To my parents, my sister and Anu.
This thesis has certainly been a challenge. It was quite tricky to balance a full work schedule and then spend some nights and even weekends working on research. There were times I thought I should give up, especially in the Spring of 2004, when my machine crashed, and less than half my code could be recovered; I had to re-write most of it from scratch; and re-simulate most previous results. In the face of these setbacks, the people mentioned below truly deserve my deepest gratitude.

To begin with, Dr. Mike Buehrer - for several reasons: first, for his insight and comments in helping me complete this body of work; second, for his constant encouragement over 3 years; third, for giving me a chance to work in wireless systems research and importantly, driving my research in a direction that was relevant to the practical wireless systems, and not simply as an academic pursuit. I am indebted to him for understanding the difficulty in doing research while also working full time in the industry and therefore, not giving up on me at any point. It’s also an honor to have Dr. Reed and Dr. Tranter on my committee and I thank them for taking time to comment on this thesis. Dr. Reed additionally deserves thanks for his constant and valuable career advice.

Thanks are due to Jing Jiang, previously in MPRG, who spent valuable time explaining her thesis on multi-user scheduling as well as sharing some of her prior work; Ramin Rezaifar and Bibhu Mohanty of Qualcomm Inc. for planting the initial seed of thought that evolved into this thesis and their ideas on a simulation environment for EVDO. Thanks also to OPNET Technologies for free use of the exceptional OPNET Modeler network simulator.

Special thanks to the folks who made my stay at Virginia Tech a memorable one – and to those in San Diego who enrich my life is every way - you know who you are!

Finally, I sincerely thank my parents and grandparents for their blessings; my younger sister, Pooja for her affection; my wife, Anu for her patience, support and encouragement. If not for the individuals mentioned in this paragraph, I’d be nowhere.
Table of Contents

1 Introduction .. 1
1.1 Wireless Systems ... 1
1.2 Third Generation Mobile Telecommunications ... 2
1.3 Thesis Goals .. 3
1.4 Similar and previous research work ... 4
1.5 Organization of the thesis .. 5
2 MIMO and Multi-user diversity ... 6
2.1 MIMO Systems ... 6
2.2 Temporal and Frequency Diversity .. 6
2.3 User Diversity .. 7
2.4 Receive Diversity .. 7
2.5 Transmit Diversity ... 8
2.6 Space-Time codes ... 9
2.6.1 Space-Time Block Codes ... 10
2.6.2 Space-Time Trellis Codes .. 14
2.7 Multiuser scheduling, user diversity and spatial multiplexing using THP 15
3 Scheduling for packet data .. 20
3.1 The definition of scheduling .. 20
3.2 Scheduling between users .. 21
3.3 Scheduling between transactions .. 21
3.3.1 EDF Algorithms ... 22
3.3.2 PS Algorithms .. 22
3.4 1xEVDO .. 23
4 TCP Modifications for wireless systems ... 25
4.1 Acknowledgements and reliability ... 25
4.2 Flow Control .. 25
4.3 RTT and RTO ... 26
4.4 Congestion Control ... 27
4.5 Support protocols for TCP in wireless systems 29
4.6 Proposed techniques for improving TCP behavior in wireless systems 30
5 Simulation model and strategies 32
5.1 Overview ... 32
5.2 The concept of co-simulation 32
5.3 System simulation model in OPNET/MATLAB/C++ 33
5.4 Generating Rayleigh Fade Coefficients 35
5.5 Transmit and Receive diversity implementation 36
5.6 Generation of BER curves .. 36
5.7 Adaptive Modulation .. 38
5.8 Scheduling algorithms ... 39
5.9 The radio Link protocol .. 39
5.10 TCP/IP, FTP and custom application 41
5.11 Tomlinson Harashima Pre-coding 42
6 Results ... 43
6.1 Simulation variables and notations 44
6.2 Single user referece results .. 44
6.3 A lightly loaded system with 4 symmetric users 49
6.3.1 Effects on users under different scheduling algorithms 49
6.3.2 Effect on symmetric users for different average channel conditions 52
6.4 The effects of user loading via 10 asymmetric system users 55
6.4.1 Joint effect of scheduling and transmit diversity on asymmetric users 55
6.4.2 TCP trend for schedulers with transmit diversity for well distributed users 59
6.4.3 Efficiency of joint scheduling and transmit diversity 60
6.5 Histogram of slots/user for various schedulers 62
6.6 Effect of receive diversity 64
List of Tables

5.1: Modulation scheme and RLP packet size ... 38
5.2: Modulation scheme and SNR range ... 39
6.1: meanSNR assigned to users ... 56
List of Figures

1.1 Evolution of mobile standards...3
2.1: Effect of diversity on P_e at receiver..7
2.2: Receive and diversity combining...8
2.3: Transmit Diversity..9
2.4: C-STBC Transmission model...10
2.5: G_2 scheme..11
2.6: STBC Decoder...12
2.7: Decision Feedback equalizer...16
2.8: Precoding and decoding with Tomlinson-Harashima equalization..........16
2.9: Distributed MIMO system..17
2.12: Suboptimal GD scheduler with equal power allocation and maximum spatial
 multiplexing...19

4.1: Receive Window...26
4.2: RTO Estimation...27
4.3: TCP Tahoe window behavior...28
4.4: TCP Reno window behavior...29
4.5: General cellular wireless data network..30
5.1: System simulation model..33
5.2: The BTS...34
5.3: The wireless receiver...35
5.4: BER curves for various modulation schemes - AWGN + convolutional coding........38
6.1: Maximum theoretical RLP throughput...45
6.2: Maximum theoretical TCP throughput..46
6.3: Maximum RLP throughput using 64 QAM...47
6.4: Comparison in TCP throughput using 1 versus 2 transmit antennas.........48
6.5: Percentage gain in TCP throughput using 2 transmit antennas...............48
6.6: TCP throughput with different scheduling algorithms, poor channel (2 dB meanSNR)...50
6.7: TCP throughput with different scheduling algorithms, fair channel (6 dB meanSNR)...50
6.8: TCP throughput for various scheduling algorithms, 10 dB meanSNR.........51
6.9: TCP throughput, for PF scheduling, 4 users in system..........................52
6.10: TCP throughput, for GD scheduling, 4 users in system.................................53
6.11: TCP throughput, RR scheduling, 4 users...54
6.12: Total downlink bytes to 4 users for various schedulers, diversity and channels......55
6.13: Mean throughput for each of 10 users, RR scheduling....................................57
6.14: Mean throughput for each of 10 users, GD scheduling....................................57
6.15: Mean throughput for each of 10 users, PF scheduling....................................58
6.16: Mean TCP throughput comparison for 10 users, PF versus RR scheduling.........59
6.17: Total sector throughput - different combinations of scheduling, Tx antennas.....60
6.18: Percentage wasted sector throughput vs. theoretical throughput.....................61
6.19: Histogram of slots assigned per user, proportionally fair scheduling..................62
6.20: Histogram of slots assigned per user, greedy scheduling...............................63
6.21: Histogram of slots assigned per user, Round robin scheduling........................63
6.23: Average throughput increase for a single user with diversity..........................66
6.24: 10 users, in a concentric circle around cell, Tx and Rx diversity, GD scheduling....67
6.25: 10 users, in a concentric circle around cell, Tx and Rx diversity, PF scheduling.....68
6.25a: Total throughput served for different scheduler and diversity combinations......68
6.26: 10 users, at different points in the cell, Tx and Rx diversity, RR scheduling........69
6.27: 10 users, at different points in the cell, Tx and Rx diversity, GD scheduling........70
6.28: Zoomed in view for Figure 6.27..71
6.29: 10 users, at different points in the cell, Tx and Rx diversity, PF scheduling........72
6.29a: Total sector throughput - different combinations of scheduling algorithms and diversity Conditions...72
6.30: Total data to each of 10 users; SISO/MIMO, PF/GD; effect of motion...............74
6.31a: Total data to each of 10 users; SISO, PF/GD; “SameRF”................................74
6.31b: Total data to each of 10 users; MIMO, PF/GD; “SameRF”.............................75
6.32: Variation in meanSNR trend for each user in the “DifferentRF” simulation........76
6.33: Total data to each of 10 users; SISO, PF/GD; “DifferentRF”..............................77
6.34: Total data to each of 10 users; MIMO, PF/GD/RR; DifferentRF”.....................77
6.35: Total data bytes to 10 users, under rapid meanSNR variation..........................78
6.36: THP: Ideal vs. real condition user throughput, RR, 20 dB transmit SNR............80
6.37: THP: PDF of SNR seen by a user, RR/PF/GD scheduling, 20/40 dB Tx-SNR.......82
6.38: TCP throughput, 1 user, varying scheduling schemes and BTS SNR...............83
6.39: Average TCP throughput for 1 user under various scheduling schemes............84
6.40: Increase in throughput going from single user to multi user scheduling for various power conditions..85
6.41: Total downlink throughput for all users - single-user vs multi-user scheduling.....86