Numerical Simulation of Injection and Mixing in Supersonic Flow

by Susan K. Cox-Stouffer

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Aerospace Engineering

Approved by:

Dr. Joseph A. Schetz, Chair
Dr. Bernard Grossman
Dr. W. F. Ng
Dr. R. W. Walters
Dr. C. L. Yates

November 20, 1997
Blacksburg, Virginia

Keywords: Scramjet, RNG, CFD, Ramp Injector

© 1997
Susan Kay Cox-Stouffer
All Rights Reserved
Numerical Simulation of Injection and Mixing in Supersonic Flow

Susan K. Cox-Stouffer

(ABSTRACT)

A numerical investigation of the performance of two candidate designs for injection into supersonic flow, including a comparison of two renormalized group theory (RNG) based K-ε turbulence models with a more conventional K-ε model. The chosen designs were an unswept ramp injector with four injection ports and a novel nine-hole injector array. The objectives of the investigation were to provide reliable computational solutions to the flowfields in question using both RNG and standard K-ε turbulence models and to compare the solutions to experiment, thereby to judge the relative performance of the turbulence models. A second objective of the investigation was to use the computed data to provide design insights for the nine-hole injector array.

This investigation made use of GASP™ version 2.2, a commercial computational fluid dynamics code that was augmented by the addition of one RNG-based K-ε turbulence model derived by Zhou, et. al. and one variant of Zhou’s model, which was derived by the author. Mesh sequencing studies were performed to measure solution quality, with the fine mesh for the injector array containing roughly one million grid nodes and the fine mesh for the ramp injector containing more than six million grid nodes. Results of these studies indicated that the injector-array solution was significantly under-resolved in the farfield, though the quality was better in the vicinity of the injector itself. The ramp-injector solution, while not perfectly grid-resolved, showed much better grid convergence in both the nearfield and farfield. Accordingly, comparison with
experiment was better for the ramp injector than for the injector array. For both injectors, the differences between solutions generated with RNG-based K-ε and standard K-ε turbulence models were negligibly small.

Despite inadequate grid resolution in the farfield, the computational investigation of the nine-hole injector array did yield several important design insights. Particularly, the significance to mixing and losses of the placement of the outer injectors of the second and third rows was determined.
Acknowledgements

This work would not have been possible without the help and support of a number of individuals and organizations. Any list would be incomplete, but I will attempt to name as many as possible.

First I am compelled to express gratitude to my committee, Drs. Joseph Schetz, Robert Walters, Bernard Grossman, Charles Yates, and Wing Ng. I also appreciate the help Dr. Walter O’Brien provided with my defense.

This work was supported in part by a grant from NASA via the National Aerodynamic Simulator and by a grant of HPC time from the following DoD HPC Centers: Air Force Aeronautical Systems Center, U.S. Army Corp of Engineers Waterways Experiment Station, and the Naval Oceanographic Office. Computers used were their Cray C-90's hpc01, pk, and vlsc, respectively. I am very grateful for the kind assistance provided by the user support staff of the various computer centers. Additional computer resources were provided by Aerosoft, Incorporated.

My deepest gratitude goes to Lana Couch, Charles McClinton, and Sharon Stack of the Hypersonic Vehicles Office at NASA’s Langley Research Center, and to Dr. A. S. Nejad, formerly of the Experimental Research Branch of the Propulsion and Power Division of Wright Laboratory for their support of my work. I extend thanks also to all those who have assisted me in these organizations.

I am also very grateful to Dr. Tzong Chen and the employees of Taitech, Incorporated, for all their support. I owe particular depts of gratitude to Jeffery White and Dr. Robert Baurle for their invaluable advice and assistance, and for all they have taught me about computational fluid dynamics.
I wish to thank the staff of the Department of Aerospace and Ocean Engineering for their kindness and support throughout my graduate experience.

I wish also to express my deepest gratitude to and respect for my special friends in the Department of Aerospace and Ocean Engineering, Drs. Antoni K. Jakubowski and James F. Marchman, III, and to my inspiration, Dr. Charles L. Yates.

I regret that I am unable to name and individually thank the many friends who have supported me throughout my graduate experience. Without them this achievement would not have been possible.

Special thanks and dearest love go to my parents, Jim and Bea Cox, my sister Becky Cox, for all their understanding, encouragement, and support.

Deepest appreciation and love are also extended to my husband, Scott Stouffer, for his understanding, patience, and support.
Table of Contents

Abstract...ii

Acknowledgements...iv

List of Figures...ix

List of Tables..xviii

List of Symbols...xix

Chapter One..1

Introduction
 Purpose and Objectives...3
 Outline..4

Chapter Two...5

Injection and Mixing in Supersonic Flow
 Review...5
 Present Injectors..10

Chapter Three..16

Turbulence Model Review
 Introduction...16
 Algebraic Models..21
 Two-Equation Models..23
 Renormalized Group Theory Models..27

Chapter Four..34

Numerical Procedure
 Basics...34
 Renormalized Group Theory Additions to GASP™..35
 Interpolation and Integration..38
 Models and Constants..49
 Grids and Mesh Sequencing..51
 Wall Injector Array..53
Ramp Injector...59
Test Conditions...63
Wall Injector Array..63
Ramp Injector...65
Flat Plate Test Case...67

Chapter Five..68
Convergence
Introduction..68
Convergence to Steady State..68
Grid Convergence..73
Flat Plate...74
Wall Injector Array..77
Ramp Injector...84

Chapter Six...94
Comparison of Turbulence Models
Performance Comparisons..94
Turbulence Model Comparisons..94
Flat Plate...94
Wall Injector Array..95
Ramp Injector...98
Comparison with Experimental Data..145
Flat Plate..145
Wall Injector Array...147
Ramp Injector..149
Efficiency and Numerical Performance...159

Chapter Seven..162
Performance Insights for the Injector Array
Introduction..162
Flow Structures...163
X-Y Planes..163
X-Z Planes..200
Y-Z Planes..229
Wall Conditions..275

Chapter Eight..283
List of Figures

2.1. Typical Flush and Structural-Interference Injector Configurations..9

2.2. Injector Array Layout...13

2.3. Injector Array Configuration...13

2.4. Schematic of the Investigated Ramp Injector...15

4.1. Outline of Grid for Nine-Hole Array Calculations, Showing Location of Injector Ports...54

4.2. Detail of Injector Region for Nine-Hole Injector Array..55

4.3. Outline of Grid for Four-Hole Ramp Calculations, Showing Zonal Boundaries and Location of Ramp..60

4.4. Detail of Ramp Region for Four-Hole Ramp Array, Showing Centerline, Wall, and Ramp Grids and Zonal Boundaries.................................61

4.5. Detail of Ramp Region for Four-Hole Ramp Array, Showing Lower-Wall and Ramp Grids. Flow Comes Out of the Page.................................61

5.1. Streamwise Velocity versus Wall-Normal Distance for Coarse and Fine Meshes for Flat Plate Test Case at Plane x = 1.00 m................75

5.2. Static Temperature versus Wall-Normal Distance for Coarse and Fine Meshes for Flat Plate Test Case at Plane x = 1.00 m.......................76

5.3. Static Density versus Wall-Normal Distance for Coarse and Fine Meshes for Flat Plate Test Case at Plane x = 1.00 m...............................76

5.4. Helium Mass Fraction Contour Plots at x/d_{eff} = 6.00 for All Mesh Sequence Levels for the Nine-Hole Injector Array.................................79
5.5. Helium Mass Fraction Contour Plots at $x/d_{eff} = 9.00$ for All Mesh Sequence Levels for the Nine-Hole Injector Array..79

5.6. Helium Mass Fraction Contour Plots at $x/d_{eff} = 50.39$ for All Mesh Sequence Levels for the Nine-Hole Injector Array..80

5.7. Static Pressure Contour Plots at $x/d_{eff} = 6.00$ for All Mesh Sequence Levels for the Nine-Hole Injector Array..80

5.8. Static Pressure Contour Plots at $x/d_{eff} = 9.00$ for All Mesh Sequence Levels for the Nine-Hole Injector Array..81

5.9. Static Pressure Contour Plots at $x/d_{eff} = 50.39$ for All Mesh Sequence Levels for the Nine-Hole Injector Array..81

5.10. Centerline Pressure Coefficient versus Axial Distance in the Vicinity of the Injectors for the Nine-Hole Injector Array.........................83

5.11. Centerline Pressure Coefficient versus Axial Distance in the Vicinity of the Injectors for the Nine-Hole Injector Array. Detail of Wake Regions..83

5.12. Helium Mass Fraction Contour Plots at $x/h = 2.50$ for All Mesh Sequence Levels for the Ramp Injector..86

5.13. Helium Mass Fraction Contour Plots at $x/h = 20.0$ for All Mesh Sequence Levels for the Ramp Injector..86

5.14. Static Pressure Contour Plots at $x/h = 2.50$ for All Mesh Sequence Levels for the Ramp Injector..87

5.15. Static Pressure Contour Plots at $x/h = 20.0$ for All Mesh Sequence Levels for the Ramp Injector..87

5.16. Helium Mass Fraction Contours on the Centerplane of the Ramp Injector for All Mesh Sequence Levels..91
5.17. Static Pressure Contours Above the Ramp Injector for All Mesh Sequence Levels

5.18. Static Pressure Contours Downstream of the Ramp Injector for All Mesh Sequence Levels

6.1. Streamwise Velocity as a Function of Normal Distance for the Flat Plate Test Case at x=1.00 m. Every Fourth Point Is Marked

6.2. Static Temperature as a Function of Normal Distance for the Flat Plate Test Case at x=1.00 m. Every Fourth Point Is Marked

6.3. Static Density as a Function of Normal Distance for the Flat Plate Test Case at x=1.00 m

6.4. Turbulent (Eddy) Viscosity Ratio as a Function of Normal Distance for the Flat Plate Test Case at x=1.00 m

6.5. Centerplane Helium Mass-Fraction Contours for Three Turbulence Models for the Nine-Hole Injector Array

6.6. Helium Mass-Fraction Contours for Three Turbulence Models on a Spanwise Plane at x/d_{eff} = 6.00 for the Nine-Hole Injector Array

6.7. Helium Mass-Fraction Contours for Three Turbulence Models on a Spanwise Plane at x/d_{eff} = 43.0 (Measurement Plane) for the Nine-Hole Injector Array

6.9. Pressure Contours for Three Turbulence Models on a Spanwise Plane at x/d_{eff} = 6.00 for the Nine-Hole Injector Array
6.10. Pressure Contours for Three Turbulence Models on a Spanwise Plane at \(x/d_{\text{eff}} = 43.0\) (Measurement Station) for the Nine-Hole Injector Array...102

6.11. Centerplane Mach Contours for Three Turbulence Models for the Nine-Hole Injector Array...103

6.12. Mach Number Contours for Three Turbulence Models on a Spanwise Plane at \(x/d_{\text{eff}} = 6.00\) for the Nine-Hole Injector Array...104

6.13. Mach Number Contours for Three Turbulence Models on a Spanwise Plane at \(x/d_{\text{eff}} = 43.0\) for the Nine-Hole Injector Array...104

6.14. Helium Mass Fraction Data on a Spanwise Plane at \(x/h=0.500\) for the Four-Hole Ramp Injector...105

6.15. Helium Mass Fraction Data on a Spanwise Plane at \(x/h=2.50\) for the Four-Hole Ramp Injector...106

6.16. Helium Mass Fraction Data on a Spanwise Plane at \(x/h=20.0\) for the Four-Hole Ramp Injector...106

6.17. Pressure Distribution on a Spanwise Plane at \(x/h=0.500\) for the Four-Hole Ramp Injector...107

6.18. Pressure Distribution on a Spanwise Plane at \(x/h=2.50\) for the Four-Hole Ramp Injector...107

6.19. Pressure Distribution on a Spanwise Plane at \(x/h=20.0\) for the Four-Hole Ramp Injector...108

6.20. Mach Number Distribution on a Spanwise Plane at \(x/h=0.500\) for the Four-Hole Ramp Injector...108

6.21. Mach Number Distribution on a Spanwise Plane at \(x/h=2.50\) for the Four-Hole Ramp Injector...109
6.22. Mach Number Distribution on a Spanwise Plane at x/h=20.0 for the Four-Hole Ramp Injector

6.24. Helium Mass Fraction on a Streamwise Plane at the Injector Centerline for the Four-Hole Ramp Injector

6.25. Helium Mass Fraction on a Streamwise Plane at the Ramp Edge for the Four-Hole Ramp Injector

6.26. Pressure Distribution on a Streamwise Plane at the Ramp Centerline for the Four-Hole Ramp Injector

6.27. Pressure Distribution on a Streamwise Plane at the Injector Centerline for the Four-Hole Ramp Injector

6.28. Pressure Distribution on a Streamwise Plane at the Ramp Edge for the Four-Hole Ramp Injector

6.29. Mach Number Distribution on a Streamwise Plane at the Ramp Centerline for the Four-Hole Ramp Injector

6.30. Mach Number Distribution on a Streamwise Plane at the Injector Centerline for the Four-Hole Ramp Injector

6.31. Mach Number Distribution on a Streamwise Plane at the Ramp Edge for the Four-Hole Ramp Injector

6.32. Turbulent Kinetic Energy on a Spanwise Plane at x/h=0.500 for the Four-Hole Ramp Injector

6.33. Turbulent Kinetic Energy on a Spanwise Plane at x/h=2.50 for the Four-Hole Ramp Injector

6.34. Turbulent Kinetic Energy on a Spanwise Plane at x/h=20.0 for the Four-Hole Ramp Injector
6.35. Turbulent Dissipation on a Spanwise Plane at x/h=0.500 for the Four-Hole Ramp Injector... 121

6.36. Turbulent Dissipation on a Spanwise Plane at x/h=2.50 for the Four-Hole Ramp Injector... 122

6.37. Turbulent Dissipation on a Spanwise Plane at x/h=20.0 for the Four-Hole Ramp Injector... 122

6.38. Turbulent (Eddy) Viscosity Ratio on a Spanwise Plane at x/h=0.500 for the Four-Hole Ramp Injector... 123

6.39. Turbulent (Eddy) Viscosity Ratio on a Spanwise Plane at x/h=2.50 for the Four-Hole Ramp Injector... 123

6.40. Turbulent (Eddy) Viscosity Ratio on a Spanwise Plane at x/h=20.0 for the Four-Hole Ramp Injector... 124

6.41. Turbulent Kinetic Energy on a Streamwise Plane at the Ramp Centerline for the Four-Hole Ramp Injector... 125

6.42. Turbulent Kinetic Energy on a Streamwise Plane at the Injector Centerline for the Four-Hole Ramp Injector... 126

6.43. Turbulent Kinetic Energy on a Streamwise Plane at the Ramp Edge for the Four-Hole Ramp Injector.. 127

6.44. Turbulent Dissipation on a Streamwise Plane at the Ramp Centerline for the Four-Hole Ramp Injector... 128

6.45. Turbulent Dissipation on a Streamwise Plane at the Injector Centerline for the Four-Hole Ramp Injector... 129

6.46. Turbulent Dissipation on a Streamwise Plane at the Ramp Edge for the Four-Hole Ramp Injector.. 130
6.47. Turbulent (Eddy) Viscosity Ratio on a Streamwise Plane at the Ramp Centerline for the Four-Hole Ramp Injector.................................131

6.48. Turbulent (Eddy) Viscosity Ratio on a Streamwise Plane at the Injector Centerline for the Four-Hole Ramp Injector.............................132

6.49. Turbulent (Eddy) Viscosity Ratio on a Streamwise Plane at the Ramp Edge for the Four-Hole Ramp Injector...133

6.50. Turbulent (Eddy) Viscosity Ratio versus y/h in Main Mixing Region for the Four-Hole Ramp Injector...135

6.51. Turbulent (Eddy) Viscosity Ratio, Static Pressure, and Mach Number versus y/h at Locations Downstream of the Ramp Centerline for the Four-Hole Ramp Injector...139

6.52. Turbulent (Eddy) Viscosity Ratio, and Helium Mass Fraction versus y/h at Locations Downstream of the Ramp Centerline for the Four-Hole Ramp Injector..142

6.53. Flat-Plate Velocity Profile Expressed in Van Driest Coordinates and Compared with the Incompressible Law of the Wall.........................146

6.54. Computed Skin Friction for Two Turbulence Models Compared with the Van Driest II Correlation for the Flat-Plate Test Case..............146

6.55. Mass Fraction Contours at the Measurement Plane, x/d_{eff} = 43.0, for the Nine-Hole Injector Array...147

6.56. Helium Mass Fraction on a Plane at x/h=10.0 for the Ramp Injector...151

6.57. Helium Mass Fraction on a Plane at x/h=20.0 for the Ramp Injector...151

6.58. Total Temperature on a Plane at x/h=10.0 for the Ramp Injector...156
6.59. Total Temperature on a Plane at x/h=20.0 for the Ramp Injector

6.60. Total Pressure Recovery as a Function of Streamwise Distance

7.1. Pressure Contours with Helium Mass-Fraction Contours on Four X-Y Planes for the Nine-Hole Injector Array

7.2. Helium Mass-Fraction Contours with Streamtraces on Four X-Y Planes for the Nine-Hole Injector Array

7.3. Pressure Contours with Streamtraces on Four X-Y Planes for the Nine-Hole Injector Array

7.4. Mach Number Contours with Helium Mass-Fraction Contours Along the Plane at z = 0 (Centerline) for the Nine-Hole Injector Array

7.5. Mach Number Contours Along the Plane at z = 1.0 for the Nine-Hole Injector Array

7.6. Pressure Contours (shaded) with Streamtraces (white lines on upper half) and Helium Mass-Fraction Contours (black lines on lower half) on Plane y/d_{eff}=0.33 for the Nine-Hole Injector Array

7.7. Helium Mass-Fraction Contours with Streamtraces on Plane y/d_{eff}=0.33 for the Nine-Hole Injector Array

7.8. Streamwise Velocity Components on a X-Z Plane at y/d_{eff}=0.05

7.9. Pressure Contours (with and without black outlines) for Seven Different Crossflow Planes for the Nine-hole Injector Array

7.10. Pressure Contours (shaded) with Helium Mass-Fraction Contours (black lines on left) and Velocity Streamtraces (white lines
on right) for Seven Different Crossflow Planes for the Injector Array..234

7.11. Helium Mass-Fraction Contours (shaded) with Helium Mass-Fraction Contours (black lines on left) and Velocity Streamtraces (black lines on right) for Seven Different Crossflow Planes for the Nine-hole Injector Array..238

7.12. Enlargement of Pressure Contours (shaded) with Helium Mass-Fraction Contours (black lines on left) and Velocity Streamtraces (white lines on right) at Station 2, x/d_{eff} = 1.32...245

7.13. Enlargement of Helium Mass-Fraction Contours (shaded) with Helium Mass-Fraction Contours (black lines on left) and Velocity Streamtraces (black lines on right) at Station 2, x/d_{eff} = 1.32........245

7.14. Total Pressure Normalized by the Freestream Value at Station 7, x/d_{eff}=8.00, for the Nine-Hole Injector Array..274

7.15. Total Pressure Normalized by the Freestream Value at Measurement Station, x/d_{eff}=43.0, for the Nine-Hole Injector Array..275

7.16. Pressure (shaded contours) and Helium Mass Fraction (black lines on lower half) on the Lower Wall in the Injector Region of the Nine-Hole Injector Array..276

7.17. Heat Transfer Contours for the Nine-Hole Injector Array........279

7.18. Skin Friction Contours for the Nine-Hole Injector Array........281

7.16. Skin Friction Coefficient on Lower Wall for the Nine-Hole Injector Array..282
List of Tables

4.1. Streamwise Placement of Injector Array Primary Zones.............56

4.2. Position and Orientation of Injector-Port Zones of Injector Array..57

4.3. Mesh Sequencing for Injector Array..58

4.4 Mesh Sequencing for Ramp Injector..62

5.1 Peak Helium Mass Fractions at Three Axial Locations for All Mesh Sequence Levels for Nine-Hole Injector Array...77

5.2 Peak Helium Mass Fractions at Three Axial Locations for All Mesh Sequence Levels for Four-Hole Ramp Injector.................................85

6.1 Computer Processor Time per Iteration Per Cell Volume. Values Calculated from Global Iteration Zones...160
List of Symbols

A Any flow variable
\(\bar{A} \) Reynolds-averaged variable
\(\tilde{A} \) Fabre'-averaged variable
A' Fluctuating component of Reynolds-decomposed variable
A^+ Van Driest damping constant
a Sound speed
C_{R1} and C_{R2} Local interaction contribution coefficients in Reynolds stress equation in RNG turbulence model
C_{\tau_1}, C_{\tau_2}, and C_{\tau_3} Nonlocal interaction contribution coefficients in Reynolds stress equation in RNG turbulence model
C_{\epsilon_1} and C_{\epsilon_2} Modelling coefficients in dissipation equation of \(K-\epsilon \) turbulence model
C_\mu Modelling coefficient in eddy viscosity relation of \(K-\epsilon \) turbulence model
c_p Mixture specific heat at constant pressure
D_i Diffusion coefficient for species i
D_{ti} Turbulent diffusion coefficient for species i
d Diameter of each nozzle in the injector array
d_{eff} Effective diameter of injector array
e Specific internal energy
e_o Stagnation specific internal energy,
\(e_o = e + \frac{1}{2} (U^2 + V^2 + W^2) \)
F Inviscid flux vector for the x coordinate direction
F_{kleb} Klebanoff intermittency factor
\(\bar{F}_v \) Viscous flux vector for the x coordinate direction
\(\tilde{G} \) Inviscid flux vector for the y coordinate direction
\(\bar{G}_v \) Viscous flux vector for the y coordinate direction
\overline{H} Inviscid flux vector for the z coordinate direction

\overline{H}_v Viscous flux vector for the z coordinate direction

h

$k_i = \mu c_p / Pr$ Specific enthalpy

h_o Stagnation specific enthalpy,

\[h_o = h + \frac{1}{2} (U^2 + V^2 + W^2) \]

K Turbulence kinetic energy

k Thermal conductivity ($k = \mu c_p / Pr$)

k_t Turbulent thermal conductivity ($k_t = \mu c_p / Pr_t$)

l_m Mixing length

m_{f_i} Mass fraction of species i

P Static pressure

Pr_T Turbulent Prandtl number

q Vector of conservative flow variables

q Vector of primitive flow variables

Q Heat-flux vector

\overline{R} Residual

Sc_l Schmidt number

Sc_t Turbulent Schmidt number

s Highest characteristic speed

T Temperature

T_o Time period of turbulent fluctuations used in Reynolds averaging

t Time

$t.i.$ Turbulence intensity

U_i Cartesian velocity vector in tensor notation

u Flow speed

V Magnitude of the velocity vector

V_{dif} Velocity magnitude difference for use in wake function

\hat{V}_{ij} Mass diffusion velocity of species i in direction j

\overline{V}_j Mass diffusion velocity vector of species i

x_i Cartesian position vector in tensor notation

y Normal distance above surface
\(y^+ \) Nondimensional law-of-the-wall coordinate

\(\alpha \) Transverse injection angle
\(\bar{\delta} \) Central difference
\(\Delta \) Forward difference
\(\nabla \) Backward difference
\(\delta_{ij} \) Kronecker delta
\(\epsilon \) Dissipation rate
\(\kappa \) Karman constant
\(\lambda \) Courant-Friedrichs-Levy (CFL) number
\(\mu \) Molecular viscosity
\(\mu_\tau \) Turbulent (eddy) viscosity
\(\mu_\tau^* \) Effective eddy viscosity used for heat and mass transfer in “mixing” RNG
\(\rho \) Mass density
\(\rho_i \) Mass density of species i
\(\sigma_\kappa \) Prandtl number for turbulence kinetic energy
\(\sigma_\epsilon \) Dissipation rate Prandtl number
\(\tau_{ij} \) Viscous shear stress
\(\tau_{\mu ij}^* \) Reynolds stress
\(\tau_{ij}^{**} \) RNG contribution to Reynolds stress
\(\omega \) Vorticity

Subscripts
i, j, or k Evaluated at plane i, j, or k
max Maximum or at maximum
w Wall value

Superscripts
n Evaluated at time-level n