4.1 Crystallization Kinetics Revealed by Conventional DSC………. 111
5.4.2 Origin of the Multiple Melting Behavior Revealed by Heating Rate Studies and Partial Melting Experiments 116
5.4.3 Superheating Behavior of Low Melting Crystals as a Function of Temperature ... 119
5.4.4 Mechanism for the Generation of Excess Heat Capacity Revealed by Quasi-Isothermal Experiments 122
5.5 Conclusions .. 128
5.6 Reference .. 130

Chapter 6 Chain Length Dependence of Spherulitic Growth Rates in Poly(ethylene oxide) — Nucleation or Friction Regimes? 134

6.1 Introduction .. 134
6.1.1 LH Model ... 135
6.1.2 Role of Chain Length in the Regime Transition and Growth Rate 137
6.1.3 Crystallization of PEO and its Regime Transition Behavior 139
6.2 Experimental Section ... 141
6.3 Results and Analysis ... 142
6.3.1 Isothermal Spherulitic Growth Rates ... 142
6.3.2 Determination of Equilibrium Melting Temperature and the Regime I/II Transition ... 144
6.3.2.1 Determination of Equilibrium Melting Temperature 144
6.3.2.2 Regime I/II Transition Behavior .. 145
6.3.2.3 Study of the Regime Transition Behavior Using \(T_m \) Values from Buckley and Kovacs .. 148
6.3.2.4 Study of Regime Transition Behavior Using a Constant \(T_m \) Value — a Limiting Case ... 149
6.3.2.5 Study of the Regime Transition Behavior Assuming
 \(K_{gf(I)} / K_{gf(II)} = 2 \) as a Criterion for Determination of the Equilibrium Melting Temperature ... 149
6.3.2.6 Effect of Transport Parameters \((Q^{*}, U^{*}) \) on the LH Analysis 152
6.3.3 Chain Length Dependence of Growth Rate 152
6.4 Discussion ... 153
6.4.1 Summary of Results from LH analyses................................. 153
6.4.2 A Test of LH Theory: Calculation of Substrate Length........... 157
6.4.3 A Possible Mechanism for Regime Transition...................... 160
 6.4.3.1 Brochard - de Gennes (BD) Model............................... 161
 6.4.3.2 A Possible Mechanism for Regime Transition Based on
 Brochard – de Gennes Model....................................... 165
6.5 Conclusions... 168
6.6 Reference.. 170

Chapter 7 General Conclusions and Future Work.........................175

7.1 General Conclusions..175
7.2 Future Work...176
 7.2.1 On the Lateral Surface Model......................................176
 7.2.2 On the Regime Transition Behavior.............................177
 7.2.3 On the Morphologies of Crystal in Different Regimes........177
7.3 Reference..179

Vita...180
List of Figures

Figure 2.1 Schematic of fringed-micelle model for semi-crystalline polymers. 6
Figure 2.2 Schematic of chain-folded lamellar structure in semi-crystalline polymers with lateral dimensions X, Y and thickness l. σ and σ_e are the surface free energies associated with lateral and fold surfaces, respectively. 6
Figure 2.3 Schematic of the surface nucleation process on the crystal growth front (see the text for the description). 11
Figure 2.4 Free energy evolution of formation of a chain-folded nucleus. (See the text for the description.) 11
Figure 2.5 Schematic of the crystal growth in Regime I, II and III according to the LH theory. 15
Figure 2.6 (a) The comparison between $iL^2/2$ and g. The crossing point defines the position of regime I/II transition. The data are adopted from Armistead and Hoffman for a polyethylene fraction with $M_w = 30$ kg/mol. (b) The Z-test for the same data in (a). The range of Z from 0.01 to 1 defines the regime I/II transition range. 17
Figure 2.7 Number of stems with width a_0 between two neighboring nucleation events as a function of temperature in three regimes. The data are adopted from Armistead and Hoffman for a polyethylene fraction with $M_w = 30$ kg/mol. 18
Figure 3.1 Evolution of the difference between melting and crystallization temperatures (a) and evolution of the degree of crystallinity (b) as a function of residence time at the indicated temperatures. Data in (a) were arbitrarily shifted along the temperature axis for the sake of clarity. 32
Figure 3.2 Simulated primary (Δ), secondary (\diamond), and total (□) crystallinity as a function of time. See text for details regarding their estimation. 38
Figure 3.3 Primary crystallinity calculated by solving eq 3.15 and subsequent numerical integration of $dX_c^P(t)/dt$ for different choices of the parameter C. The inserts shows the evolution of the slope, $dX_c^P(t)/d\log t$ as a function of C. The slope was calculated for times $t > 30$ min. 39
Figure 3.4 Evolution of the fitted experimental crystallinity (o), calculated primary crystallinity (□), and calculated secondary crystallinity (full curve) with residence time at temperatures of 127 °C (a) and 128 °C (b) .. 40

Figure 3.5 Evolution of the experimental (o) and calculated (full curve) melting temperatures with residence time at temperatures of 127 °C (a) and 128 °C (b) …………………… 42

Figure 3.6 Evolution of the calculated melting trace with crystallization time at 127 °C (crystallization times as indicated). dX_c is the fraction of crystallinity which melts at temperature T_m. Crystallinity increments and melting temperatures were calculated for time steps, dt' = 2 min ... 43

Figure 3.7 Evolution of the experimental melting trace with crystallization time at 127°C (crystallization times as indicated) .. 44

Figure 4.1 Evolution of the experimental melting trace with crystallization time for PE-119K at (a) T_x = 129 °C and (b) T_x = 110 °C, for ESI-0.35 at (c) T_x = 124.7 °C and (d) T_x = 110 °C, for ESI-1.9 at (e) T_x = 114 °C and (f) T_x = 105 °C, for ESI-3.4 at (g) T_x = 108 °C and (h) T_x = 90 °C (range of crystallization times as indicated) .. 58

Figure 4.2 Evolution of the difference between melting and crystallization temperatures as a function of residence time at the indicated temperatures for ESI-0.35. Data was arbitrarily shifted along the temperature axis for the sake of clarity ... 59

Figure 4.3 Melting temperature shift rate B(T_x) as a function of crystallization temperature for (a) PE-119K, ESI-0.35, ESI-1.9 and ESI-3.4 (data for ESI-1.9 and ESI-3.4 are inferred from their high endotherm) and (b) for ESI-1.9, calculated for the low and the high endotherms .. 60

Figure 4.4 Correspondence between the first stage of the melting temperature evolution and the linear region of the Avrami plot for (a) PE-119K at T_x = 128 °C and (b) ESI-0.35 at T_x = 122.8 °C ... 62

Figure 4.5 Evolution of the excess heat capacity with time during quasi-isothermal experiments for (a) PE-119K and (b) ESI-0.35 (for the indicated crystallization temperatures) .. 64
Figure 4.6 Correspondence between the three stages of the melting temperature evolution and the decay of excess heat capacity (for the indicated crystallization temperatures).. 65

Figure 4.7 Correlations between excess heat capacity, crystallinity and melting temperature during quasi-isothermal or isothermal crystallization of ESI-0.35 at \(T_x = 124 \, ^\circ\text{C} \). (a) correlations between the excess heat capacity and the degree of crystallinity; (b) correlations between the evolution of the melting temperature and that of the degree of crystallinity; (c) evolution of the specific reversibility, \(C_p^{\text{exc}}(t_x) / \Delta H(t_x) \), with time.. 66

Figure 4.8 KWW analysis for the evolution of the excess heat capacity with time. (a) Experimental \(C_p^{\text{exc}}(t_x) \) data and best fit to the KWW equation for PE-119K at \(T_x = 120 \, ^\circ\text{C} \). (b) Arrhenius plot of characteristic time, \(\tau \), inferred from the KWW equation for PE-119K and ESI-0.35. The apparent activation energies, given in Table 4.3, are calculated from the slopes .. 69

Figure 4.9 Comparisons of Arrhenius plots for \(B(\tau_x) \) and \(\tau \) for (a) PE-119K and (b) ESI-0.35.. 70

Figure 5.1 Evolution of the melting trace with crystallization time for ESI-8.9 at (a) \(T_x = 73 \, ^\circ\text{C} \) and (b) \(T_x = 60 \, ^\circ\text{C} \) and for ESI-11.7 at (c) \(T_x = 53 \, ^\circ\text{C} \) (range of crystallization times as indicated).. 89

Figure 5.2 Melting temperature shift rate \(B(\tau_x) \) as a function of crystallization temperature for various ESI materials (ESI-3.4, ESI-5.5, ESI-8.9 and ESI-11.7)… 90

Figure 5.3 Heat of fusion as a function of crystallization time at various temperatures for (a) ESI-1.9, (b) ESI-3.4, (c) ESI-8.9 and (d) ESI-11.7. (crystallization temperature as indicated).. 93

Figure 5.4 Avrami exponent \((n) \) as a function of crystallization temperature for various ESI materials (ESI-1.9, ESI-3.4, ESI-5.5, ESI-8.9 and ESI-11.7)............ 94

Figure 5.5 Critical degree of crystallinity \((X_c^*) \) as a function of crystallization temperature for various ESI materials (ESI-1.9, ESI-3.4, ESI-5.5, ESI-8.9 and ESI-11.7).. 94

Figure 5.6 DSC melting trace after isothermal crystallization generated at different heating rate (in the range from 2.5 K/min to 30 K/min as indicated) for
(a) ESI-1.9 at $T_x = 112 \, ^\circ C$, $t_x = 20 \, min$, (b) ESI-3.4 at $T_x = 108 \, ^\circ C$, $t_x = 120 \, min$. (c) Melting temperature as a function of square root of heating rate for ESI-3.4 (Data was arbitrarily shifted along the temperature axis for the sake of clarity.) (d) The value of $C(T_x)$ as a function of crystallization temperature…….. 98

Figure 5.7 (a) Temperature program for partial melting experiments; (b) The effect of T_{x2} on the melting behavior (T_{x2} as indicated) in the case of ESI-3.4. Here, $T_{x1} = 108 \, ^\circ C$, $t_{x1} = t_{x3} = 55 \, min$; (c) Effect of t_{x2} on the melting behavior for ESI-1.9 (t_{x2} as indicated). Here, $T_{x1} = 112 \, ^\circ C$, $T_{x2} = 120 \, ^\circ C$, $t_{x1} = 20 \, min$, $t_{x3} = 4 \, min$; (d) Effect of t_{x1} on the melting behavior for ESI-1.9 (t_{x1} as indicated), here, $T_{x2} = 119 \, ^\circ C$, $t_{x2} = 2 \, min$, $t_{x3} = 20 \, min$. (e) Evolution of the heat of fusion with t_{x1} for low and high endotherms from (d)……………………………………………………… 102

Figure 5.8 Evolution of the excess heat capacity with time under quasi-isothermal conditions for (a) ESI-3.4 and (b) ESI-8.9 (for the indicated crystallization temperatures)…………………………………………………………………….. 105

Figure 5.9 Evolution of $C_p^{excess} / \Delta H$ with time during quasi-isothermal experiments for (a) ESI-3.4 (for the indicated temperature). The crossover times are indicated; Evolution of the melting trace with crystallization time for ESI-3.4 at (b) $T_x = 104 \, ^\circ C$ and (c) $T_x = 106 \, ^\circ C$…………………………………………………………………….. 106

Figure 5.10 (a) Evolution of C_p^{excess} with time during quasi-isothermal experiments for ESI-8.9 (for the indicated temperature). The onset times for the leveling off are 4 min and 25 min for $T_x = 70 \, ^\circ C$ and $T_x = 73 \, ^\circ C$, respectively; Evolution of the melting trace with crystallization time for ESI-8.9 at (b) $T_x = 70 \, ^\circ C$ and (c) $T_x = 73 \, ^\circ C$…………………………………………………………………….. 107

Figure 5.11 Arrhenius plots for τ obtained with the KWW analysis. (samples as indicated)…………………………………………………………………….. 108

Figure 5.12 Comparison of DSC melting traces (solid curves) and the reversing heat capacity (empty circle) obtained from quasi-isothermal melting experiments for (a) ESI-0.35, (b) ESI-1.9, (c) ESI-3.4, (d) ESI-5.5, (e) ESI-8.9 and (f) ESI-11.7. The baseline heat capacities as a function of temperature are also showed…………… 110

Figure 5.13 Overall degree of reversibility as a function of styrene content…….. 111
Figure 5.14 Degree of reversibility as a function of temperature for various copolymers…………………………………………………………………………. 111

Figure 5.15 Evolution of the experimental melting trace with crystallization time for ESI-3.4 at \(T_x = 109 \, ^\circ\text{C}. \) (crystallization time as indicated) 113

Figure 5.16 Examples (a, b, and c) of possible reversible segmental exchange on the fold surface. See the text for a description……………………………………... 124

Figure 6.1 The spherulitic growth rate as a function of crystallization temperature for a series of PEO fractions with molecular weight (a) 11, 43, and 113 kg/mol (b) 21, 75, 157, and 240 kg/mol ………………………………………... 143

Figure 6.2 The spherulitic growth rate as a function of molecular weight at fixed temperature as indicated…………………………………………………….. 144

Figure 6.3 (a) LH plot for PEO-113K. (The regime I/II transition as indicated) (b) The regime I/II transition temperature as a function of molecular weight for PEO fractions with molecular weight ranging from 11 to 157 kg/mol………………….. 146

Figure 6.4 LH plots for a series of PEO fractions with molecular weight ranging from 11 to 157 kg/mol. The regime I/II transition occurs at constant undercooling as indicated……………………………………………………………………………. 147

Figure 6.5 (a) LH plot for PEO-113K using the equilibrium melting temperature from Buckley and Kovacs. (b) The growth rate as a function of molecular weight at constant undercoolings that are calculated from the equilibrium melting temperature from Buckley and Kovacs…………………………………………….. 150

Figure 6.6 (a) The equilibrium melting temperature as a function of molecular weight and (b) the \(K_g \) values in regime I and II obtained by forcing \(K_{g(I)}/K_{g(II)} = 2 \) . 151

Figure 6.7 (a) Spherulitic growth rate as a function of molecular weight at constant undercooling. (the undercooling as indicated) (b) The power value \(s \) as a function of undercooling…………………………………………………………... 154

Figure 6.8 Prefactor \(G^0 \) in regime II (a) and regime I (b) as a function of molecular weight inferred from the LH analysis……………………………………. 155

Figure 6.9 Schematic of conformational change of a chain with increasing the velocity…………………………………………………………………………….. 163
Figure 6.10 Evolution of (a) friction force (F) and (b) friction coefficient (ξ) with velocity in different regimes……………………………………………………………………164

Figure 6.11 (a) Schematic of regime transition in growth rate due to the regime transition in friction coefficient. (b) The chain length dependence of friction coefficient (ξ) at V^* and V_{Rouse}…………………………………………………………………………………………167
List of Tables

Table 3.1 Input parameters for calculation .. 38

Table 4.1 Molecular characteristics of linear polyethylene and ethylene-styrene copolymers ... 51

Table 4.2 Apparent activation energy (E_a) for the crystal α-relaxation in linear polyethylene ... 78

Table 4.3 Apparent activation energy estimated from the temporal evolutions of the excess heat capacity and melting temperature for crystallization at different temperatures ... 79

Table 5.1 Molecular characteristics of ethylene-styrene copolymers 88

Table 6.1 Molecular characteristics and source of a series of poly(ethylene oxide) fractions used in the spherulitic growth rate measurements 141

Table 6.2 The equilibrium melting temperatures for six PEO fractions determined by assuming constant $\Delta T(I/II)$.. 147

Table 6.3 The values of K_g, K_g ratio, $\ln G^0$ in regime I and II for a series of PEO fractions showing I/II regime transition .. 148

Table 6.4 The equilibrium melting temperature obtained by Buckley and Kovacs’s approach ... 149

Table 6.5 The parameters inferred from LH analysis assuming $T_m = 79$ °C for all the PEO fractions ... 151

Table 6.6 The parameters inferred from LH analysis using VFTH form. Here, $U^* = 6270$ J/mol is used ... 152

Table 6.7 The parameters used to calculate the substrate length at I/II regime transition ... 159

Table 6.8 The substrate length at I/II regime transition obtained using two different power law ... 159