An Analytical Study of the Weak Radiating Cell as a Passive
Low Frequency Noise Control Device

by

Zachary T. Kitts

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science
in
Mechanical Engineering

Approved:

_________________________ _________________________
Dr. Ricardo A. Burdisso, Chairman Dr. Martin Day

_________________________ _________________________
Dr. Harry H. Robertshaw Dr. Martin Day

October 2000
Blacksburg, Virginia
An Analytical Study of the Weak Radiating Cell as a Passive Low Frequency Noise Control Device

by

Zachary T. Kitts

Committee Chairman: Ricardo A. Burdisso

Mechanical Engineering

(ABSTRACT)

At low frequency where the acoustic wavelength is greater than the size of the vibrating structure, the radiated acoustic power is directly related to the volume velocity of the structure. Thus, minimizing the volume velocity is an effective noise reduction approach for low frequency structurally radiated noise. This thesis analytically investigates a passive volume velocity noise control device for acoustic surface treatment of planar structures. The device is referred to as a weak radiating cell. This device consists of two mechanically coupled surfaces such that, when placed on a vibrating structure, the response of the two surfaces are nearly out-of-phase and of equal strength over a wide frequency range. The response of the two surfaces forms a local acoustic dipole, with minimum volume velocity, that results in noise reduction. Thus, the control of low frequency structurally radiated noise is achieved by covering the structure with an array of these weak radiating cells. Several numerical models are developed to investigate the weak radiating cell noise control mechanisms. The first model consists of a simply supported beam treated with an array of weak radiating cell. In this model, the dynamic interaction effects between the beam and the cells are included. Results from this model predict an overall sound power level reduction of 9.8 dB between 0-1600 Hz and 20 dB
between 0–251 Hz. In addition, this model is used to investigate techniques to improve the noise reduction capabilities of the device. A model of weak radiating cells applied to a simply supported plate is next developed as an extension of the beam model. The results from this model are compared to previous experimental data. Good agreement is observed between results, which validates the modeling technique. Lastly, a model of an infinite 2D plate treated with weak radiating cells is developed. The model does not consider any dynamic interaction effect between the structure and the cells. Only the acoustic behavior of the weak radiating cell is included in this model. In addition, both the structural and acoustic responses are obtained in closed form through a wavenumber transform approach. Each of these models and their results offer valuable information that results in a better understanding the weak radiating cell and it potential as a low frequency passive noise control device.
Acknowledgments

I wish to acknowledge Tennessee Technological University for steering me on the path I’m on today.

To my parent, relatives, friends and anyone else that may have help me, thank you for your understanding. I also wish to thank my committee members’ for their constructive criticism and time. Not to forget, but recognition goes out to all members and staff I was in contact with of the VAL Lab and the Mechanical Engineering Department.

Lastly, it is with benevolent regards that I wish to acknowledge DR Ricardo Burdisso for offering me the opportunity to study under his advisement, with his patience and astute ability to explain subject matter thoroughly.
Table of Content

ACKNOWLEDGMENTS ... iv

CHAPTER 1

BEGINNING ... 1

1.1 INTRODUCTION ... 1

1.2 NOISE CONTROL TECHNIQUES ... 2

1.3 THESIS ORGANIZATION ... 8

CHAPTER 2

WEAK RADIATING CELL CONCEPT ... 10

2.1 INTRODUCTION .. 10

2.2 SIMPLE SOUND SOURCES ... 10

2.3 THE WEAK RADIATING CELL CONCEPT .. 15

2.4 WEAK RADIATING CELL DEVICE ... 18

CHAPTER 3

BEAM MODEL ... 23

3.1 INTRODUCTION .. 23

3.2 SIMPLY SUPPORTED BEAM MODEL ... 24

3.3 EQUATIONS OF MOTION .. 26

3.4 ACOUSTIC QUANTITIES .. 31

3.5 NUMERICAL ANALYSIS OF THE WEAK RADIATING CELL 35

3.6 METHODS TO IMPROVE PERFORMANCE AT WRC’S FUNDAMENTAL

.. Resonance ... 50

3.6.1 Addition of Damping to WRC ... 52

3.6.2 WRC Resonance Frequency Perturbation ... 54

3.6.3 Resonance Frequency Perturbation and Addition of Damping, η 60

3.7 WAVENUMBER TRANSFORM ANALYSIS ... 62
CHAPTER 4

PLATE MODEL ... 73
 4.1 INTRODUCTION ... 73
 4.2 SIMPLY SUPPORTED PLATE MODEL 73
 4.3 EXPERIMENTAL STUDY AND RESULTS 82
 4.4 NUMERICAL RESULTS OF EXPERIMENTAL SETUP 90

CHAPTER 5

INFINITE 2D PLATE MODEL ... 102
 5.1 INTRODUCTION ... 102
 5.2 INFINITE 2D PLATE MODEL .. 103
 5.3 INFINITE 2D PLATE WAVENUMBER TRANSFORM ANALYSIS 109

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS 118
 6.1 CONCLUSIONS ... 118
 6.2 RECOMMENDATIONS .. 119
 6.3 REFERENCES ... 121

APPENDIX A .. 126
 FOURIER SERIES: DERIVATION OF INFINITE PLATE RESPONSE WITH APPLICATION OF
 WEAK RADIATING CELL AS ACOUSTIC TREATMENT 126

APPENDIX B .. 130
 THE RAVEN .. 130

VITA .. 137
List of Figures

Figure 2.1: Geometry used in derivation of radiation characteristics of a dipole source .. 24

Figure 2.2: Attenuation of low frequency structurally radiated sound using the weak radiating cell concept: (a) untreated plate, (b) single cell, (c) plate with array of cells ... 27

Figure 2.3: Mechanically coupled cell: Simplified Model ... 29

Figure 2.4: Source strength of the WRC’s surfaces S_{c1} and S_{c2} ... 31

Figure 2.5: Magnitude of source strength of piston and WRC .. 32

Figure 3.1: (a) Simply supported beam with 3 WRCs and (b) simplified model. 35

Figure 3.2: Schematic of beam in an infinite baffle with surface elements and hemisphere.. 44

Figure 3.3: Driving point mobility of untreated beam with four WRC; and the beam with the cells’ frames. ... 48

Figure 3.4: Mobility response of treated beam at $x = 0.2375$m: $\hat{w}(0.2375, t)$ and of the third WRC’s center plate, $y_{3}(t)$... 51

Figure 3.5: Response of the treated beam at (a) 30Hz, (b) 71 Hz, (c) 285 Hz, and (d) 640 Hz .. 54

Figure 3.6: Volume Velocity of untreated and treated beam ... 55

Figure 3.7: Sound power of untreated beam with four WRC; and the beam with the cells’ frames. .. 56

Figure 3.8: Tuning dipole frequency, f_{d}, to equal beam 1st natural resonance, f_{n}, by area ratio a) $\mu = .66$ b) $\mu = 1$ c) $\mu = 1.5$. Untreated and treated beam. 58

Figure 3.9: Radiation efficiency of untreated and treated beam .. 59

Figure 3.10: A-Weighted Sound Power Spectrum of untreated and treated beam 61

Figure 3.11: Spectral results of damping implementation in cells; untreated beam, $\eta = 1\%$, $\eta = 6\%$, $\eta = 15\%$, $\eta = 50\%$... 63
Figure 4.8: Sound power level for the Plate, Plate – Frames, and the Plates - WRCs. ... 109
Figure 4.9: Sound power level for the Plate and the Plates – corrected WRCs. 110
Figure 4.10: Sound power level for the Plate and the Plates – corrected WRCs. 111
Figure 5.1: Transverse bending wave in infinite plate... 113
Figure 5.2: Array of identical WRC .. 113
Figure 5.3: WRC dimension boundaries defined in terms of $N_c, \lambda_b, \text{ and } \mu=S_1/S_2$. ... 115
Figure 5.4: Sound Power spectrum for $k_b = 1.00$ of the untreated plate and the treated plate. .. 121
Figure 5.5: Sound Power spectrum for $k_b = 1.8571$ of the untreated plate and the treated plate. .. 122
Figure 5.6: Intensity Vectors for $k_b = 1.0$ and $f = 45$ Hz with 4 cell as treatment. Scale 50,000,000 cm/(W/m²) ... 124
Figure 5.7: Intensity Vectors for $k_b = 1.0$ and $f = 105$ Hz of untreated beam. Scale 5000 cm/(W/m²) .. 125
Figure 5.8: Intensity Vectors for $k_b = 1.0$ and $f = 105$ Hz with 4 cell as treatment. Scale 80,000 cm/(W/m²) .. 126
Figure 5.9: Intensity Vectors for $k_b = 1.0$ and $f = 250$ Hz with 4 cell as treatment. Scale 1500 cm/(W/m²) .. 127
List of Tables

Table 3.1: Physical parameters of the untreated beam and WRC(s)...................... 46
Table 3.2: Global and Frequency Band Reductions (dB) with Frequency Perturbed Cell Resonances ..49
Table 3.3: Peak Sound Power of Beam Configurations with Overall Reduction .52
Table 3.4: Global and Frequency Band Reductions (dB) for Cell Damping Implementation. ...62
Table 3.5: Global and Frequency Band Reductions (dB) with Frequency Perturbed Cell Resonances. ...64
Table 4.1: Analytical WRC location (m) and resonance frequencies..................... 101