Acknowledgements

This dissertation could not have been finished without the help and support from many professors, research staff, graduate students, colleagues and my family. It is my great pleasure to acknowledge people who have given me guidance, help and encouragement.

I would like to first thank Dr. R. O. Claus for his constant guidance, personal attention, suggestions and endless encouragement and full support during last four years of my graduate study and research. He gave me opportunities to participate in this research program, and to work with talented research staff and graduate students in his research center.

Special thanks go to my advisory committee members professor William B. Spillman, Jr., professor Diana Farkas, professor Guo-Quan Lu, and professor Louis Guido for their endless, important suggestions and remarks in this research program and for their time and effort in service on my doctoral committee despite their already heavy loads of responsibility.

I would like to express my sincere appreciation to research scientists Dr. Liangmin Zhang, Dr. Youxiong Wang, and Dr. Tingying Zeng, who gave me enormous valuable discussions, technical support and hands-on help in many aspects of this research program, and their caring and concern about this dissertation.
My special appreciation goes also to Professors Jin Z. Zhang and Dr. Michael C. Brelle in the Chemistry and Biochemistry Department, University of California Santa Cruz, who provided generous femtosecond ultrafast laser spectroscopy measurements. They also gave me much information and discussion in this respect. Thanks also go to professor Sandra J. Rosenthal in the Chemistry Department of Vanderbilt University for her assistance with the preparation of CdSe nano-crystals.

It has been my pleasure to work with graduate students and colleagues in the Fiber & Electro-Optics Research Center, they are Roger Duncan, Cathy Hui, and Qiao Chen. We discussed together, exchange ideas, and helped each other. Those made my years at Virginia Tech the most memorable period in my life.

Finally, I would express my gratitude to my parents, my parents-in law, my wife and my son and my brothers, whose support and constant encouragement helped me through the hard times of this program. My deepest appreciation is expressed to them for their love, understanding, and inspiration. Without their blessings and encouragement, I would not have been able to finish this work.
Table of contents

Chapter 1. Introduction 1

1.1 Electro-optic and nonlinear optical properties of materials 2
1.2 Electro-optic devices 6
1.3 Objectives of research 9
1.4 References 12

2.1 Introduction 15

2.1.1 General theories and concepts concerning semiconductor nano-crystals 15
2.1.2 Preparing of Semiconductor nano-clusters 22

2.2 Films preparing 25

2.2.1 Electrostatic self-assembly (ESA) technique 25
2.2.2 Spin coating of nano-particle doped polymeric EO films 28
2.2.3 Poling of spinning coated electro-optic films 29

2.3 Characterization of fabricated nano-clusters and e-o films 31

2.4 Experimental procedure 32

2.4.1 II-VI semiconductor nano-crystals and films preparation 32
2.4.2 Preparing of electro-optic films by ESA technique 33
2.4.3 Spin coating of nano-particle doped polymeric EO films 34
Chapter 3. Electro-optic Properties of II-VI Semiconductor Nano-clusters and Electro-optic Chromophores

3.1 Introduction

3.1.1 Electro-optic properties of semiconductor nano-cluster materials

3.1.2 Electro-optic properties of electro-optic chromophores

3.2 Measurements of Electro-optic Pockels and Kerr coefficients

3.2.1 Linear electro-optic coefficient measurement by ellipsometric setup

3.2.2 Linear Electro-optic coefficient measurement by MZI setup

3.2.3 Quadratic electro-optic coefficient measurement by ellipsometric setup

3.3 Results and discussion

3.3.1 Polymer matric nano-cluster electro-optic films

3.3.2 Polymeric electro-optic chromophore films

3.4 Conclusions

3.5 References
Chapter 4. Application of Electro-optic Materials: Design of Polymeric Optical Modulators

4.1 Introduction 135

4.2 Waveguide analysis by means of effective index approach 139

 4.2.1 Minimum (cut off) thickness of Planar waveguide 139

 4.2.2 Channel (ridge) waveguide 144

4.3 High speed operation and traveling wave electrode design 148

 4.3.1 High speed device 148

 4.3.2 Traveling wave electrode design 154

4.4 Waveguide and electrode fabrication 158

4.5 Conclusions 159

4.6 References 160

Chapter 5. Conclusions 162
List of Figures and Tables

Fig. 1-1. Structure of MZI modulators: Basic cosine response of a MZI modulator. 7

Fig. 1-2. Power-length product as function of switching speed of some electro-optic and nonlinear optical materials. 9

Fig. 2-1. Densities of states for 3D, 2D, 1D, and 0D systems. 18

Fig. 2-2. Enhanced confinement and oscillation strength in compressed excitons. 20

Table 2.1. Number of total atoms and percentage of surface atoms vary with radius of nano-clusters. 21

Fig. 2-3. Formation of surface capped semiconductor nano-crystals. 23

Fig. 2-4. ESA schematic for buildup of multilayer assemblies by consecutive absorption of anionic and cationic molecule-based polyelectrolytes. 27

Fig. 2-5. ESA processing of polymers in combination with water-soluble nano-cluster quantum dots allows wide variation of thin-film properties. 27

Fig. 2-6. Needle corona poling set up. (a) Configuration; (b) Picture of poling set up. 30

Fig. 2-7. Room temperature absorption spectra of CdS, CdSe and CdTe nano-crystallites with different particle sizes. (a): 2-3 nm diameter of CdSe, Cds, and CdTe nano-particles, (b): CdSe nano-particles at various sizes. 32

Fig. 2-8. Pictures of various films ready for measurements. 35

Fig. 2-9. Optical absorption spectrum of CdS anao-particles dispersed in pridine. 37
Fig. 2-10. Luminescence spectrum of CdS solution (CdS dispersed in pridine).
 Peak intensity is at 526.6 nm.

Fig. 2-11. Optical absorption spectra of CdSe films and solution.

Fig. 2-12. Luminescence spectra of CdSe films fabricated by spin coating and ESA.

Fig. 2-13. TEM (A) and diffraction ring (B) of CdS nano-clusters.

Fig. 2-14. TEM (A) and diffraction ring (B) of CdSe nano-clusters.

Fig. 2-15. Calculated absorption band edge varies with the diameter of CdS quantum dots.

Fig. 2-16. Calculated threshold wavelength shift varies with the diameter of CdS quantum dots.

Fig. 2-17. Maximum absorption varies with thickness (number of layers) and external voltage of PS-119/PDDA films with and without external electrical field.

Fig. 2-18. Optical density varies with thickness (number of layers) and external voltage of PS-119/PDDA films with and without external electrical field.

Fig. 2-19. Peak wavelength varies with thickness (number of layers) and external voltage of PS-119/PDDA films with and without external electrical field.

Fig. 2-20. Optical absorption spectra of PS-119/PAH films with different thickness (number of bilayers).

Fig. 2-21. Absorption varies with number of bilayers of PS-119/PAH films
at peak position.

Fig. 2-22. Optical absorption spectra of PS-119/PDDA films with different thickness (number of bilayers).

Fig. 2-23. Absorption varies with number of bilayers of PS-119/PDDA films at peak position.

Fig. 2-24. AFM diagram of PS-119/PAH film, 200 bilayers.

Fig. 2-25. AFM diagram of PS-119/PDDA film, 75 bilayers.

Fig. 2-26. Absorption spectrum verses number of bilayers, pH value of PDDA solution is 5.8.

Fig. 2-27. Absorption spectrum verses number of bilayers, pH value of PDDA solution is 11.5.

Fig. 2-28. Absorption varies with number of bilayers of CdSe/PDDA films at peak position (585 nm), pH value of PDDA solution is 5.8 and 11.5.

Fig. 2-29. XPS spectrum of CdSe-PDDA film made by ESA process, pH value of PDDA solution is 11.5, concentrations are: Cd = 6.20, Se = 2.08 (atomic %).

Fig. 2-30. XPS spectrum of CdSe-PDDA film made by ESA process, pH value of PDDA solution is 11.5, concentrations are compound Se = 43.42, alloy Se = 56.58 (atomic %).

Fig. 2-31. XPS spectrum of CdSe-PDDA film made by ESA process, pH value of PDDA solution is 5.8, concentration is Cd = 6.14, Se = 3.48 (atomic %).

Fig. 3-1. Relevant energy levels for SDGs (semiconductor nano-crystals dispersion in glasses) in the resonant regime.

XIII
Fig. 3-2. Schematic energy level scheme diagram for the bulk semiconductor and for the micro-crystallite.

Fig. 3-3. Plots of Im$\chi^{(3)}$ and Re$\chi^{(3)}$ as a function of frequency, ω_0 is the resonance frequency.

Fig. 3-4. 3 kinds of electro-optic polymers.

Fig. 3-5. Ellipsometric setup.

Fig. 3-6. Picture of ellipsometric setup.

Fig. 3-7. Mach-Zehnder interferometric setup for linear electro-optic effect measurements.

Fig. 3-8. Picture of Mach-Zehnder interferometric setup.

Fig. 3-9. Modulation frequency dependent of r_{33}/r_{113} ratio of nano-cluster CdSe/PDDA ESA film.

Fig. 3-10. r_{33} varies with modulation frequency of CdSe films fabricated at different conditions, poling voltage is 80 volts/micron.

Fig. 3-11. r_{33} varies with poling voltage of spin coated CdSe films.

Fig. 3-12. r_{33} of CdSe/Nor-65 film verses CdSe concentration, poling voltage 80volts/micron, modulation frequency 300 Hz.

Fig. 3-13. r_{333} as a function of modulating frequency measured using the Mach-Zehnder setup.

Fig. 3-14. r_{113} as a function of modulating frequency measured using the Mach-Zehnder setup.

Fig. 3-15. r_{1133} as a function of modulating frequency measured with the ellipsometric setup.
Fig. 3-16. \(r_{333} \) as a function of modulating frequency measured with the ellipsometric setup.

Fig. 3-17. Molecular structures of various polymers used in the present work.

Fig. 3-18. Modulation frequency dependence of \(r_{113} \) of ESA CLD/PDDA film.

Fig. 3-19. Modulation frequency dependence of \(r_{333} \) of ESA CLD/PDDA film.

Fig. 3-20. Modulation frequency dependence of \(r_{333} \) and \(r_{113} \) of spin coating CLD/PDDA(wt. 31% CLD) film.

Fig. 3-21. \(r_{333}, r_{113} \) vary with frequency of modulation voltage of PS-119/PDDA films.

Fig. 3-22. \(r_{333}, r_{113} \) vary with frequency of modulation voltage of proton irradiated PS-119/PDDA films.

Fig. 3-23 \(r_{333}, r_{113} \) vary with frequency of modulation voltage of PCBS/PDDA films.

Fig. 3-24. \(r_{333}, r_{113} \) vary with frequency of modulation voltage of proton irradiated PCBS119/PDDA films.

Fig. 3-25. FT-IR of polys-119/PDDA ESA films with (1-A) and without (control-A) proton irradiation.

Fig. 3-26. FT-IR of PCBS/PDDA ESA films with (3A) and without (control 3) proton irradiation.

Fig. 3-27. \(r_{333} \) of PS-119/PDDA at different thickness (240,378 and 540 bilayers).

Fig. 3-28. \(r_{33}, r_{13} \) vary with poling voltage of PS-119/PDDA film(540 bilayers), modulation frequency 1000 Hz.

Fig. 3-29. \(r_{33} \) vary with modulated frequency of BR/PDDA film.
Fig. 3-30. Electro-optic coefficient of ESA BR/PDDA films at different thickness.

Fig. 3-31. Electro-optic coefficient of PS-119/PDDA ESA films vary with number of bilayers with and without applied field in the process of film growth, modulation frequency is 30 Hz.

Fig. 4-1. Schematic of channel waveguide structure (left hand) and a top view of waveguide multilayer (right side).

Fig. 4-2. Configuration of planar waveguide.

Fig. 4-3. Dispersion curve of ESA PS-119 and CdSe films.

Fig. 4-4. High frequency (optical) dielectric constant of ESA PS-119 and CdSe films.

Fig. 4-5. Cutoff thickness of plane waveguide varies with refractive index of core layer, \(n_1=1 \), \(n_3=1.50 \), wavelength=1550nm.

Fig. 4-6. Cutoff thickness of plane waveguide varies with refractive index of cladding layer, \(n_2=1.51 \) and 1.61, \(n_3=1.50 \), wavelength=1550nm.

Fig. 4-7. Configuration of 3-D channel waveguide.

Fig. 4-8. Effective refractive index versus core layer thickness.

Fig. 4-9. Aspect ratio as a function of normalized frequency of 3-D channel waveguide.

Fig. 4-10. Ultrafast laser spectroscopy of CdSe nano-cluster doped glass at different pulse intensity.

Fig. 4-11. Modulation index as a function of modulation length at different modulation frequency, \(n=1.51, n_m=1.56 \).

Fig. 4-12. Modulation index as a function of modulation length at different \(n_m, n=1.51, \omega_m=100G \text{ Hz} \).
Fig. 4-13. Illustration of traveling wave. 154

Fig. 4-14. Effective dielectric constant as a function of electrode sizes. 157

Fig. 4-15. Characteristic impedance as a function of electrode sizes. 157