Table of Contents

Title Page i
Abstract ii
Acknowledgements iii
Table of Contents iv
List of Illustrations vii
List of Tables xi

Chapter 1 – Introduction 1

1.1 Importance of Magnetic Field Measurement 1
1.2 Magnetic Field Sensors 2
1.3 Optical Fiber Sensor based Measurements 5
1.4 Technical Objectives 8

Chapter 2 – Extrinsic Fabry-Perot Interferometer Measuring Magnetic Field 11

2.1 Principle of the Basic EFPI Sensor 11
2.2 Basic Sensor Design 13
2.3 Magnetic Properties of Ferromagnetic Materials 14
2.4 Investigation of Magnetostrictive Characteristics 16
2.5 Sensor Material Selections 22

Chapter 3 – Sensor Performance Enhancement 24

3.1 New Sensor Design 24
3.2 Sensor Gage Performance Improvement
 3.2.1 Transverse Field Annealing 25
 3.2.2 Enhancement of the Performance of Transverse Field Annealed Metglas Wire 29
 3.2.3 Enhancing Sensor Gage Sensitivity 32
3.3 Sensor Temperature Compensation 34
 3.3.1 Temperature Compensation Scheme 34
 3.3.2 Precise Evaluation of CTEs in Specific Sensor Geometry 40
 3.3.3 Mathematical Adjustment for Temperature Compensation 42
 3.3.4 Result of Temperature Compensation 44
3.4 Improvement of Fringe Visibility 46
3.5 Sensor Biasing and Packaging Methods 48
 3.5.1 Sensor Biasing 48
 3.5.2 Sensor Packaging 50
3.6 Signal Demodulation 52
 3.6.1 Introduction to Signal Demodulation 52
 3.6.2 Principle of Quadrature Signal Demodulation 53
 3.6.3 Circuit Design for Quadrature Signal Demodulation 55
 3.6.4 Evaluation of Quadrature Signal Demodulation Circuit 58
 3.6.5 Signal Demodulation Circuitry with Intensity Normalization 64
3.7 System Performance Analysis 66

Chapter 4 – Design of Vector Magnetic Field Sensor System 69

4.1 3-Dimensional Vector Field Representation 69
4.2 Design of Vector Field Measuring System 72
 4.2.1 Sensor Head Design 72
 4.2.2 System Design with 3 Separate Laser Sources 73
 4.2.3 System Design with Single Laser Source 74
 4.2.4 Channel Amplifier Design 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Microprocessor-based Signal Demodulation and Processing</td>
<td>76</td>
</tr>
<tr>
<td>4.4 Fabricated Vector Field Measuring System</td>
<td>79</td>
</tr>
<tr>
<td>4.5 System Calibration</td>
<td>81</td>
</tr>
<tr>
<td>4.5.1 Experimental Setup</td>
<td>81</td>
</tr>
<tr>
<td>4.5.2 Calibration Procedures</td>
<td>83</td>
</tr>
<tr>
<td>4.5.3 Experimental Results</td>
<td>83</td>
</tr>
<tr>
<td>Chapter 5 – Active/Passive Hybrid Temperature Compensation and Signal Demodulation</td>
<td>97</td>
</tr>
<tr>
<td>5.1 Concept of Active/Passive Hybrid Temperature Compensation and Demodulation</td>
<td>97</td>
</tr>
<tr>
<td>Chapter 6 - Conclusions</td>
<td>100</td>
</tr>
<tr>
<td>References</td>
<td>102</td>
</tr>
<tr>
<td>Vita</td>
<td>104</td>
</tr>
</tbody>
</table>
List of Illustrations

Figure 2.1 Typical EFPI sensor structure. 12
Figure 2.2 Basic sensor design used to evaluate magnetostrictive characteristics of candidate materials. 14
Figure 2.3 Magnetostriction of $\text{Tb}_{1-x}\text{Dy}_x\text{Fe}_2$ as a function of x. 15
Figure 2.4 Schematic of the experimental setup used for the evaluation of candidate magnetostrictive materials. 17
Figure 2.5 Magnetostriction as a function of magnetic field intensity for Terfenol-D. 18
Figure 2.6 High field magnetostrictive characteristics of Metglas ($\text{Fe}_{78}\text{B}_{13}\text{Si}_{9}$) ribbon. 19
Figure 2.7 Low field magnetostrictive characteristics of Metglas ($\text{Fe}_{78}\text{B}_{13}\text{Si}_{9}$) ribbon. 20
Figure 2.8 Noise reduction by a digital signal processing. 21
Figure 2.9 DC-magnetic field response of Metglas wire ($\text{Fe}_{77.5}\text{B}_{15}\text{Si}_{7.5}$). 22
Figure 3.1 A modified EFPI based sensor design. 24
Figure 3.2 Domain structure of transverse annealed material. 26
Figure 3.3 Domain structure of the material after applying longitudinal field \vec{H}. 26
Figure 3.4 Preliminary field annealing system. 27
Figure 3.5 Annealing temperature curve. 28
Figure 3.6 DC-magnetic field response of Metglas wire ($\text{Fe}_{77.5}\text{B}_{15}\text{Si}_{7.5}$). 29
Figure 3.7 Enhancement of magnetostriction, high magnetic field, with increasing annealing field. 30
Figure 3.8 Enhancement of magnetostriction, low magnetic field, with increasing annealing field. 30
Figure 3.9 High field transverse annealing system for enhancing sensor performance. 32
Figure 3.10 Magnetostriction of the new materials.

Figure 3.11 Simple sensor design with a borosilicate compensator.

Figure 3.12 Time domain sensor output signal due to large measurand for an EFPI-based sensor.

Figure 3.13 A model for extracting parameters.

Figure 3.14 Simple sensor design for evaluation of passive temperature compensation in an EFPI based weak magnetic field sensor.

Figure 3.15 Effective passive temperature compensation in EFPI based weak magnetic field sensor.

Figure 3.16 A temperature compensated sensor for evaluating CTEs of material used.

Figure 3.17 Sensor geometry to obtain exact temperature compensation by calculating ΔL.

Figure 3.18 Uncalibrated sensor output (83.0% compensation).

Figure 3.19 Calibrated sensor output (94.96% compensation).

Figure 3.20 Temperature compensated sensor output (98%).

Figure 3.21 Modified sensor gage endface.

Figure 3.22 Improvement in the fringe visibility.

Figure 3.23 DC bias method using single permanent magnet.

Figure 3.24 Using two, small permanent magnets for DC biasing the sensor.

Figure 3.25 Packaging scheme using V-grooved base.

Figure 3.26 Packaging scheme using glass tubes.

Figure 3.27 90° phase shifted sensor system for quadrature signal demodulation.

Figure 3.28 A detailed presentation of 90° phase shifted sensor system.

Figure 3.29 Block diagram of the analog quadrature demodulation circuit.

Figure 3.30 Circuit diagram for the analog demodulator.
Figure 3.31 Output voltage vs change in phase. 59
Figure 3.32 Output voltage vs change in phase. 61
Figure 3.33 Output voltage vs change in phase. 62
Figure 3.34 Output voltage vs change in phase. 64
Figure 3.35 Block diagram of signal demodulation circuitry with intensity normalization. 65
Figure 3.36 Demodulation circuit diagram with intensity normalization. 66
Figure 3.37 Output of sensor (Tube3). 67
Figure 3.38 Output of sensor (Tube4). 68
Figure 3.39 System calibration curve (without ceramic insulator). 68
Figure 4.1 Vector representation of magnetic field. 69
Figure 4.2 Sensor arrangement. 71
Figure 4.3 Initial operating point of the sensors. 71
Figure 4.4 Sensor head for vector magnetic field measurement. 72
Figure 4.5 Design using three separate laser diodes. 73
Figure 4.6 Design using single laser diode. 74
Figure 4.7 Preamplifier circuitry for a single channel. 76
Figure 4.8 Components of the electronic signal processing system. 76
Figure 4.9 Block diagram of QPS signal demodulation scheme. 77
Figure 4.10 Block diagram of microprocessor-based signal demodulation system. 78
Figure 4.11 Experimental arrangement of magnetometer system. 79
Figure 4.12 Electronic signal processing system box. 80
Figure 4.13 Calibration setup. 80
Figure 4.14 Complete experimental setup. 84
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Properties of new Metglas material</td>
<td>33</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>CTE values from various combinations</td>
<td>43</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Evaluation of sensors for exact temperature compensation</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Initial phase = 0 deg</td>
<td>58</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Initial phase = 90 deg</td>
<td>60</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Initial phase = 180 deg</td>
<td>61</td>
</tr>
<tr>
<td>Table 3.7</td>
<td>Initial phase = 0 deg</td>
<td>63</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Resource comparison for three diode and single-diode designs</td>
<td>75</td>
</tr>
</tbody>
</table>