LYOCELL FIBER-REINFORCED CELLULOSE
ESTER COMPOSITES - SURFACE AND
CONSOLIDATION CONSIDERATIONS, AND
PROPERTIES

Kevin Christopher Seavey

Thesis submitted to the Faculty of the Virginia Polytechnic Institute and
State University in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE

in

Wood Science and Forest Products

APPROVED:

W. G. Glasser, Chairman

__________________________ _____________________
R. M. Davis F. A. Kamke

September 24, 1999
Blacksburg, Virginia

Keywords: Cellulosic Composites, Fiber Acetylation, Consolidation,
Cellulose Acetate Butyrate

© 1999 by Kevin Christopher Seavey
All rights reserved
LYOCELL FIBER-REINFORCED CELLULOSE ESTER COMPOSITES - SURFACE AND CONSOLIDATION CONSIDERATIONS, AND PROPERTIES

Kevin Christopher Seavey

ABSTRACT

The objective of this thesis was to further develop the polymer composite system consisting of cellulose acetate butyrate (CAB) and high modulus, continuous, regenerated cellulose fiber (lyocell). Of particular concern were both the interfacial adhesion between the fiber and matrix and the consolidation process in the manufacture of these composite materials.

Interfacial adhesion was found to be substantial due to the relative lack of the fiber pull-out phenomenon observed after tensile failure in the unmodified fiber composites. This result was then supported in the second study in which similar unmodified fiber composites experienced very little fiber pull out with evidence of a large amount of cohesive failure of the matrix accompanied by matrix particles adhering to the fiber surfaces.

Void volume formation was mitigated to a small extent by the use of optimal consolidation conditions. Composites formed at moderate temperature (200 °C), low consolidation pressure (11.8 p.s.i.) and high consolidation time (13 min.) were found to have the lowest void volume formation of ca. 2.8 %. These composites were generally found to have the highest interfacial shear strength, ca. 16 MPa. A tensile modulus of 22 GPa and an ultimate strength of 246 MPa was obtained for this composite having a fiber volume content of ca. 62 %.
ACKNOWLEDGEMENT

I would like to express many thanks to my advisor, Professor Wolfgang G. Glasser, for giving me the opportunity to be a member of his research group. He has, in addition to giving me an exciting and challenging research topic, given me the freedom to creatively express myself during the course of this scientific investigation. I would like to thank him for his patience, his understanding, and most of all for his concern for me as an individual and my personal intellectual development.

I would also like to thank the many people who have made this work possible: Mark Flynn and Norman Broyles for the use of their fiber tow sizing equipment; Danny Reed and the Virginia Tech Center for Composite Materials and Structures for use of their vacuum press; Bob Simonds and the Engineering Science and Mechanics (ESM) department for the use of their mechanical testing equipment; Professor Charles Frazier for the use of his gas chromatograph (GC); Bob Wright for assistance with running acetylations; Carlile Price for assistance with the scanning electron microscope (SEM); and Steve Clay for his assistance in the regression analysis carried out in Chapter 4 of this thesis. Furthermore, I am indebted to the kindness, love and emotional support of the Kirby family, who has always welcomed me into their hearts and home. Most especially, I would like to express my deepest thanks to Brandy Renee McCann for being especially patient and helpful during the completion of this thesis, and for always supporting me with her love and friendship.

I would like to express my gratitude and thanks to my parents, Robert Sturm Seavey and Yasuko Seavey, who have, through their many years of hard work and patience, selflessly given me the opportunity to pursue a higher education and continue to support me graciously. Without their foresight and charity, I would not be where I am today.

Finally, I would like to thank my research committee for their time, assistance and thoughtful discussion, and the financial support of Eastman Chemical Company and Acordis.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
</tbody>
</table>

1. LITERATURE REVIEW: THERMOPLASTIC COMPOSITE MATERIALS

1.0 Abstract..1
1.1 Introduction to Polymer Composites..2
1.2 Introduction to Thermoplastic Composite Materials...................................2
1.3 Fabrication of Thermoplastic Composites: An Overview3
 1.3.0 Solution Impregnation ..3
 1.3.1 Powder Impregnation/Pultrusion..3
 1.3.2 Film Stacking ..3
 1.3.3 Consolidation of Thermoplastic Preforms ...4
1.4 Composite Manufacture by Solution Preimpregnation...................................4
 1.4.0 Wetting During Solution Prepregging ...4
 1.4.1 Prepreg Solvent Removal ..6
 1.4.2 Hot Melt Consolidation of Prepregs ..7
1.5 Fiber-Matrix Adhesion ...9
 1.5.0 Adhesion by Mechanical Interlocking ...10
 1.5.1 Adhesion by Interdiffusion ..10
 1.5.2 Adhesion by Adsorption and Surface Reaction10
1.6 Biobased Thermoplastic Composites ...12
1.7 Objectives...16

2. THEORETICAL: A DIFFUSING REACTION THROUGH SIMULTANEOUS MASS TRANSFER AND REACTION MODELING

2.0 Abstract..17
2.1 Introduction ...18
2.2 Defining the Problem ..18
2.3 Formulating the Governing Equations ..18
2.4 Formulating the Problem Statement ...20
2.5 Generating the Mesh ...22
2.6 Defining the Basis Functions ...24
2.7 Transforming the Real Domain into the Canonical Element for the Governing Equations ...25
2.8 Numerical Integration ...33
2.9 Eliminating the Time Derivative ..33
2.10 Solving the Nonlinear System ...35
ACETATE BUTYRATE WITH ACETYLATED LYOCELL..........................136
APPENDIX D. RAW DATA FOR CHAPTER 4. EXPERIMENTAL:
OPTIMIZING THE CONSOLIDATION PROCESS - CELLULOSE
ACETATE BUTYRATE WITH LYOCELL..138
APPENDIX E. COMPARISON OF THE USE OF WATER VS. ISOPROPYL
ALCOHOL FOR DENSITY ANALYSIS OF CELLULOSE AND
CELLULOSE ACETATE BUTYRATE..146
APPENDIX F. A SIMPLE ANALYSIS OF UNSTEADY STATE HEAT
TRANSFER IN THE PREPREG WARM-UP STAGE DURING
CONSOLIDATION..148
VITA..150
LIST OF TABLES

3.0 GC Conditions used in Fiber Content Analysis...45
3.1 Composite Panel Compositions ...47
3.2 Tensile Properties of Composite Panels ...48
4.0 GC Conditions used in Fiber Content Analysis...54
4.1 Box-Behnken Experimental Design (nonrandomized) ..57
4.2 Variables and Levels Used ..58
4.2 General Characteristics of Composites Produced ..61
4.3 Tensile Properties of Composite Panels ...65
4.4 ILSS for the Composites Produced ...67
4.5 P(2 Tail) Values for the Half Effects in the Void Volume Regression71
4.6 P(2 Tail) Values for the Half Effects in the ILSS Regression73
4.7 Optimization of ILSS and Composite Void Volume ..79
5.0 Comparison of Present Materials with other Thermoplastic Composites82
C.0 Density Values for the Composites and Neat Constituents136
C.1 Tensile Properties of Unmodified and Modified Composites136
C.2 Fiber Content of Composites (voidless basis) ...137
C.3 Coefficient of Variations for Composite Tensile Properties137
D.0 Density Values for the Composites ...138
D.1 Tensile Properties of Composites ..138
D.2 Coefficient of Variation for Tensile Properties ...140
D.3 ILSS for Composites ...141
D.4 ILSS Coefficient of Variation Values for Composites ..145
E.0 Density Values of Chapter 4 Specimens using Water and IPA146
LIST OF FIGURES

1.0 Contact Angle in a Fiber/Air/Solvent System ..4
2.0 Experimental Volume and Theoretical Model Area...19
2.1 Blend Map Example using a 4X4 Mesh...22
2.2 Assembling the Global Matrices ..35
2.3 Comparison of Total Amounts of Diffusing Substance vs. Time for the Series
 Solution and FEM Solution ..38
2.4 Comparison of Immobile Reactant Concentrations vs. Time for the Analytical
 Solution and FEM Solution ..38
2.5 Solution: Immobile Group Concentration Distribution ...39
3.0 Chemical Constituents: (A.) CAB; (B.) cellulose; and (C.) cellulose acetate.............43
3.1 Solution Prepregging Process ..44
3.2 Typical Load Strain Curve for Composite Produced ...47
3.3 SEM Images of (A.) Unacetylated Lyocell Composite Cross-Section (razor-cut),
 (B.) Unacetylated Lyocell Composite Fracture Surface, (C.) Acetylated Lyocell
 Composite Cross-Section (razor-cut) and (D.) Acetylated Lyocell Composite
 Fracture Surface ...49
4.0 Solution Prepregging Process ..53
4.1 Consolidation Process ...54
4.2 Box-Behnken Experimental Test Points ..57
4.3 Prepreg Panel before Consolidation ...59
4.4 Consolidation Composite Samples ..60
4.5 Void Volume of Composites as a Function of Consolidation Temperature (other
 variables constant) ...62
4.6 Void Volume of Composites as a Function of Consolidation Pressure (other
 variables constant) ...63
4.7 Void Volume of Composites as a Function of Consolidation Time (other variables
 constant) ...63
4.8 Typical Tensile Load Strain Curve for Composites Produced64
4.9 ILSS Load vs. Displacement Sample Curve ...68
4.10 ILSS of Composites as a Function of Consolidation Temperature (other variables constant) ...68
4.11 ILSS of Composites as a Function of Consolidation Pressure (other variables constant) ..69
4.12 ILSS of Composites as a Function of Consolidation Time (other variables constant) ..69
4.13 Comparison of Actual Void Volume Measurements with Predicted Quantities ..70
4.14 Parato Chart for the Absolute Values of Half Effects (for Void Volume)71
4.15 Comparison of Actual ILSS Measurements with Predicted Quantities72
4.16 Parato Chart for the Absolute Values of Half Effects (for ILSS)73
4.17 Response Surface for ILSS as a Function of Consolidation Temperature and Time (holding consolidation pressure constant at 11.8 p.s.i.)74
4.18 ILSS vs. Composite Void Volume ..75
4.19 SEM Images of Tensile Fracture Surfaces of Selected Composites Specimens: Cross-Sectioned Failure (Numbers indicate Composite Panel Number)76
4.20 SEM Images of Tensile Fracture Surfaces of Selected Composites Specimens: Side View of Fiber Bundles Pulled Out (Numbers indicate Composite Panel Number) ...77
4.21 SEM Images of Tensile Fracture Surfaces of Selected Composites Specimens: Cohesive Failure in Pulled-Out Fiber Bundles (Numbers indicate Composite Panel Number) ..78