Laser-Ionization Time-of-Flight Mass Spectrometry of High Molecular Mass Inorganic Complexes

R. Craig Watson, Jr.

Submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

Master of Science
In
Chemistry

Brian M. Tissue, Chair
Mark R. Anderson
Gary Long

October, 1997
Blacksburg, Virginia

Keywords: Laser ionization, Mass spectrometry, Matrix-assisted-laser desorption/ionization, MALDI, Organometallic complexes, Reflectron, Time-of-flight
Laser-Ionization Time-of-Flight Mass Spectrometry of High Molecular Mass Inorganic Complexes

R. Craig Watson, Jr.

Laser-Ionization Time-of-Flight Mass Spectrometry (LI-TOF-MS) is a sophisticated tool for the molecular-weight determination and structural characterization of a variety of molecules. Advances in instrumentation and ionization methods have recently expanded its role in the analysis of high-mass analytes. Large multimetallic complexes, which are efficient solar-energy converters, rely heavily on their chemical structure for optimum operation. Molecular mass determinations of these multimetallic complexes have been problematic due to their lability and high molecular weights.

This thesis describes the characterization of a LI-TOF-MS instrument and confirmation of theoretical time-of-flight mass-separation principles. Several test cases demonstrate the instrument’s proper operation and calibration for a wide mass range of analytes. Mass spectral results of three organometallic compounds: 1. [Ir(dpp)2Cl2](PF6), ii. {[(bpy)2Ru(dpp)]2IrCl2}(PF6)s, and iii. {[(bpy)2Ru(dpp)]2RuCl2}(PF6)s under a variety of laser ionization and sample preparation conditions are compared. A complete structural characterization of the monometallic complex, [Ir(dpp)2Cl2](PF6), is presented. The two trimetallic analytes fragmented easily, but significant components of the molecules are successfully identified. After optimizing the ionization and analytical procedure, LI-TOF-MS proved useful in the analysis of high molecular mass metal complexes.
Acknowledgments

I would like to gratefully acknowledge several sources of help with my research. My committee, chaired by Dr. Brian M. Tissue, was instrumental in my research progress. Also, collaborations with Dr. Greg Hurst of Oak Ridge National Laboratory and the Tissue research group at Virginia Tech were appreciated. Samples and advice were provided by the research groups at Virginia Tech lead by Dr. Karen Brewer and Dr. Harry Dorn. Also, the electronics shop and physics machine shop at Virginia Tech are to be thanked for their technical assistance. A final word of appreciation goes to the faculty and staff for their continued diligence at the university.