Implementation of Iterative Reconstruction of Images from Multiple Bases
Representations

by

Wachira Chongburee

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of
Master of Science
in
Electrical Engineering

APPROVED:

A.A. (Louis) Beex, Chairman

_________________________ _____________________
H.F. VanLandingham I.M. Besieris

November 1998
Blacksburg, Virginia
Implementation of Iterative Reconstruction of Images from Multiple Bases Representations

by

Wachira Chongburee

A. A. (Louis) Beex, Chairman

Bradley Department of Electrical Engineering

(ABSTRACT)

Usually, image compression techniques that use only one transform exhibit some poor properties. For instance, the Discrete Cosine Transform (DCT) cannot efficiently represent high frequency components, resulting in blurred images. The Multiple Bases Representation (MBR) compression technique, which uses two or more transforms, is found to be superior to the single transform techniques in terms of representation efficiency. However, some bits in the MBR representation are needed to track the basis information. The MBR image quality is deteriorated by discontinuities at block boundaries, as is the standard DCT transform.

In this thesis, test images are distorted by MBR compression using a Recursive Residual Projection algorithm. This algorithm is a sub-optimal method to find the best basis vector subset for representing images based on multiple orthogonal bases. The MBR distorted images are reconstructed by the iterative method of Projection onto Convex Sets (POCS). Many constraints that form convex sets are reviewed and examined.
Due to the high distortion at the block boundaries, some constraints are introduced particularly to reduce artifacts at the boundaries. Some constraints add energy to the reconstructed images while others remove energy. Thus, the initial vectors play a key role in the performance of the POCS method for better MBR reconstruction. This thesis also determines the most appropriate initial vector for each constraint.

Finally, the composite projections associated with the sign, minimum decreasing and norm-of-slope constraints are used to improve the reconstruction of the MBR distorted images and the effect of ordering of the projections is investigated.
Acknowledgements

My first and foremost thanks go to Dr. A.A.(Louis) Beex, my advisor to whom I am indebted for his assistance, advice, patience, and the knowledge he has contributed. My gratitude also extends to Dr. H.F. VanLandingham and Dr. I.M. Besieris who serve as my committee members.

Next, I would like to thank the Science and Technology Affairs of Thailand for sponsoring me all through this degree. In addition, I am very grateful to all the teachers that I have had in every level of education, especially the faculties of the Department of Electrical and Computer Engineering, Kasetsart University, Thailand, for the basic knowledge in the area I have been working on.

I also owe my thanks to many dear friends in Blacksburg whose names are too countless to mention. And finally, I feel very thankful for my family who live on the other side of the world but never let the distance obstruct their encouragement, attention and love.
Table of Contents

1. Introduction .. 1
 1.1 Background ... 1
 1.2 Overview of the Hybrid Compression Method ... 2
 1.3 Overview of Iterative Image Reconstruction ... 3
 1.4 Thesis Preview .. 4

2. Theoretical Review ... 6
 2.1 Representation of Signals: Introduction ... 6
 2.2 Representation of Signals: Multiple Bases Representation (MBR) 9
 2.3 Recursive Residual Projection (RRP) ... 11
 2.4 RRP Outcomes and Statistics .. 14

3. Iterative Image Reconstruction .. 17
 3.1 Mathematics Review ... 17
 3.2 Projection Onto Convex Sets (POCS) ... 20
 3.3 MBR Constraint .. 22
 3.4 Local Constraint Definitions and Projection Operators 29

4. Blocking Artifact ... 39
 4.1 Boundary Characteristics ... 39
 4.2 Slope Constraint .. 41
 4.3 Norm-of-Slope Constraint ... 42
 4.4 Estimate of the Scalar E ... 48
5. Implementation Description ... 50
 5.1 Implementation Tool ... 50
 5.2 Implementation Preview ... 51
 5.3 Quantization Method .. 51
 5.4 Error Signal Determination ... 52
 5.5 Image Quality Measurement ... 52
 5.6 Initial Vector .. 54
 5.7 Types of Test Images .. 60
 5.8 Number of Iterations .. 60

6. Performance Improvements Due to Constraints 61
 6.1 Additional Information Determination .. 61
 6.2 Effects of Initial Vectors on Performance Due to Individual Constraints 63
 6.3 Performance Improvements Due to the Boundary Constraints 79
 6.4 Implementation on Other Images ... 88
 6.5 Sequence of Projection Operators .. 93

7. Conclusion ... 101

References .. 103
Vita .. 105
List of Figures

Figure 2.1 The RRP implementation ... 13
Figure 3.1 The MBR constraint ... 25
Figure 4.1 Pixel intensity at the boundaries .. 40
Figure 4.2 Choices of vectors for C_{NS} .. 45
Figure 6.1 PSNR of the images reconstructed by the sign constraint 65
Figure 6.2 64×64 Subimage for subjective evaluation 69
Figure 6.3 Performance of the sign constraint at various added noise levels .. 71
Figure 6.4 PSNR of the images reconstructed by the minimum increasing constraint ... 73
Figure 6.5 PSNR of the images reconstructed by the spike constraint 76
Figure 6.6 Comparison of the reconstructed images 78
Figure 6.7 PSNR of the images reconstructed by the slope constraint 80
Figure 6.8 Performance due to the norm-of-slope constraint with actual norms .. 83
Figure 6.9 Exact and estimated boundary norm values 85
Figure 6.10 Performance due to the norm-of-slope constraint with estimated norms ... 86
Figure 6.11 Comparison of the images reconstructed by the boundary constraints .. 87
Figure 6.12 Reconstructed landscape images .. 91
Figure 6.13 Reconstructed X-ray images ... 92
Figure 6.14 PSNR of different projection sequences used on the landscape image 96
Figure 6.15 Reconstructed portrait images by using composite contraints 98
Figure 6.16 Reconstructed landscape images by using composite contraints 99
Figure 6.15 Reconstructed X-ray images by using composite contraints 100
List of Tables

Table 6.1 Improvement of overall PSNR (dB) from the MBR observed signal 90
Table 6.2 Improvement of boundary PSNR (dB) from the MBR observed signal 90
Table 6.3 Overall PSNR of different projection sequences 94
Table 6.4 Boundary PSNR of different projection sequences. 94