SURFACTANT FORMULATIONS TO ENHANCE TRICLOPYR AMINE EFFICACY: EFFECTS ON ADHESION, RETENTION AND CONTACT PHYTOTOXICITY ON THREE HARDWOOD SPECIES

W. Alison Forster

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE
IN
FORESTRY

APPROVED:

Shephard M. Zedaker, Chair
John R. Seiler
Jerzy A. Zabkiewicz

8/22/98
Blacksburg, Virginia

Keywords: Adhesion, Retention, Triclopyr, Organosilicone

Copyright 1998, W. Alison Forster
SURFACTANT FORMULATIONS TO ENHANCE TRICLOPYR AMINE EFFICACY:
EFFECTS ON ADHESION, RETENTION AND CONTACT PHYTOTOXICITY ON
THREE HARDWOOD SPECIES

W. Alison Forster

Abstract

Loblolly pine (*Pinus taeda* L) is the leading Southern (USA) pine, in terms of acres planted (Fortson *et al.*, 1996). Since commercial forest acreage is predicted to remain fairly constant over the next 50 years, productivity must be increased if the South is going to meet a larger share of the nation’s timber supply needs (Gjerstad and Barber, 1987). Hardwoods have been shown to have a consistent negative growth impact on pines, and uncontrolled hardwoods continue to compete aggressively with pines throughout a rotation, especially when hardwoods remain in the pine canopy.

Competing vegetation can be efficiently controlled by herbicides, which need to be formulated either in-can or in-tank to allow them to perform optimally. Adjuvants have proven essential to increasing the efficacy of herbicides, due to their ability to consistently improve the performance of the basic pesticide product. There are, broadly speaking, two routes by which adjuvants can do this. The first is the minimization of off target deposition and second, by the maximization of the herbicidal effect once it is placed on the target (Reeves, 1989). The major contributors to off-target deposition and retention are drift, in-flight volatilization, droplet shatter, bounce or runoff, washoff, and removal by wind. These losses result in pesticides never reaching the target or achieving only transitory deposition. There are two basic methods of maximizing the effect of the pesticide once it is on the target. The first is to improve coverage by the spray solution, which can be accomplished by lowering the surface tension of the spray with surfactant materials. The second is by improving the penetration or uptake into the target. Organosilicone surfactants can reduce the surface tension of aqueous pesticides far below that which is possible with nonsilicone surfactants, resulting in efficient wetting of even the most hydrophobic leaf surfaces. Additionally,
by virtue of their low surface tension, these adjuvants can significantly increase the uptake of active chemicals directly into the plant via stomatal infiltration (Stevens et al., 1991).

Triclopyr ([(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid) has been found to be an effective herbicide for hardwood control. Its two commercial formulations, a triethylamine (TEA) salt (Garlon 3A) and a butoxyethyl ester (Garlon 4), vary considerably in their acceptability. The current ester formulation has two undesirable characteristics. One is that all ester formulations, regardless of chain length, have some volatility which is usually more than that of water-soluble salts. The second is that the current ester formulation utilizes a kerosene solvent which is known to cause rapid foliar necrosis (possibly inhibiting herbicide translocation) and is a suspected carcinogen (Zedaker et al., 1995). In most applications, the ester formulation has been more efficacious than the amine formulation on both an equal active ingredient basis and on an equal cost basis. Research had demonstrated a potential to enhance the uptake of triclopyr through the use of organosilicones; however, significant problems still existed. It was found that the commercial TEA formulation of triclopyr (Garlon 3A) was "antagonistic" to the organosilicone surfactant Silwet L-77. To take full advantage of the properties of organosilicones, the antagonistic co-formulants of Garlon 3A needed to be removed or replaced, the best surfactant formulation identified, and a cost-effective concentration of the surfactant(s) needed to be found.

To do this adequately required that both physico-chemical processes and biological processes be studied. The relevant physico-chemical processes involved in a formulation's effect on spray impaction on the target plant include adhesion, reflection, retention and run-off. The important biological processes include the uptake and translocation of the herbicide into the plant.

The objectives of this study were: to evaluate the influence of formulation, active ingredient concentration, droplet size and leaf surface (adaxial vs. abaxial) on contact phytotoxicity, adhesion and retention to Acer rubrum, Liquidambar styraciflua and Quercus rubra by triclopyr formulations containing organosilicone surfactants and mixtures of silicone plus conventional surfactants. The adhesion and retention studies also evaluated the influence of leaf angle. Further objectives were to evaluate the influence of formulation and active ingredient concentration on
spray retention by the adaxial and abaxial leaf surface of the selected species under field and track-sprayer conditions and to determine whether leaf characteristics (wax character and leaf angle) could explain adhesion/retention.

Garlon 4, Garlon 3A and Triclopyr TEA + sequestrant (each at 0.32%, 1.6% and 3.2% ae) plus various concentrations of the surfactants Polyglycol 26-2, Rhodasurf DA-630, Surfadone LP-100, Silwet L-77 and Silwet 408, were tested for contact phytotoxicity, adhesion and retention on the adaxial and abaxial leaf surfaces of sweetgum, red oak and red maple.

Little or no contact phytotoxicity was observed with any formulation applied to the adaxial surface within 6 hours; some phytotoxicity was noted within 24 hours. Abaxial surface treatments showed much greater contact phytotoxicity. Contact phytotoxicity was caused by (1) increasing concentrations of stock triclopyr products, and (2) the influence of the organosilicone surfactants. However, these results were very species dependent. Conclusions made from the contact phytotoxicity study were: if the droplet size becomes too big, then efficacy will be reduced; increasing the concentration of active ingredient above a certain limit will not increase efficacy, and may in fact reduce it; the addition of the organosilicone surfactants Silwet L-77 and Silwet 408 delayed and reduced phytotoxicity in red oak (the most susceptible species to contact phytotoxicity), and to a lesser extent in red maple, but increased the rate in sweetgum.

Major influences on adhesion were: droplet size (increasing droplet size decreased adhesion); adaxial/abaxial leaf surface (abaxial adhesion less than adaxial); product concentration (increasing product concentration increased adhesion); leaf angle (increasing leaf angle decreased adhesion); and addition of surfactants (variable adhesion).

All new formulations gave greater adhesion than the commercial formulations, with Triclopyr TEA plus sequestrant plus n-octyl pyrrolidone plus Silwet 408 giving, overall, the greatest adhesion. Increasing product concentration gave greater adhesion. Increasing droplet size and angle of impact reduced adhesion. The adaxial leaf surface showed higher adhesion than the
abaxial leaf surface. Adhesion was higher on sweetgum, followed by red oak, with red maple being the most difficult species to get formulations to adhere to.

Whereas increasing product concentration improves adhesion, the lowest contact phytotoxicity result would be from lowering product concentration. Looking at both sets of results, the best product concentration of those studied would then be 1.6% ae as this can provide high adhesion, while still enabling us to choose a formulation which gives minimal contact phytotoxicity.

In the laboratory, formulation had no significant effect on retention. However, there are other considerations which affect retention that need to be kept in mind. It was observed that droplets containing organosilicone could impact an already wetted surface and still adhere or be retained, whereas those droplets not containing any organosilicone surfactant would bounce quite a distance on impact with a pre-wetted surface. Impaction with an already wetted surface was not part of this study, and therefore was not studied quantitatively. Also, formulations containing organosilicone surfactants provide greater “wrap-around” to the lower surface (Forster and Zabkiewicz, 1998), which is of great benefit when stomata are only on the abaxial surface, as is the case with these species.

Concentration and leaf angle also had no significant effect on retention. Droplet size was significant, with retention decreasing with increasing droplet size. Retention by the adaxial surface was significantly higher than retention by the abaxial surface. There was no significant difference overall between sweetgum and red oak, but retention by red maple was significantly lower.

Spray retention by the adaxial and abaxial leaf surfaces of the three tree species was also characterized in a field experiment conducted on a right of way site in North Anna, Virginia, USA. Amine (Garlon 3A) formulations of triclopyr combined with Silwet 408, and the commercial triclopyr ester formulation, Garlon 4, were applied using a Radiarc sprayer equipped with 0.508 mm nozzles (approx. 1000 μm droplets) applying 140 l/ha. The addition of the organosilicone surfactant Silwet 408 to the amine formulation gave the same total deposition as the commercial ester formulation, Garlon 4, while enhancing the abaxial retention as a percentage
of total deposition. Thus the addition of organosilicone surfactant may have the ability to enhance herbicide uptake via the abaxial leaf surface, and therefore enhance efficacy. Field trial results showed that the alcohol ethoxylate, DA6, is not an essential component of the triclopyr amine / Silwet 408 formulation, in terms of retention.

The field trial application was also simulated on sweetgum, using a track-sprayer at the NZ Forest Research Institute Ltd. As in the field trial, the addition of Silwet 408 to triclopyr amine greatly enhanced abaxial retention as a percentage of total deposition, compared to that of Garlon 4. However, the track-sprayer results were very different from the field results, with amounts of adaxial and abaxial retention and total deposition much lower.

In agreement with published literature, it was found that the micro-roughness of the leaf surface can be used as a guide to explain adhesion results. The difference among trees in terms of leaf angles appeared to be much less important in explaining retention.
ACKNOWLEDGEMENTS

The author is grateful to Dr. Jerzy Zabkiewicz for the encouragement to do an MS., for making it possible, for his moral support and guidance throughout, for his considerable help with the field trial and for reviewing the Thesis. Thanks go to Dr. Shepard Zedaker for making this MS. possible, for his help with the field trial and for reviewing the Thesis. Appreciation is also extended to Dr. John Seilar for his help with the field trial and for reviewing the Thesis. The author would like to thank her employer, the New Zealand Forest Research Institute, for making this MS possible. Appreciation is also extended to Pat Burch, Meral Jackson, Jason Heinz, Mathew Nespeca and Robert Farrell for their considerable help with the Field trial, and to Dr. Clint Coakley for helping the author through Applied Statistics, and for giving her an enthusiasm for statistics. The author would like to thank the staff of PPC for their support, in particular, thanks go to Kevin Steele for setting up the instrument used to produce the 2000 µm droplets, Rachel Murray for her help with the contact phytotoxicity study, Arthur Vanner for his help with the Track-Sprayer study and Robyn Gaskin for her review of the draft Thesis. The author thanks Mark Kimberley for his advice and help with the statistical analysis.

Appreciation goes to Witco Corporation, OrganoSilicones Group, USA and DowElanco, USA for their financial support and for supplying the chemicals used. Funding was also supplied from the New Zealand Public Good Science Fund.

Last, but not least, I would like to thank my parents for their encouragement and support.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION AND JUSTIFICATION</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER 2: LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td>Forestry in the Southern United States</td>
<td>5</td>
</tr>
<tr>
<td>Chemical Weed Control in Conifer Plantations</td>
<td>7</td>
</tr>
<tr>
<td>Factors Affecting Herbicide Efficacy</td>
<td>10</td>
</tr>
<tr>
<td>Transport to Target</td>
<td>10</td>
</tr>
<tr>
<td>Wetting / Adhesion</td>
<td>12</td>
</tr>
<tr>
<td>Retention</td>
<td>13</td>
</tr>
<tr>
<td>Spreading</td>
<td>13</td>
</tr>
<tr>
<td>Drying</td>
<td>14</td>
</tr>
<tr>
<td>Organosilicone & Conventional Surfactants used</td>
<td>15</td>
</tr>
<tr>
<td>Characteristics of Adhesion and Retention</td>
<td>16</td>
</tr>
<tr>
<td>Adhesion-Plant Interactions</td>
<td>17</td>
</tr>
<tr>
<td>Spray Retention</td>
<td>18</td>
</tr>
<tr>
<td>Application Technologies</td>
<td>19</td>
</tr>
<tr>
<td>Microfoil Boom Sprayer</td>
<td>20</td>
</tr>
<tr>
<td>Radiarc Sprayer</td>
<td>20</td>
</tr>
<tr>
<td>Contact Phytotoxicity</td>
<td>21</td>
</tr>
<tr>
<td>Summary</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER 3: HYPOTHESES</td>
<td>23</td>
</tr>
<tr>
<td>Contact Phytotoxicity Study</td>
<td>24</td>
</tr>
<tr>
<td>Adhesion and Retention Study</td>
<td>25</td>
</tr>
<tr>
<td>Spray Retention: Field and Track-Sprayer Conditions</td>
<td>26</td>
</tr>
<tr>
<td>Leaf Characteristics</td>
<td>26</td>
</tr>
<tr>
<td>CHAPTER 4: METHODS AND MATERIALS</td>
<td>27</td>
</tr>
<tr>
<td>Contact Phytotoxicity Study</td>
<td>27</td>
</tr>
<tr>
<td>Formulations</td>
<td>27</td>
</tr>
<tr>
<td>Plant material</td>
<td>27</td>
</tr>
<tr>
<td>Contact phytotoxicity</td>
<td>28</td>
</tr>
<tr>
<td>Experimental design and statistical analysis</td>
<td>29</td>
</tr>
<tr>
<td>Adhesion & Retention Study</td>
<td>29</td>
</tr>
<tr>
<td>Formulations</td>
<td>29</td>
</tr>
<tr>
<td>Plant material</td>
<td>29</td>
</tr>
<tr>
<td>Adhesion and retention</td>
<td>29</td>
</tr>
<tr>
<td>Experimental design and statistical analysis</td>
<td>31</td>
</tr>
</tbody>
</table>
Spray Retention under Field & Track-Sprayer Conditions 31
Spray Retention under Field Conditions 31
 Formulations 31
 Field site and plant material 32
 spray retention 32
 Experimental design and statistical analysis 33
Spray Retention using a Track-Sprayer 35
 Formulations 35
 Plant material 35
 Spray retention 35
 Experimental design and statistical analysis 36
Leaf Characteristics (Wax Character and Leaf Angle) 37
 Plant material 37
 Scanning electron microscopy (SEM) 37
 Leaf angle determinations 37

CHAPTER 5: RESULTS AND DISCUSSION 38
Contact Phytotoxicity Study 38
 Statistics 38
 Red maple, 0.24 µl 41
 Red maple, 4.0 µl 42
 Sweetgum, 0.24 µl 46
 Sweetgum, 4.0 µl 46
 Red oak, 0.24 µl 50
 Red oak, 4.0 µl 50
 Overall results 54
Adhesion & Retention Study 56
 Adhesion 56
 Overall comparison of formulations 56
 Specific adhesion results 59
 Sweetgum 60
 Red oak 60
 Red maple 60
 Main effects 68
 Formulation effects 70
Retention 71
 Overall comparison of formulations 71
Spray Retention under Field & Track-Sprayer Conditions 74
Spray Retention under Field Conditions 74
 Spray retention by the adaxial leaf surface 75
 Spray retention by the abaxial leaf surface 76
 Abaxial retention as a percentage of total deposition 76
 Total and theoretical spray deposition 77
Spray Retention under Track-Sprayer Conditions 79
 Spray retention by the adaxial and abaxial leaf surface 79
LIST OF TABLES

Table 1: Surfactants and products used showing their active ingredient and function 27
Table 2: Concentration (% product) of solutions used for contact phytotoxicity, adhesion and retention studies 28
Table 3: Concentration of solutions used for spray retention study 32
Table 4: Concentration of solutions used for track sprayer study 35
Table 5: ANOVA table for complete phytotoxicity data 39
Table 6: Contact phytotoxicity (mean of observations made at 2, 4, 6, 8 and 24 hours) caused by 4.0 µl droplets of adjuvant alone onto adaxial and abaxial leaf surfaces of red maple, sweetgum and red oak 41
Table 7: Regression analysis of percentage droplet adhesion to the adaxial and abaxial leaf surfaces of sweetgum, red oak and red maple 56
Table 8: Standard errors and LSD comparisons for adhesion obtained from logistic regression model 58
Table 9: Adhesion of droplets (~650 µm) of triclopyr (at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and adaxial leaf surfaces of sweetgum 61
Table 10: Adhesion of droplets (~1000 µm) of triclopyr (at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and adaxial leaf surfaces of sweetgum 62
Table 11: Adhesion of droplets (~2000 µm) of triclopyr (at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and adaxial leaf surfaces of sweetgum 63
Table 12: Adhesion of droplets (~650 µm) of triclopyr (at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and adaxial leaf surfaces of red oak 64
Table 13: Adhesion of droplets (~1000 µm) of triclopyr (at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and adaxial leaf surfaces of red oak 65
Table 14: Adhesion of droplets (~650 µm) of triclopyr (at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and adaxial leaf surfaces of red maple 66
Table 15: Adhesion of droplets (~1000 µm) of triclopyr (at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and adaxial leaf surfaces of red maple 67
Table 16: Regression analysis of percentage droplet retention 71
Table 17: Standard errors and LSD comparisons for retention obtained from logistic regression model 72
Table 18: Retention (µl/100 cm²) of triclopyr formulations by the adaxial and abaxial surfaces of sweetgum, red maple and red oak 75
Table 19: Abaxial retention as a percentage of total deposition (µl/100 cm²) of triclopyr formulations by sweetgum, red maple and red oak 77
Table 20: Total deposition (µl/100 cm², taking the leaf area to be that of one side of
the leaf surface only) and % of total theoretical spray deposit available, of
triclopyr formulations to three plant species
Table 21: Retention (µl/100 cm²) of triclopyr formulations by the adaxial and
abaxial surfaces of sweetgum using 650 µm and 1000 µm droplets
Table 22: Abaxial retention as a percentage of total deposition, together with total
deposition (µl/100 cm²)
Table 23: Field and track sprayer spray retention by adaxial and abaxial leaf
surfaces using 1000 µm spray droplets
Table 24: Percentage abaxial retention as a percentage of total deposition, along with
total deposition (µl/100 cm²) for both field and track-sprayer results using
1000 µm spray droplets
Table 25: Contact phytotoxicity caused by 0.24 µl of triclopyr product
(at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and
adaxial leaf surfaces of red maple
Table 26: Contact phytotoxicity caused by 4.0 µl of triclopyr product
(at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and
adaxial leaf surfaces of red maple
Table 27: Contact phytotoxicity caused by 0.24 µl of triclopyr product
(at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and
adaxial leaf surfaces of sweetgum
Table 28: Contact phytotoxicity caused by 4.0 µl of triclopyr product
(at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and
adaxial leaf surfaces of sweetgum
Table 29: Contact phytotoxicity caused by 0.24 µl of triclopyr product
(at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and
adaxial leaf surfaces of red oak
Table 30: Contact phytotoxicity caused by 4.0 µl of triclopyr product
(at 0.32, 1.6 and 3.2 % a.e.) and alternative formulations onto abaxial and
adaxial leaf surfaces of red oak
Table 31: Adhesion and Retention using 0.72% Garlon 4
Table 32: Adhesion and Retention using 3.59% Garlon 4
Table 33: Adhesion and Retention using 7.18% Garlon 4
Table 34: Adhesion and Retention using 1% Garlon 3A
Table 35: Adhesion and Retention using 5% Garlon 3A
Table 36: Adhesion and Retention using 10% Garlon 3A
Table 37: Adhesion and Retention using 1% Triclopyr TEA + sequestrant
Table 38: Adhesion and Retention using 5% Triclopyr TEA + sequestrant
Table 39: Adhesion and Retention using 10% Triclopyr TEA + sequestrant
Table 40: Adhesion and Retention using 1% Triclopyr TEA + seq. +
0.2% Silwet 408 + 0.01% n-octyl pyrrolidone
Table 41: Adhesion and Retention using 5% Triclopyr TEA + seq. +
0.2% Silwet 408 + 0.05% n-octyl pyrrolidone
Table 42: Adhesion and Retention using 1% Triclopyr TEA + seq. +
0.2% Silwet L-77+ 0.01% n-octyl pyrrolidone
Table 43: Adhesion and Retention using 5% Triclopyr TEA + seq. + 0.2% Silwet L-77 + 0.05% n-octyl pyrrolidone
Table 44: Adhesion and Retention using 1% Triclopyr TEA + seq. + 0.2% Silwet 408 + 0.01% alcohol ethoxylate
Table 45: Adhesion and Retention using 5% Triclopyr TEA + seq. + 0.2% Silwet 408 + 0.05% alcohol ethoxylate
Table 46: Adhesion and Retention using 1% Triclopyr TEA + seq. + 0.2% Silwet L-77 + 0.01% alcohol ethoxylate
Table 47: Adhesion and Retention using 5% Triclopyr TEA + seq. + 0.2% Silwet L-77 + 0.05% alcohol ethoxylate
Table 48: Adhesion and Retention using 1% Triclopyr TEA + seq. + 0.2% Silwet 408 + 0.01% alkyl phenolic glycol ether
Table 49: Adhesion and Retention using 5% Triclopyr TEA + seq. + 0.2% Silwet 408 + 0.05% alkyl phenolic glycol ether
Table 50: Adhesion and Retention using 1% Triclopyr TEA + seq. + 0.2% Silwet L-77 + 0.01% alkyl phenolic glycol ether
Table 51: Adhesion and Retention using 5% Triclopyr TEA + seq. + 0.2% Silwet L-77 + 0.05% alkyl phenolic glycol ether
Table 52: Adhesion and Retention using 1% Triclopyr TEA + seq. + 0.2% Silwet 408
Table 53: Adhesion and Retention using 5% Triclopyr TEA + seq. + 0.2% Silwet 408
Table 54: Adhesion and Retention using 1% Triclopyr TEA + seq. + 0.2% Silwet L-77
Table 55: Adhesion and Retention using 5% Triclopyr TEA + seq. + 0.2% Silwet L-77
LIST OF FIGURES

Figure 1: The structural and chemical formulae of triclopyr acid (A), Triclopyr butoxyethyl ester (B) and Triclopyr triethylamine salt (C) 9

Figure 2: Factors affecting herbicide efficacy 11

Figure 3: Structures of the organosilicone surfactants Silwet L-77 and Silwet 408 15

Figure 4: Photos taken at the field site in North Anna, Virginia, USA 34

Figure 5: NZ Forest Research Institute Track-Sprayer 36

Figure 6: Comparison of contact phytotoxicity caused by 0.24 µl droplets of 11 formulations at 3 concentrations to adaxial and abaxial surfaces of red maple 43

Figure 7: Examples of contact phytotoxicity on red maple 44

Figure 8: Comparison of contact phytotoxicity caused by 4.0 µl droplets of 11 formulations at 3 concentrations to adaxial and abaxial surfaces of red maple 45

Figure 9: Comparison of contact phytotoxicity caused by 0.24 µl droplets of 11 formulations at 3 concentrations to adaxial and abaxial surfaces of sweetgum 47

Figure 10: Examples of contact phytotoxicity on sweetgum 48

Figure 11: Comparison of contact phytotoxicity caused by 4.0 µl droplets of 11 formulations at 3 concentrations to adaxial and abaxial surfaces of sweetgum 49

Figure 12: Comparison of contact phytotoxicity caused by 0.24 µl droplets of 11 formulations at 3 concentrations to adaxial and abaxial surfaces of red oak 51

Figure 13: Examples of contact phytotoxicity on red oak 52

Figure 14: Comparison of contact phytotoxicity caused by 4.0 µl droplets of 11 formulations at 3 concentrations to adaxial and abaxial surfaces of red maple 53

Figure 15: Comparison of the adhesion of Garlon 4 (3.59 % product, 1.6 % a.e.) droplets (676, 951 and 1930 µm vmd droplet size) onto sweetgum leaves at 0, 22.5 and 45 degree orientation from horizontal 69

Figure 16: Comparison of the adhesion of Garlon 4 (at 0.72, 3.59, and 7.18 % product) droplets (951µm vmd droplet size) onto red oak leaves at 0, 22.5 and 45 degree orientation from horizontal 69

Figure 17: Comparison of the adhesion of Garlon 4 and Garlon 3A (at 1.6% a.e.) droplets (681 µm vmd droplet size) onto the abaxial surface of red maple leaves at 0, 22.5 and 45 degree orientation from horizontal. F1 series: triclopyr TEA + n-octyl pyrrolidone + Silwet 408 70

Figure 18: SEM views of the adaxial and abaxial leaf surfaces of red oak (a,b), sweetgum (c,d) and red maple (e,f) 84