Acknowledgements

I would first like to thank my committee chairman, Dr. Raymond H. Plaut. His guidance and knowledge were integral to the completion of this research and his efforts are greatly appreciated. I would also like to thank my supporting committee members, Dr. Thomas M. Murray and Dr. Finley A. Charney, for their assistance in the classroom and on this project.

Thank you to all of the people who helped me out at the structures lab and with the modeling of the data. I would still be out there sweating if it weren’t for Brett Farmer, Dennis Huffman, Nick Pearson, Chris Link, and Paul Taylor. Youngjin Park was instrumental in developing the mathematical model for this research and I really appreciate all the assistance he provided.

I would like to thank all of the really great friends that I have made while here in Blacksburg. The snow was deep and we had more work than we knew what to do with, but you all were always there to support me and keep me in good spirits. Rich, Juan, and Alicia, you all are awesome and your friendship will never be forgotten. I would also like to thank all of the other friends that I have made over the years. We have spread out and grown up, but you all are still as special to me as you were back then.

Finally, I would like to thank the most important people in my life, my family. Dad, Mom, Joseph, and Becca, you guys are the greatest parents and siblings that anyone could ever ask for and your constant support, love, and sarcasm have made everything in life possible. I wouldn’t have anything if it weren’t for you.

This research was supported by the National Science Foundation under Grant No. CMS-0114709, and that support is greatly appreciated.
Table of Contents

Chapter 1: Introduction and Literature Review ... 1
 1.1 Introduction.. 1
 1.2 Literature Review... 2
 1.2.1 Snap Loads.. 2
 1.2.2 Energy Loss and Damping Properties.. 4
 1.2.3 Shock Analysis... 5
 1.3 Objectives and Scope of Research.. 7

Chapter 2: Overview and Analysis of the Previous Research 9
 2.1 Scope of the Previous Research... 9
 2.2 Original Drop Tower.. 9
 2.3 Data Acquisition.. 13
 2.4 Static and Dynamic Tests... 13
 2.5 Ropes that were Tested... 15
 2.6 Results and Conclusions from the Previous Research.................................... 16
 2.7 Continuation of the Dynamic Test Sequences.. 17
 2.8 Analysis of Dynamic and Static Tests... 18
 2.9 Results of Analyses... 19

Chapter 3: Development of the Current Research .. 24
 3.1 Continuation of Previous Research.. 24
 3.2 Development of Current Research.. 26
 3.3 Drop Tower Modifications.. 28

Chapter 4: Description of the Static and Dynamic Tests .. 31
 4.1 Static Data Analysis... 31
 4.2 Dynamic Data Analysis... 33
 4.3 Dynamic Data Analytical Values.. 40
Chapter 5: Results of the Static and Dynamic Test Analyses

5.1 Static Test Results

5.2 Dynamic Test Results

5.2.1 Rope Stiffness

5.2.2 Inherent and Integrated Data

5.2.3 Rope Elongation Comparisons

5.2.4 Energy Dissipation Trends and Comparisons

5.2.5 Longitudinal Stress Waves

5.2.6 Comparison of Analytical and Theoretical Data

Chapter 6: Mathematical Modeling of the Test Data

6.1 Scope and Purpose of the Model

6.2 Development of the Model

6.2.1 Initial Model (Model 1)

6.2.2 First Model Revision (Model 2)

6.2.3 Second Model Revision (Model 3)

6.2.4 Third Model Revision (Model 4)

6.3 Model Results

Chapter 7: Summary and Conclusions

7.1 Summary and Conclusions

7.2 Need for Further Research

References

Appendix A: Data and Figures from the Analyses of the Previous Research

A.1 Hysteresis Loops from the Static Tests
<table>
<thead>
<tr>
<th>Appendix A</th>
<th>Appendix B: Data and Figures from the Analyses of the Current Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2</td>
<td>Maximum Displacements from the Static Tests………………………..130</td>
</tr>
<tr>
<td>A.3</td>
<td>Rope Stiffnesses from the Static Tests……………………………….131</td>
</tr>
<tr>
<td>A.4</td>
<td>Area Inside the Static Hysteresis Loops……………………………..132</td>
</tr>
<tr>
<td>A.5</td>
<td>Amsteel Blue Dynamic Test Comparisons……………………………..133</td>
</tr>
<tr>
<td>A.6</td>
<td>Amsteel II Dynamic Test Comparisons………………………………136</td>
</tr>
<tr>
<td>A.7</td>
<td>Amsteel SLV Dynamic Test Comparisons…………………………….139</td>
</tr>
<tr>
<td>A.8</td>
<td>Dura Plex Dynamic Test Comparisons………………………………143</td>
</tr>
<tr>
<td>A.9</td>
<td>QS Polytron Dynamic Test Comparisons……………………………144</td>
</tr>
<tr>
<td>A.10</td>
<td>RP Polyester Dynamic Test Comparisons……………………………146</td>
</tr>
<tr>
<td>A.11</td>
<td>RP Ultra Blue Dynamic Test Comparisons…………………………148</td>
</tr>
<tr>
<td>A.12</td>
<td>SSR 1200 Dynamic Test Comparisons…………………………….150</td>
</tr>
<tr>
<td>A.13</td>
<td>Tech 12 Dynamic Test Comparisons………………………………152</td>
</tr>
<tr>
<td>A.14</td>
<td>Tenex Dynamic Test Comparisons…………………………………155</td>
</tr>
<tr>
<td>A.15</td>
<td>XLS Yacht Braid Dynamic Test Comparisons……………………158</td>
</tr>
<tr>
<td>A.16</td>
<td>Comparison of Dynamic Test Sequences with Constant Drop Heights and Weights……………………………….159</td>
</tr>
<tr>
<td>A.17</td>
<td>Comparison of Dynamic Sequences with Constant Drop Heights and Changing Weights………………………………161</td>
</tr>
<tr>
<td>A.18</td>
<td>Amsteel Blue & Amsteel II Follow-Up Dynamic Test Comparisons….163</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix B</th>
<th>Data and Figures from the Analyses of the Current Research</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1</td>
<td>Hysteresis Loops from the Static Tests…………………………….169</td>
</tr>
<tr>
<td>B.2</td>
<td>Elongation of the Ropes from the Static Tests……………………174</td>
</tr>
<tr>
<td>B.3</td>
<td>Maximum Displacements from the Static Tests……………………176</td>
</tr>
<tr>
<td>B.4</td>
<td>Rope Stiffnesses from the Static Tests…………………………….178</td>
</tr>
<tr>
<td>B.5</td>
<td>Area Inside the Static Hysteresis Loops……………………….180</td>
</tr>
<tr>
<td>B.6</td>
<td>Dynamic Rope Elongation…………………………………………182</td>
</tr>
<tr>
<td>B.7</td>
<td>Rope Stiffnesses from the Dynamic Tests…………………………183</td>
</tr>
<tr>
<td>B.8</td>
<td>Pulse Durations from the Dynamic Tests…………………………191</td>
</tr>
<tr>
<td>B.9</td>
<td>Maximum Forces from the Dynamic Tests…………………………194</td>
</tr>
<tr>
<td>B.10</td>
<td>Maximum Accelerations from the Dynamic Tests……………………197</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2.2.1: Diagram of the Original Drop Tower ..10
Figure 2.2.2: Picture of the Drop Plate ...11
Figure 2.2.3: Picture of the Load Cell Assembly ...12
Figure 2.9.1: Maximum Force and Impulse Trends – Constant Height and Changing
Weight Sequences ..20
Figure 2.9.2: Maximum Force and Impulse Trends – Constant Height and Weight Sequences ...21
Figure 2.9.3: Constant Height and Weight Dynamic Loading Sequences22
Figure 2.9.4: Energy Loss vs. Drop Height – Follow-Up Dynamic Tests23

Figure 3.1.1: ½-inch Amsteel Blue Rope, Loosely Braided25
Figure 3.1.2: ½-inch Amsteel II Rope, Tightly Braided ...25
Figure 3.3.1: Mid-tower Brace ..28
Figure 3.3.2: Top-of-tower Brace ...28
Figure 3.3.3: Force and Acceleration Data from a Dynamic Test without Bracing ...29
Figure 3.3.4: Force and Acceleration Data from a Dynamic Test with Bracing29
Figure 3.3.5: Tower Rod Extensions ..30

Figure 4.1.1: Load vs. Absolute Displacement Hysteresis Loops for a Static Sequence ...31
Figure 4.2.1: Dynamic Data Series recorded from a Drop Test34
Figure 4.2.2: Cropped Dynamic Data Series ..35
Figure 4.2.3: Force, Acceleration, and Velocity Data and Illustration of Phases and Analysis Points ..37
Figure 4.2.4: Force, Acceleration, Velocity, and Displacement Data for the Taut Phase ..39
Figure 4.3.1: Unaltered Force vs. Absolute Displacement Plot.................................42
Figure 4.3.2: Force vs. Absolute Displacement Plot with Slope Data.........................43
Figure 4.3.3: Illustration of Actual Drop Height..44
Figure 4.4.1: Illustration of Drop Plate Locations and the Established Datum...........46

Figure 5.1.1: Static Load vs. Displacement Plot (Static Hysteresis Loops).................53
Figure 5.1.2: Rope Elongation Trend for Amsteel II Sequences...............................54
Figure 5.1.3: Maximum Displacement Trend for Amsteel II Sequences.....................55
Figure 5.1.4: Stiffness Trend for Amsteel II Sequences...57
Figure 5.1.5: Static Hysteresis Area for Amsteel II Sequences..................................58
Figure 5.2.1.1: Stiffness Trends for a Pre-cycled and New Amsteel II Sequence.......60
Figure 5.2.1.2: Stiffness Trends for a Pre-cycled and New Amsteel Blue Sequence....61
Figure 5.2.1.3: Rope Stiffness Trends for the New Amsteel II Ropes......................62
Figure 5.2.2.1: Pulse Durations for the New Amsteel II Dynamic Sequences............63
Figure 5.2.2.2: Pulse Durations for the Precycled Amsteel Blue Dynamic Sequences...64
Figure 5.2.2.3: Maximum Forces from the New Amsteel II Dynamic Sequences...........65
Figure 5.2.2.4: Maximum Accelerations from the New Amsteel II Dynamic Sequences...65
Figure 5.2.2.5: Maximum Forces from the New Amsteel Blue Dynamic Sequences....66
Figure 5.2.2.6: Maximum Acceleration from the New Amsteel Blue Dynamic Sequences...67
Figure 5.2.2.7: Maximum Displacements from the Precycled Amsteel II Dynamic Sequences...68
Figure 5.2.2.8: Maximum Displacements from the Precycled Amsteel Blue Dynamic Sequences...68
Figure 5.2.2.9: Impact Velocities from the New Amsteel II Dynamic Sequences.......69
Figure 5.2.2.10: Impact Velocities from the New Amsteel Blue Dynamic Sequences...70
Figure 5.2.2.11: Data from an Amsteel II Dynamic Sequence..................................71
Figure 5.2.2.12: Data from an Amsteel Blue Dynamic Sequence.............................71
Figure 5.2.4.1: Impulses from the Precycled Amsteel II Dynamic Sequences...........75
Figure 5.2.4.2: Impulses from the Precycled Amsteel Blue Dynamic Sequences……..76
Figure 5.2.4.3: Energy Losses for the Precycled Amsteel II Dynamic Sequences……..77
Figure 5.2.4.4: Energy Losses for the Precycled Amsteel Blue Dynamic Sequences……78
Figure 5.2.4.5: Dynamic Areas for the Precycled Amsteel II Dynamic Sequences……79
Figure 5.2.4.6: Dynamic Areas for the Precycled Amsteel II Dynamic Sequences……79
Figure 5.2.4.7: Dynamic Areas vs. Static Areas for Amsteel II F & FF…………………80
Figure 5.2.4.8: Changes in Dynamic Hysteresis - Amsteel II G (First Five Cycles)……82
Figure 5.2.4.9: Changes in Dynamic Hysteresis - Amsteel II G
(Cycles 1, 10, and 20)..82
Figure 5.2.4.10: Changes in Dynamic Hysteresis - Amsteel Blue B
(First Five Cycles)..83
Figure 5.2.4.11: Changes in Dynamic Hysteresis - Amsteel Blue B
(Cycles 1, 10, and 20)..83
Figure 5.2.4.12: Impulse, Energy Loss, and Dynamic Area for Precycled
Amsteel II F...84
Figure 5.2.4.13: Impulse, Energy Loss, and Dynamic Area for Precycled Amsteel
Blue A...85
Figure 5.2.4.14: Average Energy Loss vs. Drop Height..87
Figure 5.2.6.1: Stiffness Comparison for a Precycled Amsteel Blue rope...............89
Figure 5.2.6.2: Stiffness Comparison for a Precycled Amsteel Blue rope...............90
Figure 5.2.6.3: Maximum Displacement Comparison for a Precycled Amsteel
Blue rope...92
Figure 5.2.6.4: Maximum Displacement Comparison for a Precycled Amsteel II
Rope...92
Figure 5.2.6.5: Force Comparison for a New Amsteel Blue rope.........................93

Figure 6.2.1.1: Force, Velocity, and Displacement Values for a Taut Phase............95
Figure 6.2.1.2: Linear Fit of the Test Data for Model 1...97
Figure 6.2.2.1: Non-linear Fit of the Test Data for Model 2 (View 1)......................99
Figure 6.2.2.2: Non-linear Fit of the Test Data for Model 2 (View 2)......................99
Figure 6.2.3.1: Recorded Force and Theoretical Forces vs. Time – Model 3…………104
Figure 6.2.3.2: Recorded Force and Theoretical Forces vs. Displacement – Model 3...104
Figure 6.2.3.3: Recorded Force and Theoretical Forces vs. Velocity – Model 3……...105
Figure 6.2.4.1: Recorded Force and Theoretical Forces vs. Time – Model 4…………108
Figure 6.2.4.2: Recorded Force and Theoretical Forces vs. Displacement – Model 4...109
Figure 6.2.4.3: Recorded Force and Theoretical Forces vs. Velocity – Model 4……...109

Figure A.1.1: 3/8 in. Amsteel Blue – Static Hysteresis Loops……………………….120
Figure A.1.2: 1/2 in. Amsteel Blue – Static Hysteresis Loops……………………….120
Figure A.1.3: 3/8 in. Amsteel II – Static Hysteresis Loops…………………………...121
Figure A.1.4: 1/2 in. Amsteel II – Static Hysteresis Loops…………………………...121
Figure A.1.5: 3/8 in. Amsteel SLV – Static Hysteresis Loops………………………..122
Figure A.1.6: 3/8 in. Amsteel SLV (7 ft) - Static Hysteresis Loops………………….122
Figure A.1.7: 1/2 in. Amsteel SLV – Static Hysteresis Loops……………………….123
Figure A.1.8: 3/8 in. DB Nylon (7 ft) – Static Hysteresis Loops…………………….123
Figure A.1.9: 3/8 in. Dura Plex – Static Hysteresis Loops…………………………...124
Figure A.1.10: 3/8 in. QS Polytron – Static Hysteresis Loops……………………….124
Figure A.1.11: 1/2 in. QS Polytron – Static Hysteresis Loops……………………….125
Figure A.1.12: 3/4 in. RP Polyester – Static Hysteresis Loops……………………….125
Figure A.1.13: 3/4 in. RP Ultra Blue – Static Hysteresis Loops…………………….126
Figure A.1.14: 3/4 in. SSR 1200 – Static Hysteresis Loops…………………………...126
Figure A.1.15: 3/8 in. Tech 12 – Static Hysteresis Loops…………………………….127
Figure A.1.16: 1/2 in. Tech 12 – Static Hysteresis Loops…………………………….127
Figure A.1.17: 3/8 in. Tenex CLR – Static Hysteresis Loops…………………………...128
Figure A.1.18: 1/2 in. Tenex CLR – Static Hysteresis Loops…………………………...128
Figure A.1.19: 3/8 in. XLS Yacht Braid – Static Hysteresis Loops………………….129
Figure A.2.1: Static Maximum Displacements………………………………………...130
Figure A.3.1: Static Rope Stiffnesses………………………………………………….131
Figure A.4.1: Static Area Trends……………………………………………………...132
Figure A.5.1: 3/8 in. Amsteel Blue – Precycled – Maximum Force and Impulse……134
Figure A.5.2: 3/8 in. Amsteel Blue – New – Maximum Force and Impulse…………..134
Figure A.5.3: 1/2 in. Amsteel Blue – Precycled – Maximum Force and Impulse……..135
Figure A.5.4: 1/2 in. Amsteel Blue – New – Maximum Force and Impulse………….135
Figure A.6.1: 3/8 in. Amsteel II – Precycled – Maximum Force and Impulse……….137
Figure A.6.2: 3/8 in. Amsteel II – New – Maximum Force and Impulse…………….137
Figure A.6.3: 1/2 in. Amsteel II – Precycled – Maximum Force and Impulse……….138
Figure A.6.4: 1/2 in. Amsteel II – New – Maximum Force and Impulse…………….138
Figure A.7.1: 3/8 in. Amsteel SLV – Precycled – Maximum Force and Impulse…….140
Figure A.7.2: 3/8 in. Amsteel SLV (7ft) – Precycled – Maximum Force and Impulse..140
Figure A.7.3: 3/8 in. Amsteel SLV – New – Maximum Force and Impulse…………….141
Figure A.7.4: 1/2 in. Amsteel SLV – Precycled – Maximum Force and Impulse……….141
Figure A.7.5: 1/2 in. Amsteel SLV – New – Maximum Force and Impulse…………….142
Figure A.8.1: 3/8 in. Dura Plex (7 ft) – Precycled – Maximum Force and Impulse….143
Figure A.9.1: 3/8 in. QS Polytron – New – Maximum Force and Impulse…………….144
Figure A.9.2: 1/2 in. QS Polytron – Precycled – Maximum Force and Impulse……….145
Figure A.9.3: 1/2 in. QS Polytron – New – Maximum Force and Impulse…………….145
Figure A.10.1: 3/4 in. RP Polyester – Precycled – Maximum Force and Impulse……..146
Figure A.10.2: 3/4 in. RP Polyester – New – Maximum Force and Impulse…………….147
Figure A.11.1: 3/4 in. RP Ultra Blue – Precycled – Maximum Force and Impulse……148
Figure A.11.2: 3/4 in. RP Ultra Blue – New – Maximum Force and Impulse………….149
Figure A.12.1: 3/4 in. SSR 1200 – Precycled – Maximum Force and Impulse………..150
Figure A.12.2: 3/4 in. SSR 1200 – New – Maximum Force and Impulse……………..151
Figure A.13.1: 3/8 in. Tech 12 – Precycled – Maximum Force and Impulse………….153
Figure A.13.2: 3/8 in. Tech 12 – New – Maximum Force and Impulse……………….153
Figure A.13.3: 1/2 in. Tech 12 – Precycled – Maximum Force and Impulse………….154
Figure A.13.4: 1/2 in. Tech 12 – New – Maximum Force and Impulse……………….154
Figure A.14.1: 3/8 in. Tenex – Precycled – Maximum Force and Impulse…………….155
Figure A.14.2: 3/8 in. Tenex – New – Maximum Force and Impulse………………….156
Figure A.14.3: 1/2 in. Tenex – Precycled – Maximum Force and Impulse…………….156
Figure A.14.4: 1/2 in. Tenex – New – Maximum Force and Impulse………………….157
Figure A.15.1: 3/8 in. XLS Yacht Braid – Precycled – Maximum Force and Impulse..158
Figure A.16.1: Constant Height and Weight Sequences – Precycled – Maximum Force and Impulse

Figure A.16.2: Constant Height and Weight Sequences – New – Maximum Force and Impulse

Figure A.17.1: Const. Height and Changing Weight Seq. – Precycled – Max. Force and Impulse

Figure A.17.2: Const. Height and Changing Weight Seq. – New – Max. Force and Impulse

Figure A.18.1: 1/2 in. Amsteel Blue – Precycled – Maximum Force and Impulse

Figure A.18.2: 1/2 in. Amsteel Blue – New – Maximum Force and Impulse

Figure A.18.3: 3/8 in. Amsteel II – Precycled – Maximum Force and Impulse

Figure A.18.4: 3/8 in. Amsteel II – New – Maximum Force and Impulse

Figure A.18.5: Energy Loss vs. Drop Height – Follow-Up Dynamic Tests

Figure A.18.6: 1/2 in. Am. Blue Follow-Up – Precycled – Max. Force, Impulse, and Energy Loss

Figure A.18.7: 1/2 in. Am. Blue Follow-Up – New – Max. Force, Impulse, and Energy Loss

Figure A.18.8: 3/8 in. Am. II Follow-Up – Precycled – Max. Force, Impulse, and Energy Loss

Figure A.18.9: 3/8 in. Am. II Follow-Up – New – Max. Force, Impulse, and Energy Loss

Figure B.1.1: Amsteel Blue A – Static Hysteresis Loops
Figure B.1.2: Amsteel Blue B – Static Hysteresis Loops
Figure B.1.3: Amsteel Blue C – Static Hysteresis Loops
Figure B.1.4: Amsteel Blue D – Static Hysteresis Loops
Figure B.1.5: Amsteel Blue E – Static Hysteresis Loops
Figure B.1.6: Amsteel II F – Static Hysteresis Loops
Figure B.1.7: Amsteel II G – Static Hysteresis Loops
Figure B.1.8: Amsteel II H – Static Hysteresis Loops
Figure B.1.9: Amsteel II I – Static Hysteresis Loops..173
Figure B.1.10: Amsteel II J – Static Hysteresis Loops..173
Figure B.2.1: Amsteel Blue – Static Rope Elongation..174
Figure B.2.2: Amsteel II – Static Rope Elongation..175
Figure B.3.1: Amsteel Blue – Static Maximum Displacements..............................176
Figure B.3.2: Amsteel II – Static Maximum Displacements..............................177
Figure B.4.1: Amsteel Blue – Static Rope Stiffnesses..178
Figure B.4.2: Amsteel II – Static Rope Stiffnesses..179
Figure B.5.1: Amsteel Blue – Static Area Trends..180
Figure B.5.2: Amsteel II – Static Area Trends..181
Figure B.7.1: Amsteel Blue A and AA – Dynamic Rope Stiffnesses.........................184
Figure B.7.2: Amsteel Blue B and BB – Dynamic Rope Stiffnesses.........................184
Figure B.7.3: Amsteel Blue D and DD – Dynamic Rope Stiffnesses.........................185
Figure B.7.4: Amsteel Blue E and EE – Dynamic Rope Stiffnesses.........................185
Figure B.7.5: Amsteel Blue – Precycled Ropes – Dynamic Rope Stiffnesses.............186
Figure B.7.6: Amsteel Blue – New Ropes – Dynamic Rope Stiffnesses.....................186
Figure B.7.7: Amsteel II F and FF – Dynamic Rope Stiffnesses..............................187
Figure B.7.8: Amsteel II G and GG – Dynamic Rope Stiffnesses..............................187
Figure B.7.9: Amsteel II H and HH – Dynamic Rope Stiffnesses..............................188
Figure B.7.10: Amsteel II I and II – Dynamic Rope Stiffnesses..............................188
Figure B.7.11: Amsteel II J and JJ – Dynamic Rope Stiffnesses..............................189
Figure B.7.12: Amsteel II – Precycled Ropes – Dynamic Rope Stiffnesses.............189
Figure B.7.13: Amsteel II – New Ropes – Dynamic Rope Stiffnesses.....................190
Figure B.8.1: Amsteel Blue – Precycled Ropes – Pulse Durations............................192
Figure B.8.2: Amsteel Blue – New Ropes – Pulse Durations...............................192
Figure B.8.3: Amsteel II – Precycled Ropes – Pulse Durations............................193
Figure B.8.4: Amsteel II – New Ropes – Pulse Durations...............................193
Figure B.9.1: Amsteel Blue – Precycled Ropes – Maximum Forces.......................195
Figure B.9.2: Amsteel Blue – New Ropes – Maximum Forces..............................195
Figure B.9.3: Amsteel II – Precycled Ropes – Maximum Forces.......................196
Figure B.9.4: Amsteel II – New Ropes – Maximum Forces..............................196
Figure B.10.1: Amsteel Blue – Precycled Ropes – Maximum Accelerations
Figure B.10.2: Amsteel Blue – New Ropes – Maximum Accelerations
Figure B.10.3: Amsteel II – Precycled Ropes – Maximum Accelerations
Figure B.10.4: Amsteel II – New Ropes – Maximum Accelerations
Figure B.11.1: Amsteel Blue A and AA - Maximum Displacements
Figure B.11.2: Amsteel Blue B and BB – Maximum Displacements
Figure B.11.3: Amsteel Blue D and DD – Maximum Displacements
Figure B.11.4: Amsteel Blue E and EE – Maximum Displacements
Figure B.11.5: Amsteel Blue – Precycled Ropes – Maximum Displacements
Figure B.11.6: Amsteel Blue – New Ropes – Maximum Displacements
Figure B.11.7: Amsteel II F and FF – Maximum Displacements
Figure B.11.8: Amsteel II G and GG – Maximum Displacements
Figure B.11.9: Amsteel II H and HH – Maximum Displacements
Figure B.11.10: Amsteel II I and II – Maximum Displacements
Figure B.11.11: Amsteel J and JJ – Maximum Displacements
Figure B.11.12: Amsteel II – Precycled Ropes – Maximum Displacements
Figure B.11.13: Amsteel II – New Ropes – Maximum Displacements
Figure B.12.1: Amsteel Blue – Precycled Ropes – Impact Velocities
Figure B.12.2: Amsteel Blue – New Ropes – Impact Velocities
Figure B.12.3: Amsteel II – Precycled Ropes – Impact Velocities
Figure B.12.4: Amsteel II – New Ropes – Impact Velocities
Figure B.13.1: Amsteel Blue – Precycled Ropes – Impulse Trends
Figure B.13.2: Amsteel Blue – New Ropes – Impulse Trends
Figure B.13.3: Amsteel II – Precycled Ropes – Impulse Trends
Figure B.13.4: Amsteel II – New Ropes – Impulse Trends
Figure B.14.1: Amsteel Blue – Precycled Ropes – Energy Loss Trends
Figure B.14.2: Amsteel Blue – New Ropes – Energy Loss Trends
Figure B.14.3: Amsteel II – Precycled Ropes – Energy Loss Trends
Figure B.14.4: Amsteel II – New Ropes – Energy Loss Trends
Figure B.14.5: Average Energy Loss vs. Drop Height
Figure B.15.1: Amsteel Blue – Precycled Ropes - Dynamic Area Trends
Figure B.15.2: Amsteel Blue – New Ropes - Dynamic Area Trends.................................219
Figure B.15.3: Amsteel II – Precycled Ropes - Dynamic Area Trends..........................220
Figure B.15.4: Amsteel II – New Ropes - Dynamic Area Trends.................................220
Figure B.16.1: Amsteel Blue A and AA – Area Beneath the Dynamic
Hysteresis Loop Comparison...221
Figure B.16.2: Amsteel Blue B and BB – Area Beneath the Dynamic
Hysteresis Loop Comparison...221
Figure B.16.3: Amsteel Blue D and DD – Area Beneath the Dynamic
Hysteresis Loop Comparison...222
Figure B.16.4: Amsteel Blue E and EE – Area Beneath the Dynamic
Hysteresis Loop Comparison...222
Figure B.16.5: Amsteel II F and FF – Area Beneath the Dynamic
Hysteresis Loop Comparison...223
Figure B.16.6: Amsteel II G and GG – Area Beneath the Dynamic
Hysteresis Loop Comparison...223
Figure B.16.7: Amsteel II H and HH – Area Beneath the Dynamic
Hysteresis Loop Comparison...224
Figure B.16.8: Amsteel II I and II – Area Beneath the Dynamic
Hysteresis Loop Comparison...223
Figure B.16.9: Amsteel II J and JJ – Area Beneath the Dynamic
Hysteresis Loop Comparison...225
Figure B.17.1: Amsteel Blue A – Dynamic Hysteresis Comparison – Cycles 1-5...........226
Figure B.17.2: Amsteel Blue A – Dynamic Hysteresis Comparison – Cycles 1, 10,
and 20...226
Figure B.17.3: Amsteel Blue B – Dynamic Hysteresis Comparison – Cycles 1-5...........227
Figure B.17.4: Amsteel Blue B – Dynamic Hysteresis Comparison – Cycles 1, 10,
and 20...227
Figure B.17.5: Amsteel Blue D – Dynamic Hysteresis Comparison – Cycles 1-5...........228
Figure B.17.6: Amsteel Blue D – Dynamic Hysteresis Comparison – Cycles 1, 10,
and 20...228
Figure B.17.7: Amsteel Blue E – Dynamic Hysteresis Comparison – Cycles 1-5...........229
Figure B.17.8: Amsteel Blue E – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..229
Figure B.17.9: Amsteel Blue AA – Dynamic Hysteresis Comparison – Cycles 1-5….230
Figure B.17.10: Amsteel Blue AA – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..230
Figure B.17.11: Amsteel Blue BB – Dynamic Hysteresis Comparison – Cycles 1-5…231
Figure B.17.12: Amsteel Blue BB – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..231
Figure B.17.13: Amsteel Blue DD – Dynamic Hysteresis Comparison – Cycles 1-5…232
Figure B.17.14: Amsteel Blue DD – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..232
Figure B.17.15: Amsteel Blue EE – Dynamic Hysteresis Comparison – Cycles 1-5….233
Figure B.17.16: Amsteel Blue EE – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..233
Figure B.17.17: Amsteel II F – Dynamic Hysteresis Comparison – Cycles 1-5……234
Figure B.17.18: Amsteel II F – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..234
Figure B.17.19: Amsteel II G – Dynamic Hysteresis Comparison – Cycles 1-5……235
Figure B.17.20: Amsteel II F – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..235
Figure B.17.21: Amsteel II H – Dynamic Hysteresis Comparison – Cycles 1-5……236
Figure B.17.22: Amsteel II H – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..236
Figure B.17.23: Amsteel II I – Dynamic Hysteresis Comparison – Cycles 1-5……237
Figure B.17.24: Amsteel II I – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..237
Figure B.17.25: Amsteel II J – Dynamic Hysteresis Comparison – Cycles 1-5……238
Figure B.17.26: Amsteel II J – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20..238
Figure B.17.27: Amsteel II FF – Dynamic Hysteresis Comparison – Cycles 1-5……239
Figure B.17.28: Amsteel II FF – Dynamic Hysteresis Comparison – Cycles 1, 10,
Figure B.17.29: Amsteel II GG – Dynamic Hysteresis Comparison – Cycles 1-5……240
Figure B.17.30: Amsteel II GG – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20…………………………………………………………………240
Figure B.17.31: Amsteel II HH – Dynamic Hysteresis Comparison – Cycles 1-5……241
Figure B.17.32: Amsteel II HH – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20…………………………………………………………………241
Figure B.17.33: Amsteel II II – Dynamic Hysteresis Comparison – Cycles 1-5……242
Figure B.17.34: Amsteel II II – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20…………………………………………………………………242
Figure B.17.35: Amsteel II JJ – Dynamic Hysteresis Comparison – Cycles 1-5……243
Figure B.17.36: Amsteel II JJ – Dynamic Hysteresis Comparison – Cycles 1, 10, and 20…………………………………………………………………243
Figure B.18.1: Amsteel Blue A – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………244
Figure B.18.2: Amsteel Blue B – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………244
Figure B.18.3: Amsteel Blue D – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………245
Figure B.18.4: Amsteel Blue E – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………245
Figure B.18.5: Amsteel Blue AA – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………246
Figure B.18.6: Amsteel Blue BB – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………246
Figure B.18.7: Amsteel Blue DD – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………247
Figure B.18.8: Amsteel Blue EE – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………247
Figure B.18.9: Amsteel II F – Impulse, Energy Loss and Dynamic Area Comparison………………………………………………………248
Figure B.18.10: Amsteel II G – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.18.11: Amsteel II H – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.18.12: Amsteel II I – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.18.13: Amsteel II J – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.18.14: Amsteel II FF – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.18.15: Amsteel II GG – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.18.16: Amsteel II HH – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.18.17: Amsteel II II – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.18.18: Amsteel II JJ – Impulse, Energy Loss and Dynamic Area Comparison

Figure B.19.1: Amsteel Blue A – Trend Comparison

Figure B.19.2: Amsteel Blue B – Trend Comparison

Figure B.19.3: Amsteel Blue D – Trend Comparison

Figure B.19.4: Amsteel Blue E – Trend Comparison

Figure B.19.5: Amsteel Blue AA – Trend Comparison

Figure B.19.6: Amsteel Blue BB – Trend Comparison

Figure B.19.7: Amsteel Blue DD – Trend Comparison

Figure B.19.8: Amsteel Blue EE – Trend Comparison

Figure B.19.9: Amsteel II F – Trend Comparison

Figure B.19.10: Amsteel II G – Trend Comparison

Figure B.19.11: Amsteel II H – Trend Comparison

Figure B.19.12: Amsteel II I – Trend Comparison

Figure B.19.13: Amsteel II J – Trend Comparison
Figure B.19.14: Amsteel II FF – Trend Comparison	Page 260
Figure B.19.15: Amsteel II GG – Trend Comparison	Page 261
Figure B.19.16: Amsteel II HH – Trend Comparison	Page 261
Figure B.19.17: Amsteel II II – Trend Comparison	Page 262
Figure B.19.18: Amsteel II JJ – Trend Comparison	Page 262
Figure B.21.1: Amsteel Blue A – Stiffness Comparison	Page 266
Figure B.21.2: Amsteel Blue B – Stiffness Comparison	Page 266
Figure B.21.3: Amsteel Blue D – Stiffness Comparison	Page 267
Figure B.21.4: Amsteel Blue E – Stiffness Comparison	Page 267
Figure B.21.5: Amsteel Blue AA – Stiffness Comparison	Page 268
Figure B.21.6: Amsteel Blue BB – Stiffness Comparison	Page 268
Figure B.21.7: Amsteel Blue DD – Stiffness Comparison	Page 269
Figure B.21.8: Amsteel Blue EE – Stiffness Comparison	Page 269
Figure B.21.9: Amsteel II F – Stiffness Comparison	Page 270
Figure B.21.10: Amsteel II G – Stiffness Comparison	Page 270
Figure B.21.11: Amsteel II H – Stiffness Comparison	Page 271
Figure B.21.12: Amsteel II I – Stiffness Comparison	Page 271
Figure B.21.13: Amsteel II J – Stiffness Comparison	Page 272
Figure B.21.14: Amsteel II FF – Stiffness Comparison	Page 272
Figure B.21.15: Amsteel II GG – Stiffness Comparison	Page 273
Figure B.21.16: Amsteel II HH – Stiffness Comparison	Page 273
Figure B.21.17: Amsteel II II – Stiffness Comparison	Page 274
Figure B.21.18: Amsteel II JJ – Stiffness Comparison	Page 274
Figure B.22.1: Amsteel Blue A – Displacement Comparison	Page 277
Figure B.22.2: Amsteel Blue B – Displacement Comparison	Page 277
Figure B.22.3: Amsteel Blue D – Displacement Comparison	Page 278
Figure B.22.4: Amsteel Blue E – Displacement Comparison	Page 278
Figure B.22.5: Amsteel Blue AA – Displacement Comparison	Page 279
Figure B.22.6: Amsteel Blue BB – Displacement Comparison	Page 279
Figure B.22.7: Amsteel Blue DD – Displacement Comparison	Page 280
Figure B.22.8: Amsteel Blue EE – Displacement Comparison	Page 280
Figure B.22.9: Amsteel II F – Displacement Comparison .. 281
Figure B.22.10: Amsteel II G – Displacement Comparison 281
Figure B.22.11: Amsteel II H – Displacement Comparison 282
Figure B.22.12: Amsteel II I – Displacement Comparison 281
Figure B.22.13: Amsteel II J – Displacement Comparison 283
Figure B.22.14: Amsteel II FF – Displacement Comparison 283
Figure B.22.15: Amsteel II GG – Displacement Comparison 284
Figure B.22.16: Amsteel II HH – Displacement Comparison 284
Figure B.22.17: Amsteel II II – Displacement Comparison 285
Figure B.22.18: Amsteel II JJ – Displacement Comparison 285

Figure C.2.1: Load vs. Displacement – Amsteel Blue – Follow-Up Tests –
Precycled – Cycle 1 .. 291
Figure C.2.2: Load vs. Velocity – Amsteel Blue – Follow-Up Tests –
Precycled – Cycle 1 .. 291
Figure C.2.3: Load vs. Displacement – Amsteel Blue – Follow-Up Tests –
Precycled – Cycle 5 .. 292
Figure C.2.4: Load vs. Velocity – Amsteel Blue – Follow-Up Tests –
Precycled – Cycle 5 .. 292
Figure C.2.5: Load vs. Displacement – Amsteel Blue – Follow-Up Tests –
Precycled – Cycle 10 .. 293
Figure C.2.6: Load vs. Velocity – Amsteel Blue – Follow-Up Tests –
Precycled – Cycle 10 .. 293
Figure C.2.7: Load vs. Displacement – Amsteel Blue – Follow-Up Tests –
New – Cycle 1 .. 294
Figure C.2.8: Load vs. Velocity – Amsteel Blue – Follow-Up Tests –
New – Cycle 1 .. 294
Figure C.2.9: Load vs. Displacement – Amsteel Blue – Follow-Up Tests –
New – Cycle 5 .. 295
Figure C.2.10: Load vs. Velocity – Amsteel Blue – Follow-Up Tests –
Figure C.2.11: Load vs. Displacement – Amsteel Blue – Follow-Up Tests –
 New – Cycle 5...295
Figure C.2.12: Load vs. Velocity – Amsteel Blue – Follow-Up Tests –
 New – Cycle 10...296
Figure C.2.13: Load vs. Displacement – Amsteel II – Follow-Up Tests –
 Precycled – Cycle 1...297
Figure C.2.14: Load vs. Velocity – Amsteel II – Follow-Up Tests –
 Precycled – Cycle 1...297
Figure C.2.15: Load vs. Displacement – Amsteel II – Follow-Up Tests –
 Precycled – Cycle 5...298
Figure C.2.16: Load vs. Velocity – Amsteel II – Follow-Up Tests –
 Precycled – Cycle 5...298
Figure C.2.17: Load vs. Displacement – Amsteel II – Follow-Up Tests –
 Precycled – Cycle 10..299
Figure C.2.18: Load vs. Velocity – Amsteel II – Follow-Up Tests –
 Precycled – Cycle 10..299
Figure C.2.19: Load vs. Displacement – Amsteel II – Follow-Up Tests –
 New – Cycle 1...300
Figure C.2.20: Load vs. Velocity – Amsteel II – Follow-Up Tests –
 New – Cycle 1...300
Figure C.2.21: Load vs. Displacement – Amsteel II – Follow-Up Tests –
 New – Cycle 5...301
Figure C.2.22: Load vs. Velocity – Amsteel II – Follow-Up Tests –
 New – Cycle 5...301
Figure C.2.23: Load vs. Displacement – Amsteel II – Follow-Up Tests –
 New – Cycle 10...302
Figure C.2.24: Load vs. Velocity – Amsteel II – Follow-Up Tests –
 New – Cycle 10...302
Figure C.3.1: Load vs. Displacement – Amsteel Blue A – Precycled – Cycle 1……..303
Figure C.3.2: Load vs. Velocity – Amsteel Blue A – Precycled – Cycle 1……..303
Figure C.3.3: Load vs. Displacement – Amsteel Blue A – Precycled – Cycle 5……..304
Figure C.3.4: Load vs. Velocity – Amsteel Blue A – Precycled – Cycle 5……………304
Figure C.3.5: Load vs. Displacement – Amsteel Blue A – Precycled – Cycle 10……..305
Figure C.3.6: Load vs. Velocity – Amsteel Blue A – Precycled – Cycle 10…………..305
Figure C.3.7: Load vs. Displacement – Amsteel Blue A – Precycled – Cycle 15……..306
Figure C.3.8: Load vs. Velocity – Amsteel Blue A – Precycled – Cycle 15…………..306
Figure C.3.9: Load vs. Displacement – Amsteel Blue A – Precycled – Cycle 20……..307
Figure C.3.10: Load vs. Velocity – Amsteel Blue A – Precycled – Cycle 20…………307
Figure C.3.11: Load vs. Displacement – Amsteel Blue B – Precycled – Cycle 1……..308
Figure C.3.12: Load vs. Velocity – Amsteel Blue B – Precycled – Cycle 1…………..308
Figure C.3.13: Load vs. Displacement – Amsteel Blue B – Precycled – Cycle 5……..309
Figure C.3.14: Load vs. Velocity – Amsteel Blue B – Precycled – Cycle 5…………..309
Figure C.3.15: Load vs. Displacement – Amsteel Blue B – Precycled – Cycle 10……310
Figure C.3.16: Load vs. Velocity – Amsteel Blue B – Precycled – Cycle 10…………310
Figure C.3.17: Load vs. Displacement – Amsteel Blue B – Precycled – Cycle 15……311
Figure C.3.18: Load vs. Velocity – Amsteel Blue B – Precycled – Cycle 15…………311
Figure C.3.19: Load vs. Displacement – Amsteel Blue B – Precycled – Cycle 20……312
Figure C.3.20: Load vs. Velocity – Amsteel Blue B – Precycled – Cycle 20…………312
Figure C.3.21: Load vs. Displacement – Amsteel Blue D – Precycled – Cycle 1……..313
Figure C.3.22: Load vs. Velocity – Amsteel Blue D – Precycled – Cycle 1…………..313
Figure C.3.23: Load vs. Displacement – Amsteel Blue D – Precycled – Cycle 5……..314
Figure C.3.24: Load vs. Velocity – Amsteel Blue D – Precycled – Cycle 5…………..314
Figure C.3.25: Load vs. Displacement – Amsteel Blue D – Precycled – Cycle 10……315
Figure C.3.26: Load vs. Velocity – Amsteel Blue D – Precycled – Cycle 10…………315
Figure C.3.27: Load vs. Displacement – Amsteel Blue D – Precycled – Cycle 15……316
Figure C.3.28: Load vs. Velocity – Amsteel Blue D – Precycled – Cycle 15…………316
Figure C.3.29: Load vs. Displacement – Amsteel Blue D – Precycled – Cycle 20……317
Figure C.3.30: Load vs. Velocity – Amsteel Blue D – Precycled – Cycle 20…………317
Figure C.3.31: Load vs. Displacement – Amsteel Blue E – Precycled – Cycle 1……..318
Figure C.3.32: Load vs. Velocity – Amsteel Blue E – Precycled – Cycle 1…………..318
Figure C.3.33: Load vs. Displacement – Amsteel Blue E – Precycled – Cycle 5……..319
Figure C.3.34: Load vs. Velocity – Amsteel Blue E – Precycled – Cycle 5
Figure C.3.35: Load vs. Displacement – Amsteel Blue E – Precycled – Cycle 10
Figure C.3.36: Load vs. Velocity – Amsteel Blue E – Precycled – Cycle 10
Figure C.3.37: Load vs. Displacement – Amsteel Blue E – Precycled – Cycle 15
Figure C.3.38: Load vs. Velocity – Amsteel Blue E – Precycled – Cycle 15
Figure C.3.39: Load vs. Displacement – Amsteel Blue E – Precycled – Cycle 20
Figure C.3.40: Load vs. Velocity – Amsteel Blue E – Precycled – Cycle 20
Figure C.3.41: Load vs. Displacement – Amsteel Blue AA – New – Cycle 1
Figure C.3.42: Load vs. Velocity – Amsteel Blue AA – New – Cycle 1
Figure C.3.43: Load vs. Displacement – Amsteel Blue AA – New – Cycle 5
Figure C.3.44: Load vs. Velocity – Amsteel Blue AA – New – Cycle 5
Figure C.3.45: Load vs. Displacement – Amsteel Blue AA – New – Cycle 10
Figure C.3.46: Load vs. Velocity – Amsteel Blue AA – New – Cycle 10
Figure C.3.47: Load vs. Displacement – Amsteel Blue AA – New – Cycle 15
Figure C.3.48: Load vs. Velocity – Amsteel Blue AA – New – Cycle 15
Figure C.3.49: Load vs. Displacement – Amsteel Blue AA – New – Cycle 20
Figure C.3.50: Load vs. Velocity – Amsteel Blue AA – New – Cycle 20
Figure C.3.51: Load vs. Displacement – Amsteel Blue BB – New – Cycle 1
Figure C.3.52: Load vs. Velocity – Amsteel Blue BB – New – Cycle 1
Figure C.3.53: Load vs. Displacement – Amsteel Blue BB – New – Cycle 5
Figure C.3.54: Load vs. Velocity – Amsteel Blue BB – New – Cycle 5
Figure C.3.55: Load vs. Displacement – Amsteel Blue BB – New – Cycle 10
Figure C.3.56: Load vs. Velocity – Amsteel Blue BB – New – Cycle 10
Figure C.3.57: Load vs. Displacement – Amsteel Blue BB – New – Cycle 15
Figure C.3.58: Load vs. Velocity – Amsteel Blue BB – New – Cycle 15
Figure C.3.59: Load vs. Displacement – Amsteel Blue BB – New – Cycle 20
Figure C.3.60: Load vs. Velocity – Amsteel Blue BB – New – Cycle 20
Figure C.3.61: Load vs. Displacement – Amsteel Blue DD – New – Cycle 1
Figure C.3.62: Load vs. Velocity – Amsteel Blue DD – New – Cycle 1
Figure C.3.63: Load vs. Displacement – Amsteel Blue DD – New – Cycle 5
Figure C.3.64: Load vs. Velocity – Amsteel Blue DD – New – Cycle 5
Figure C.3.65: Load vs. Displacement – Amsteel Blue DD – New – Cycle 10
Figure C.3.66: Load vs. Velocity – Amsteel Blue DD – New – Cycle 10
Figure C.3.67: Load vs. Displacement – Amsteel Blue DD – New – Cycle 15
Figure C.3.68: Load vs. Velocity – Amsteel Blue DD – New – Cycle 15
Figure C.3.69: Load vs. Displacement – Amsteel Blue DD – New – Cycle 20
Figure C.3.70: Load vs. Velocity – Amsteel Blue DD – New – Cycle 20
Figure C.3.71: Load vs. Displacement – Amsteel Blue EE – New – Cycle 1
Figure C.3.72: Load vs. Velocity – Amsteel Blue EE – New – Cycle 1
Figure C.3.73: Load vs. Displacement – Amsteel Blue EE – New – Cycle 5
Figure C.3.74: Load vs. Velocity – Amsteel Blue EE – New – Cycle 5
Figure C.3.75: Load vs. Displacement – Amsteel Blue EE – New – Cycle 10
Figure C.3.76: Load vs. Velocity – Amsteel Blue EE – New – Cycle 10
Figure C.3.77: Load vs. Displacement – Amsteel Blue EE – New – Cycle 15
Figure C.3.78: Load vs. Velocity – Amsteel Blue EE – New – Cycle 15
Figure C.3.79: Load vs. Displacement – Amsteel Blue EE – New – Cycle 20
Figure C.3.80: Load vs. Velocity – Amsteel Blue EE – New – Cycle 20
Figure C.4.1: Load vs. Displacement – Amsteel II F – Precycled – Cycle 1
Figure C.4.2: Load vs. Velocity – Amsteel II F – Precycled – Cycle 1
Figure C.4.3: Load vs. Displacement – Amsteel II F – Precycled – Cycle 5
Figure C.4.4: Load vs. Velocity – Amsteel II F – Precycled – Cycle 5
Figure C.4.5: Load vs. Displacement – Amsteel II F – Precycled – Cycle 10
Figure C.4.6: Load vs. Velocity – Amsteel II F – Precycled – Cycle 10
Figure C.4.7: Load vs. Displacement – Amsteel II F – Precycled – Cycle 15
Figure C.4.8: Load vs. Velocity – Amsteel II F – Precycled – Cycle 15
Figure C.4.9: Load vs. Displacement – Amsteel II F – Precycled – Cycle 20
Figure C.4.10: Load vs. Velocity – Amsteel II F – Precycled – Cycle 20
Figure C.4.11: Load vs. Displacement – Amsteel II G – Precycled – Cycle 1
Figure C.4.12: Load vs. Velocity – Amsteel II G – Precycled – Cycle 1
Figure C.4.13: Load vs. Displacement – Amsteel II G – Precycled – Cycle 5
Figure C.4.14: Load vs. Velocity – Amsteel II G – Precycled – Cycle 5
Figure C.4.15: Load vs. Displacement – Amsteel II G – Precycled – Cycle 10
Figure C.4.16: Load vs. Velocity – Amsteel II G – Precycled – Cycle 10……………….350
Figure C.4.17: Load vs. Displacement – Amsteel II G – Precycled – Cycle 15…………351
Figure C.4.18: Load vs. Velocity – Amsteel II G – Precycled – Cycle 15……………351
Figure C.4.19: Load vs. Displacement – Amsteel II G – Precycled – Cycle 20……352
Figure C.4.20: Load vs. Velocity – Amsteel II G – Precycled – Cycle 20……………352
Figure C.4.21: Load vs. Displacement – Amsteel II H – Precycled – Cycle 1………….353
Figure C.4.22: Load vs. Velocity – Amsteel II H – Precycled – Cycle 1………………353
Figure C.4.23: Load vs. Displacement – Amsteel II H – Precycled – Cycle 5………354
Figure C.4.24: Load vs. Velocity – Amsteel II H – Precycled – Cycle 5………………354
Figure C.4.25: Load vs. Displacement – Amsteel II H – Precycled – Cycle 10……355
Figure C.4.26: Load vs. Velocity – Amsteel II H – Precycled – Cycle 10……………355
Figure C.4.27: Load vs. Displacement – Amsteel II H – Precycled – Cycle 15……356
Figure C.4.28: Load vs. Velocity – Amsteel II H – Precycled – Cycle 15……………356
Figure C.4.29: Load vs. Displacement – Amsteel II H – Precycled – Cycle 20………357
Figure C.4.30: Load vs. Velocity – Amsteel II H – Precycled – Cycle 20……………357
Figure C.4.31: Load vs. Displacement – Amsteel II I – Precycled – Cycle 1………….358
Figure C.4.32: Load vs. Velocity – Amsteel II I – Precycled – Cycle 1………………358
Figure C.4.33: Load vs. Displacement – Amsteel II I – Precycled – Cycle 5………359
Figure C.4.34: Load vs. Velocity – Amsteel II I – Precycled – Cycle 5………………359
Figure C.4.35: Load vs. Displacement – Amsteel II I – Precycled – Cycle 10……360
Figure C.4.36: Load vs. Velocity – Amsteel II I – Precycled – Cycle 10……………360
Figure C.4.37: Load vs. Displacement – Amsteel II I – Precycled – Cycle 15……361
Figure C.4.38: Load vs. Velocity – Amsteel II I – Precycled – Cycle 15……………361
Figure C.4.39: Load vs. Displacement – Amsteel II I – Precycled – Cycle 20………362
Figure C.4.40: Load vs. Velocity – Amsteel II I – Precycled – Cycle 20……………362
Figure C.4.41: Load vs. Displacement – Amsteel II J – Precycled – Cycle 1………363
Figure C.4.42: Load vs. Velocity – Amsteel II J – Precycled – Cycle 1………………363
Figure C.4.43: Load vs. Displacement – Amsteel II J – Precycled – Cycle 5………….364
Figure C.4.44: Load vs. Velocity – Amsteel II J – Precycled – Cycle 5………………364
Figure C.4.45: Load vs. Displacement – Amsteel II J – Precycled – Cycle 10……365
Figure C.4.46: Load vs. Velocity – Amsteel II J – Precycled – Cycle 10……………365
Figure C.4.47: Load vs. Displacement – Amsteel II J – Precycled – Cycle 15
Figure C.4.48: Load vs. Velocity – Amsteel II J – Precycled – Cycle 15
Figure C.4.49: Load vs. Displacement – Amsteel II J – Precycled – Cycle 20
Figure C.4.50: Load vs. Velocity – Amsteel II J – Precycled – Cycle 20
Figure C.4.51: Load vs. Displacement – Amsteel II FF – New – Cycle 02
Figure C.4.52: Load vs. Velocity – Amsteel II FF – New – Cycle 02
Figure C.4.53: Load vs. Displacement – Amsteel II FF – New – Cycle 05
Figure C.4.54: Load vs. Velocity – Amsteel II FF – New – Cycle 05
Figure C.4.55: Load vs. Displacement – Amsteel II FF – New – Cycle 10
Figure C.4.56: Load vs. Velocity – Amsteel II FF – New – Cycle 10
Figure C.4.57: Load vs. Displacement – Amsteel II FF – New – Cycle 15
Figure C.4.58: Load vs. Velocity – Amsteel II FF – New – Cycle 15
Figure C.4.59: Load vs. Displacement – Amsteel II FF – New – Cycle 20
Figure C.4.60: Load vs. Velocity – Amsteel II FF – New – Cycle 20
Figure C.4.61: Load vs. Displacement – Amsteel II GG – New – Cycle 1
Figure C.4.62: Load vs. Velocity – Amsteel II GG – New – Cycle 1
Figure C.4.63: Load vs. Displacement – Amsteel II GG – New – Cycle 5
Figure C.4.64: Load vs. Velocity – Amsteel II GG – New – Cycle 5
Figure C.4.65: Load vs. Displacement – Amsteel II GG – New – Cycle 10
Figure C.4.66: Load vs. Velocity – Amsteel II GG – New – Cycle 10
Figure C.4.67: Load vs. Displacement – Amsteel II GG – New – Cycle 15
Figure C.4.68: Load vs. Velocity – Amsteel II GG – New – Cycle 15
Figure C.4.69: Load vs. Displacement – Amsteel II GG – New – Cycle 20
Figure C.4.70: Load vs. Velocity – Amsteel II GG – New – Cycle 20
Figure C.4.71: Load vs. Displacement – Amsteel II HH – New – Cycle 1
Figure C.4.72: Load vs. Velocity – Amsteel II HH – New – Cycle 1
Figure C.4.73: Load vs. Displacement – Amsteel II HH – New – Cycle 5
Figure C.4.74: Load vs. Velocity – Amsteel II HH – New – Cycle 5
Figure C.4.75: Load vs. Displacement – Amsteel II HH – New – Cycle 10
Figure C.4.76: Load vs. Velocity – Amsteel II HH – New – Cycle 10
Figure C.4.77: Load vs. Displacement – Amsteel II HH – New – Cycle 15
Figure C.4.78: Load vs. Velocity – Amsteel II HH – New – Cycle 15
Figure C.4.78: Load vs. Velocity – Amsteel II HH – New – Cycle 15…………………381
Figure C.4.79: Load vs. Displacement – Amsteel II HH – New – Cycle 20…………382
Figure C.4.80: Load vs. Velocity – Amsteel II HH – New – Cycle 20……………382
Figure C.4.81: Load vs. Displacement – Amsteel II II – New – Cycle 1……………383
Figure C.4.82: Load vs. Velocity – Amsteel II II – New – Cycle 1………………..383
Figure C.4.83: Load vs. Displacement – Amsteel II II – New – Cycle 5……………384
Figure C.4.84: Load vs. Velocity – Amsteel II II – New – Cycle 5………………….384
Figure C.4.85: Load vs. Displacement – Amsteel II II – New – Cycle 10…………385
Figure C.4.86: Load vs. Velocity – Amsteel II II – New – Cycle 10………………385
Figure C.4.87: Load vs. Displacement – Amsteel II II – New – Cycle 15…………386
Figure C.4.88: Load vs. Velocity – Amsteel II II – New – Cycle 15………………386
Figure C.4.89: Load vs. Displacement – Amsteel II II – New – Cycle 20…………387
Figure C.4.90: Load vs. Velocity – Amsteel II II – New – Cycle 20……………….387
Figure C.4.91: Load vs. Displacement – Amsteel II JJ – New – Cycle 1……………388
Figure C.4.92: Load vs. Velocity – Amsteel II JJ – New – Cycle 1………………….388
Figure C.4.93: Load vs. Displacement – Amsteel II JJ – New – Cycle 5…………..389
Figure C.4.94: Load vs. Velocity – Amsteel II JJ – New – Cycle 5………………….389
Figure C.4.95: Load vs. Displacement – Amsteel II JJ – New – Cycle 10…………390
Figure C.4.96: Load vs. Velocity – Amsteel II JJ – New – Cycle 10………………390
Figure C.4.97: Load vs. Displacement – Amsteel II JJ – New – Cycle 15…………391
Figure C.4.98: Load vs. Velocity – Amsteel II JJ – New – Cycle 15………………391
Figure C.4.99: Load vs. Displacement – Amsteel II JJ – New – Cycle 20………….392
Figure C.4.100: Load vs. Velocity – Amsteel II JJ – New – Cycle 20………………392
List of Tables

Table 2.5.1: Rope Types Tested in the Previous Research………………………………15

Table 3.2.1: Rope Classification Method…………………………………………………….27

Table 5.1.1: Static Rope Elongation Comparison…………………………………………..56
Table 5.1.2: Static Test Results………………………………………………………………..59
Table 5.2.3.1: Measured Rope Lengths……………………………………………………..72
Table 5.2.3.2: Static and Dynamic Rope Elongation Comparisons………………………..73
Table 5.2.3.3: Total Measured Elongation of the Ropes…………………………………….74
Table 5.2.4.1: Comparison of Average Energy Dissipation and Recorded Data
Values……………………………………………………………………………………………….86
Table 5.2.5.1: Longitudinal Stress Wave Data for the Amsteel Blue ropes………………88
Table 5.2.5.2: Longitudinal Stress Wave Data for the Amsteel Blue ropes………………88
Table 5.2.6.1: Average Velocity Loss values………………………………………………91

Table 6.2.3.1: Results from Model 3 for the Follow-Up Tests and New Tests………..102
Table 6.2.4.1: Results from Model 4 for the Follow-Up Tests and New Tests………..107

Table A.2.1: Static Maximum Displacement Values……………………………………….130
Table A.3.1: Static Rope Stiffness Values………………………………………………………131
Table A.4.1: Values of Area under the Static Hysteresis Loops…………………………132
Table A.5.1: Amsteel Blue Dynamic Test Data…………………………………………….133
Table A.6.1: Amsteel II Dynamic Test Data………………………………………………..136
Table A.7.1: Amsteel SLV Dynamic Test Data……………………………………………139
Table A.8.1: Dura Plex Dynamic Test Data…………………………………………...143
Table A.9.1: QS Polytron Dynamic Test Data………………………………………….144
Table A.10.1: RP Polyester Dynamic Test Data………………………………………...146
Table A.11.1: RP Ultra Blue Dynamic Test Data………………………………………148
Table A.12.1: SSR 1200 Dynamic Test Data………………………………………….150
Table A.13.1: Tech 12 Dynamic Test Data……………………………………………152
Table A.14.1: Tenex Dynamic Test Data……………………………………...………155
Table A.15.1: XLS Yacht Braid Dynamic Test Data………………………………….158
Table A.16.1: Dynamic Test Data of Sequences with Constant Drop Heights
and Weights……………………………………………………………….159
Table A.17.1: Dynamic Data of Sequences with Constant Drop Heights and
Changing Weights…………………………………………………………161
Table A.18.1: Energy Losses for Follow-Up Dynamic Tests………………………….165

Table B.2.1: Static Rope Elongation Values………………………………………..…174
Table B.3.1: Static Maximum Displacement Values………………………………….176
Table B.4.1: Static Rope Stiffness Values…………………………………………….178
Table B.5.1: Areas Inside the Static Hysteresis Loop…………………………………180
Table B.6.1: Dynamic Rope Elongation Comparison…………………………………182
Table B.6.2: Change in Rope Length throughout Testing……………………………..182
Table B.7.1: Dynamic Rope Stiffness Values…………………………………………183
Table B.8.1: Pulse Duration Values……………………………………………………191
Table B.9.1: Maximum Force Values………………………………………………….194
Table B.10.1: Maximum Acceleration Values…………………………………………197
Table B.11.1: Maximum Displacement Values………………………………………..200
Table B.12.1: Impact Velocity Values………………………………………………….208
Table B.13.1: Impulse Values………………………………………………………….211
Table B.14.1: Energy Loss Values…………………………………………………….214
Table B.15.1: Dynamic Area Values…………………………………………………..218
Table B.19.1: Average Results for the Energy Dissipation and Recorded Data………253
Table B.20.1: Longitudinal Stress Wave Data……………………………………………263
Table B.21.1: Amsteel Blue Ropes – Recorded and Theoretical Stiffness Values……264
Table B.21.2: Converging Static Slopes (Static Rope Stiffnesses).........................265
Table B.21.3: Amsteel II Ropes – Recorded and Theoretical Stiffness Values………265
Table B.22.1: Amsteel Blue Ropes - Recorded and Theoretical Maximum
 Displacement Values...275
Table B.22.2: Amsteel II Ropes - Recorded and Theoretical Maximum
 Displacement Values...276
Table B.23.1: Amsteel Blue Ropes – Impact Velocity Comparisons.....................286
Table B.23.2: Amsteel II Ropes – Impact Velocity Comparisons..........................287
Table B.23.3: Percent Loss of Velocity Due to Friction.....................................288

Table C.1.1: Results from Model 4 for the Follow-Up Tests and New Tests..........290