MODELING AND CONTROL OF PARALLEL THREE-PHASE PWM CONVERTERS

by

Zihong Ye

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering

APPROVED:

_____________________ _____________________
Dushan Boroyevich, Chair Dan Y. Chen

_____________________ _____________________
Jason Lai Fred C. Lee

Ali H. Nayfeh

September 15, 2000
Blacksburg, Virginia
MODELING AND CONTROL OF PARALLEL THREE-PHASE PWM CONVERTERS

by

Zhihong Ye
Dushan Boroyevich, Chair

ABSTRACT

This dissertation studies modeling and control issues of parallel three-phase pulse-width modulated (PWM) converters. The converters include three-phase boost rectifiers, voltage source inverters, buck rectifiers and current source inverters.

The averaging of the parallel converters is performed based on a generic functional switching unit, which is called a phase leg in boost rectifiers and voltage source inverters, and a rail arm in buck rectifiers and current source inverters. Based on phase-leg and rail-arm averaging, the developed models are not only equivalent to the conventional three-phase converter models that are based on phase-to-phase averaging, but they also preserve common-mode information, which is critical in the analysis of the parallel converters. The models reveal such parallel dynamics as reactive power circulation and small-signal interaction.

A unique feature of the parallel three-phase converters is a zero-sequence circulating current. This work proposes a novel zero-sequence control concept that uses variable zero-vectors in the space-vector modulation (SVM) of the converters. The control can be implemented within an individual converter and is independent from the other control loops for the converter. Therefore, it greatly facilitates the design and expansion of a parallel system.

Proper operation of the parallel converters requires an explicit load-sharing mechanism. In order to have a modular design, a droop method is recommended. Traditionally, however, a droop method has to compromise between voltage regulation and load sharing. After parametric analysis, a novel droop method using a gain-
scheduling technique is proposed. The numeric analysis shows that the proposed droop method can achieve both good voltage regulation and good load sharing.

An interleaving technique is often used in parallel converter systems in order to reduce current ripples. Because of its symmetrical circuit structure, the parallel three-phase converter system can reduce both differential-mode and common-mode noise with a center-aligned symmetrical SVM.

Based on the concept that a symmetrical circuit can reduce common-mode dv/dt noise, a conventional three-phase, four-leg inverter is modified so that its fourth leg is symmetrical to the other three legs. The common-mode dv/dt noise can be practically eliminated with a new modulation strategy. Meanwhile, with a modified control design, the new four-leg inverter still can handle low-frequency common-mode components that occur due to unbalanced and nonlinear load.
To my wife Fang & daughter Elva
and
my host family Elva & Herb Miller
Acknowledgments

"We all take different paths in life, but no matter where we go, we take a little of each other everywhere"

– Tim McGraw

I owe an enormous debt of gratitude to my advisor, Dr. Dushan Boroyevich, for his support, guidance and encouragement during my graduate studies, and most importantly, for bringing me to the new world – hardly to imagine that I did not know Buck or Boost when I first joined the Ph.D program four years ago. His profound knowledge, masterly creative thinking, and consistent encouragement have been the source of inspiration through the course of the work. His gentle personality and meticulous attitude in research will benefit my career as well as personal life.

I would like to thank my committee members, Dr. Fred C Lee, from whom I learned commitment to excellence and leadership, Dr. Dan Chen, whose classes I enjoyed a lot, Dr. Jason Lai, who provided valuable comments, and Dr. Ali Nayfeh, for serving as the committee member.

I would like to thank all of my fellows in VPEC/CPES. Their help, mentorship, and friendship provided a base for the accomplishment of this work. I cherish the wonderful time that we worked and lived together. Although it is not a complete list, I must mention some of those who made valuable input to my work. They are Dr. Kun Xing, Dr. Xiaogang Feng, Jae-Young Choi, Dr. Nikola Celanovic, Dengming Peng, Dr. Sriram Chandrasekaran, Peter Barboso, Sergio Busquets, Dr. Richard Zhang, Changrong Liu, Dr. Kunrong Wang, Dr. Shiguo Luo, and so many others.

I would also like to thank the administrative staff members, Teresa Shaw, Steve Chen, Trish Rose, Ann Craig, Joyce Moser, Lesli Farmer, Beth Tranter, and Mike King,
who were so instrumental in helping me get things done smoothly. Also, I would like to thank Office of Naval Research for providing the financial support for the research program.

Special thanks must go to my American host family, Elva and Herb Miller, who helped me in many different ways, shared me with many important life values, and treated me as their family member. They truly enriched my life at Blacksburg, and beyond.

With much love and gratitude, I want to thank my parents and my brother, Zhiqiang, for their encouragement and support in my early years’ studies. I also want to thank my parents-in-law for their help in the final stage of the dissertation.

Finally, and most importantly, I must thank my wife Fang and daughter Elva, whom I love dearly. They are my eternal source of inspiration in every aspect and every moment of my life.