A Threshold of Order
A Threshold of Order

November 2000
Jason Thomas Hejduk

Thesis submitted to the faculty of the College of Architecture and Urban Studies at Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Architecture.
A special thanks to my family, friends and especially my parents, for their love, support and patience.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>6</td>
</tr>
<tr>
<td>Site</td>
<td>8</td>
</tr>
<tr>
<td>Order</td>
<td>18</td>
</tr>
<tr>
<td>Path</td>
<td>34</td>
</tr>
<tr>
<td>Filter</td>
<td>54</td>
</tr>
<tr>
<td>Place</td>
<td>76</td>
</tr>
<tr>
<td>Conclusion</td>
<td>84</td>
</tr>
<tr>
<td>Vita</td>
<td>87</td>
</tr>
</tbody>
</table>
The focus of this thesis is the imposition of order onto a non-ordered space through the design of boundaries. The designed elements are derived from both the existing site conditions and the desire to improve the space, a threshold to the stadium.

A building that acts as a boundary becomes a type of wall, having two very pragmatic sides. Therefore, in this case, these elements must also function as a filter. The challenge is to design a boundary or an edge condition which defines the site, in addition to framing the views and allowing people to pass through these thresholds.

Likewise, circulation also helps to structure the site. The designed buildings allow for persons to pass along as well as to pass through. The elements placed onto the site allow for both formal and direct paths through the site, as well as more general and autonomous approaches to the stadium, located on the edge of the site.
A practice field for collegiate sports nestled between the football stadium and the basketball coliseum is the site for this thesis exploration. Located between the two largest ‘rooms’ on the campus of Virgina Polytechnic Institute and State University, this in-between space lacks a particular sense of place. The site calls for the imposition of a stronger, more clear order. Like a medieval town, the buildings seem to have just fallen into place. Because they are each oriented toward the street which they enfront, the buildings have no consideration for the open space which they encircle in the rear. It is this need for a firm structuring that has become the cause of much of the confusion in the site. While the stadium and the coliseum are enormous buildings, and have a very strong presence within the space, the other elements are too soft and ambiguous to enclose the space and provide a strong sense of place. Because the site is used as a fenced-in practice field for sports teams, there is an awkward circulation through it. This is especially a problem on football game days, when large numbers of people pass through the site to enter the stadium.
View of project site from coliseum
“Architecture is not only the art of cathedrals and tombs and monuments - though even these things must be built to endure - but it is also an art that deals with every phase of the most ordinary businesses of men.”

Talbot Faulkner Hamlin
The project site also represents the end of a much larger path. This prominent path, parallel to the cross axis of the campus, terminates near the stadium. It is this type of relationship with the campus that can easily begin to structure the space between the stadium and the colliseum. The stadium, like a church or other monumental building in any town, becomes the final destination of many who make their way through the medieval plan of campus once a week for the big game. This site becomes the culmination of the journey, or a beginning point from which to return home. The stadium, located on the edge of the developed portion of the campus, becomes a marker in the larger system. This site should act as a formal ending to an important north-south path through Virginia Tech's campus.
Partial plan of Virginia Polytechnic Institute and State University
“the order of things should reward our attention not demand it. Patterns are too obvious and insistently impose themselves upon our appreciation of a place rather than giving us the opportunity to find a subtler understanding.”

Donlyn Lyndon and Charles W. Moore
The development of this site is similar, in many respects, to the development of many of the more well-known European plazas. To begin a project such as this, one must look to some of these places. By viewing these great works and studying both how they were designed and what makes them memorable, one can focus on how to start to improve this in-between space. It has been said that order and harmony are two of the most important criteria in Renaissance and Baroque architecture. These types of architectures were among the first to manifest order in spaces between groups of buildings.
The Santissima Annunziata sits on axis with the main duomo in Florence, Italy. It is situated at the end of a wide street laid out by the monks who ran the church. Beside the church is the Foundling Hospital, whose arcade was designed by Brunelleschi. Antonio da Sangallo was commissioned to complete the piazza by designing the building across the piazza from the hospital. Rather than introduce an original design or style into the plaza, Sangallo followed the rules of the existing arcades, creating a highly articulated node along the axis. The powerful visual structure of the building facades holds the space together in an extreme sense of enclosure. This piazza becomes a termination for the movement along the axis from the duomo to the church. The placement of the fountains and sculpture accentuate a secondary axis perpendicular to the movement of the main axis. The three pieces form subtle spatial composition within the square. This is one of the earliest and best examples of the renaissance concept of creating a space between several buildings designed in relation to one another.
When Michelangelo began his renovations of the Campidoglio in Rome, Italy, he was faced with the challenge of ordering a very irregular piazza. Finding confusion in the buildings, sculptures and landscape, he began by defining an axis centered on the Palazzo del Senatori. This axis was strengthened through the addition of a grand staircase and a pronounced path up the hillside, along with the placement of a statue of Marcus Aurelius. By this simple act of will he established a line of force that began to organize the once chaotic space. Michelangelo’s plan was guided by the existing buildings on the site. He retained the original structures, but gave them a new architectural form. By providing the existing Piazza dei Conservatori, on the right, with a new facade which symmetrically mirrors the new Museo Capitolini, on the left, Michelangelo achieved an order not found in the existing medieval plan. His choosing to work with the existing buildings and their loose relationship to each other, rather than tear down existing structures to make way for his own designs, proved to be one of Michelangelo’s greatest decisions in this
project. He was able to create an architectural space without destroying the existing historical context. The Campidoglio’s greatest attribute is Michelangelo’s modulation of the landscape. The complicated floor paving design, along with the subtle three dimensional projection of the pavement and its steps, provide the piazza with an overall unity and coherence.

Luigi Snozzi redesigned the heart of the small village of Monte Carosso, Switzerland. Using the existing conditions dictated by the church, the monastery and the skewed cemetery, Snozzi was able to create a cultural identity. Appreciating these existing structures in their rural environment, he transformed the space into an urban context. He redesigned the monastery to be a public space, making it the anchor of Monte Carosso’s new identity. The existing cemetery was renovated and adapted to the geometries of the new center. This transformed the cemetery into an urban element. By reworking the infrastructure and land parcels and then inserting a series of new structures such
as homes, a school and a gymnasium, he was able to define a new town center, and a core for the growing village.

Largely due to its spatial properties, Bernini’s Piazza San Pietro is one of the most important European plazas to study. The oval shape defined by the colonnade creates a transverse axis in the square. The movement in the direction of the church is stalled by the new axis of the piazza. This cross axis is reinforced by the fountains, and the dishing of the floor plane toward the obelisk. When the gardens and palaces could still be viewed from the plaza through the colonnades, the transparency of these walls offered a feeling of connection to the surrounding world. The obelisk, at the center of the plaza on the longitudinal axis of the cathedral, represents a culmination: the center point at which the world comes together. It has been claimed that the elliptical colonnades act as welcoming arms to the pilgrimage of Catholics who come to the Vatican. These colonnades form an outdoor space - a reception room, or great hall for large events held at the church.
These European examples have successfully dealt with the challenge of taking irregular and confusing spaces and creating an order within them. All four of these architects have developed architectural forms that control the chaos resulting from a lack of or unimaginative planning. In honoring the existing buildings, or at least recognizing their presence without destroying the past decisions made on the sites, these examples have also retained important historic and cultural significance.

The plaza as a place of arrival and departure is shown in these examples. It is this function that the Virginia Tech site requires - the creation of a better place in which to move into and out of the stadium. Many of these European plazas have a line of force which moves people through the space either physically or visually, resulting in a strong axial relationship with their surroundings. This project can also have this type of relationship, both within the site itself and with the campus as a whole.

As seen in the examples, there can be a complexity brought to the spaces by the creation of transverse elements or manipulations of the plaza floors. The development of subtle, or not so subtle, spatial compositions within the sites create places that arrest motion and make static areas where things can happen. Similar to the projects investigated, by defining this space as a node in the fabric of the campus, it can become much more than just a path to and from the stadium.
In order to successfully design a more ordered space between the stadium and the coliseum, the site itself, rather than the university or the athletic department, must take priority in all decisions throughout the development of the project. The east side of the site is the only side that does not contain a man-made element. The green wall of the woodlands adjacent to the site adds a dimension of softness. It is important to provide a border on this side of the site--a harder, more formal boundary--while maintaining the presence of the green wall and the softer backdrop which it provides. This natural setting reminds us that we have never left the campus, or Southwest Virginia, so it is important to allow this natural wall as well as the hillside to remain accessible.

The second means of ordering the site grows from a functional consideration. A simple line was drawn in front of the stadium to reflect the need for an improved entrance to the stadium. The creation of ticket booths and entry gates within this line elevate it to a building. This structure marks the threshold of the stadium.

With the precedents in mind, the relationships between these two elements and the surrounding conditions of the site were studied. Their positions in relation to the coliseum, the stadium, and surrounding structures create a dialogue within the site with which to work. By manipulating these elements, an order is brought to the site which transforms it into a more enjoyable place.
As the project developed, the two new structures became larger and more complex. The eastern boundary wall was extended to serve as a bridge from the elevation of Washington Street to the second level of the stadium, creating a formal walkway. Because of the significant slope of the site from Washington Street toward the stadium, two levels of open office annex were added underneath the path. The line drawn to mark the front of the stadium lengthened to encompass all of the security of the north side of the stadium, architecturally replacing the chain link fence. Programmaticaly, this structure provides ticket gates, ticket and merchandise houses, observation areas, as well as support structures for a new scoreboard and an elevator core for a new pressbox, which may be added in the future.

As the elements developed, it became harder to align them with the existing buildings on the site, therefore a less direct connection with the existing structures is used to place the new buildings. Based on the geometry of the site and the axes of the existing buildings, the two new structures are placed at a ninety degree angle to each other, enforcing a much needed harmony within the site. It is with these two buildings dividing the space that one begins to impose order on the site. The resultant spaces, consequences of the elements created, become four separate quadrants. The placement of the bridge building opens up the space to the transversal path crossing the campus. The line of force is bent around the coliseum, aligning it with the axis of the stadium. This creates a node which formally terminates that path through campus.
As exhibited by the European precedents, an order brought to a place can come in part from a careful consideration of the building facades, both existing and new. A strengthening of the harmony of a place can be achieved by simply reproducing or tying together the building facades of the surrounding structures.

Both new structures on the project site originate from the concept of a three dimensional concrete framework. This open structure provides a place for the program requirements of the buildings, as well as the investigative requirements of the thesis. This frame also ties the elements to the existing concrete buttresses of the coliseum and the repeating concrete column and beam framework of the stadium. Evolving from the same basic frame concept, the two intersecting designs remain linked to each other while at the same time becoming very different objects, both visually and functionally. In both of the new elements, the concrete structure dominates their facades. Like the precedents studied, it is these dynamic views of each building that tie the elements to each other and to the entire site. This concept unifies the space created by the elements and creates a stability in the order throughout the site.
Both of these lines on the site act as walls or boundaries. The first one is simple: the gate structure encloses the bounds of the stadium. It keeps out those who don’t belong. It separates those people with tickets from those without tickets. The other line is more subtle: the bridge bounds the geometry of the site, separating the formal and the rigid from the natural. These walls are made complex through a distinction between the two sides. The west side of the bridge building is guided by the geometry that helped to structure the elements and the site, while the east side develops a more organic and irregular foundation. This can be seen most clearly in the design of the bridge’s facades and the north entrances leading into the site.

Monumental steps are positioned into the transition space between the coliseum and the new boundary element. On the opposite side of the building, the hillside is terraced, offering users a more wandering and unstructured pathway down toward the stadium. This naturalness is in sharp contrast to the stairs on the western side of the structure, which create a more geometric and formal approach down into the site. The density of the pedestrian population along these paths and along the elevated walkway can be very different, providing varied experiences for the users.
The design of the stairs functions on two levels: First, they are a transition between the existing coliseum and the new bridge building. More importantly, they act as an entrance to the movement and path through the site. Their grandness allows the user to engage in a more generous movement along the path. The landings, or mini plazas, offer the user places to pause and connect with the site. The gradual turn of the stair shifts the pedestrian and his vantage point and aligns him along the axis of the stadium as he descends.

These stairs were designed functionally to bring people up and down the hillside. Like the Spanish Stairs in Rome, Italy, the stair elements also emphasize an important axis through the site and allow places where the user can visually join with the site. The steps and resulting plaza space beside the coliseum run along and underneath the large buttresses of the coliseum. The plaza and stair allow people to connect with these giant concrete elements and move among their shadows. These buttresses in turn serve to carve out places within the path, allowing for opportunities to depart from the movement. The plazas on the stairs serve as entrances to the office annex. These entrances pull the landings and stairs under the bridge building and create more places to step away from the flow into the site.
“An axis is a relationship across space, not simply a path”
Donlyn Lyndon and Charles W. Moore
For his Chikatsu-Asuka Historical Museum in Osaka, Japan, Tadao Ando created a manmade hill-like form on the landscape. The stair formed by the roof of the building provides an elevated vantage point from which to view the 200 ancient tombs the museum helps to celebrate. The stepped roof is also intended by Ando to be a place for outdoor drama and musical performances, as well as lectures and festivals, encouraging the museum's participation in the cultural life of the region. This tiered landscape creates a monumentality on the site. The unbroken layers of concrete and stone pavers give a strong presence to the building. It is this solemnness that inspires the new steps leading into the stadium site. The heavy, monolithic steps hold their own as an architectural element viewed against the massive buttresses of the coliseum and the brooding structure of the stadium.
Influenced by the the Spanish Stairs and Ando’s museum in Osaka, the steps were designed to give the space the same type of monumentality. The steps and landings are cast concrete, providing a monolithic stair element strong enough to enforce its presence on the site and to visually support the north end of the bridge building. By using concrete to form the substructure, it confronts the many angles and turns produced by the transition between the two structures. Precast concrete pads that form the surface of the stair treads provide a more finished surface in contrast to the rougher concrete or paving of the landings. Running the entire length of the stair treads, the precast pads highlight the steps as places to sit while still maintaining the monolithic appearance of the entire element.
The precast treads, designed as basic linear pads, are held away from the edges of the poured concrete landscape. These pads reinforce the habitable space underneath the bridge building created by the continuation of the steps underneath the structure.
Because one of the primary functions of the site is that of a path to the stadium, movement is very important in this project. Therefore it was necessary to design elements that direct a flow through the site. The wall that bounds the eastern edge programmatically functions as an office annex for the athletics department. This edge or wall also becomes a datum line running from Washington Street to the stadium and serves as a pedestrian walkway, rising above the site to the upper deck of the stadium. The linearity of the building, combined with the arcade-like repeating columns and the path along the top, support the direction of movement through the site.

Inside, the building is developed with one strong circulation corridor. This corridor helps to maintain a linear feeling to the building. This corridor is flanked by the layers of the building system; the interior glass partition walls, the concrete structure, the exterior curtain wall, and the sun shading devices. By pulling these layers apart, and then stopping and starting them at points along the building, a movement along the corridor toward the stadium is established.
Bridge Building plan
Rooftop walkway plan

Second floor plan (first floor similar)
In defining this building as a wall or line across the site, a comparison can be made to the public swimming pool by Aurelio Galfetti in Bellinzona, Switzerland. The building is a spine, which functions as a bridge, providing a separation from the parking and vehicular traffic to the pools and pedestrian areas. Besides being a great example of a linear building, this project is also a good example of how a building acting as wall or boundary can have moments of transparency, allowing views and people to pass through. The open lower level allows for unimpeded movement between the areas of the complex. The directional elements aid in allowing the natural landscape to flow beneath the structure.

Another example of this technique in Galfetti’s work is his elementary school in Riva San Vitale, Switzerland. Again he offers openings in the structure, allowing for views of the natural landscape to pass through. The frame structure of the building is left exposed in several places. This stripping away of the interior gives the user a sense of awareness of the surroundings and a better understanding of the basic structure of the building.
The spaces created by the intersecting boundaries on the project site become very separate places, both physically and visually. However, it will be necessary to pass between the resultant areas. Each building must function as a type of filter. The bridge building is designed to allow people to pass underneath it. The columns and the egress stairs begin to set up a subordinate direction of movement below the offices, allowing the landscape and people to flow underneath it. Gaps in the structure create visual links to the “green wall” beyond, filtering and controlling views of the hillside as well as back toward the larger part of the site. These openings where the interior has been stripped away allow the users of the space to connect with the landscape and the site beyond. They also provide the opportunity to experience the building’s structure and to see more of the dynamics of the building.
The gate building is a more defined and functional filtering structure. It allows people with tickets to pass through, and facilitates the mass exit which occurs after games. It is also important for this structure to provide views into and out of the stadium. This element must have a strong presence as a wall or boundary across the stadium while maintaining permeability. The challenge was in creating elements within the building which function perpendicular to its strong linearity. Both Le Corbusier and Aldo Rossi provide examples of very strong walls that still allow passing of light, views, and people through the use of directional elements.

The gate building’s primary structural elements are a series of identical precast concrete frames rising from the ground. These monolithic structures are bold enough to have a very powerful presence on the site, while being perceived as light and open in contrast to the heavy mass of the stadium beyond. It is through these elements that people pass and within them that the pragmatic duties of the building take place.
Gate plan

Gate - North Elevation

intersection of gate and bridge
entrance gates
new scoreboard supports and observation deck
entrance gates elevator tower and stair for new pressbox ticket houses
Each of the precast frames rising in front of the stadium contains short steel flanges embedded in the concrete to which the steel bracing connects. The horizontal and cross bracing members are developed as tubular steel segments that connect the frames together. The creation of a separate composite end to these elements allows the brace to accept the flange and the force to be transferred to the steel tube. The reduction of these connections helps to show the steel bracing as a distinct element in the framework of concrete forms. The composite connection creates a shadow line over the end of the bracing, which helps to de-emphasize the connection point, and separate the elements of the structure. The steel bracing becomes a secondary system, leaving the focus on the precast directional elements. Shown here are the initial steps of that exploration.
Since the concrete frames in the gate structure are identical, each contains the flanges that allow for the connection to the steel bracing members. All of these frames have horizontal bracing, but not all bays have cross bracing. This leaves a place for the connection of the functional elements of the structure - the ticket gates and the fences.

The swinging entrance gates bear on the ground, but are supported at the top by steel braces connecting to the flanges of the precast frames. These gates are composed of perforated steel plates formed around wing-like ribs. When open, these doors support the directional force perpendicular to the linear structure and allow people into the stadium.

These same flanges work to support the fences that close off the open bays of the structure. Most of these are hinged to allow mass exiting from the stadium after the games. These fences, formed of flat steel stock with welded lap joints, work to enforce the directional feel of the structure. This detail creates a visual filter, bringing one directly in line with the fence in order to see through into the stadium.
Rough stone stripes set into the finished concrete mark the locations where each precast frame rises from the ground. These lines reinforce the directional flow filtering through the structure.
Ticket and small merchandise houses are developed for the gate structure. These spaces lie between two poured concrete walls that protrude from between the openings in the gate structure. Gaps left between the wall and the frame are enough to see through, reinforcing the direction of the system, but too small to walk through.

The gate structure supports an elevator tower designed to become the entrance to a new pressbox for the stadium. This connection allows for elevators and an egress stair to run between the extended concrete frames similar to the rest of the structure. At the top of the core, a small observation deck allows users to look out into the site and back into the stadium.

An observation deck is designed for the second level of the frames under the supported scoreboard. This allows for users to have an unobstructed view into the stadium and provides a place to be among the concrete frames for an extended time.
The existing fence along Spring Road ends at a concrete column set in the rear of the last bay of the gate structure. Although they are separate, they are close enough not to allow people to go between. This opens up the end of the gate structure to the sidewalk. The small space formed between the sidewalk and the last concrete frame becomes a transition. Like the stairs between the bridge building and the coliseum, and the terraced entrance between the gate structure and the training facility, this space is formed by the existing and the new. The space sinks into the ground and forms a small place to sit and wait. From here one can enter the last bay, which forms a place for people to stand inside and be among the towering frames.

On the east side of the gate structure the last three bays remain open, allowing for people and small maintenance vehicles to pass through. A new fence runs underneath the edge of the bridge from the gate structure to the stadium structure, securing the inside of the stadium. This fourth quadrant space beyond the gate structure remains open as a more secluded place for public use.
“...the role of the architect is not to modify the world by himself, but to predict variations in events which will take place around his work in order that it shall not lose its timelessness. It is his obligation to anticipate and embrace changes in history.”

Marco Frascari
Unifying the open spaces and surrounding buildings into a coherent whole begins with an exaggeration of the natural bowl-like shape of the central open space. An elliptical plan works well with the medieval-like plan of the surrounding buildings in that it has no true center, and therefore no true tangent lines, so the shape is more forgiving in its placement within other objects. This allows the bowled surface to act as an element that links the site into one harmonious space.

The Piazza del Campo in Sienna Italy, with its sloping paved piazza, joins its users and offers them a view of each other that would not be possible on a flat site. Even when crowded with people, one can look across the entire plaza and still feel that he is part of the crowd. The bowl-like surface of the central space allows for a similar effect in this project. The site, acting as a gathering space before and after football games, becomes a giant stage, on which the users become the participants who are viewed. This act is functional both on game days when crowds move through the space, and at organized gatherings such as rallies or concerts.
Section through site

Section through Amphitheater stage located on east side of the bridge building.
Sloped seating formed by the dishing out of the site.
With the creation of a stage, the space gains a function beyond its role as a path to the football games. This idea gives the space a more static or stationary use, allowing it to be used at other times of the year. The stage also serves as a base where folly-type structures can be built. It marks a point in the landscape which balances the view of the site and provides a place from which to view the spaces. The stage sits directly on the axis of the elliptical shape created by carving out the earth. The axis is fixed at the other end by a smaller base or stage, which acts as an amphitheater set into the hillside. These two bases provide users a chance to utilize the space however they see fit. These markers are left to stimulate and influence the users to create their own type of usable space within the site.

Unlike many public plazas, grass was chosen for the floor material. When crowds are not present, this creates a less overwhelming and empty area than a hard surface would. Like the Piazza del Campo, in Sienna, the site has an outer ring of level paving which serves as a hard edge to the soft elliptical dish of the site. Functionally, it provides a drive for the back of the house utilities of the surrounding buildings, but it also acts as a transition from the conditions of the existing buildings and the new site design. This edge adds another level to the complexity of the floor of the project and reinforces the elliptical form created in the earth.
Herman Hertzberger writes about the importance of creating an architecture in which our designs have the ability to adapt themselves to change while retaining their architectural significance. When people choose to use the space differently than what architects envision, it should not change or muddle the identity of the work. In many respects, a college campus acts very much as a city, and like the city is subject to constant change. The design of this site will allow for a number of different events to take place, many unimagined at this time.

Hertzberger states: “We should therefore go about designing in such a way that the result does not refer too outspokenly to an unequivocal goal but that it still permits interpretation, so that it will take on its identity through usage. What we make must constitute an offer, it must have the capacity to elicit, time and again, specific reactions benefitting specific situations; so it must not be merely neutral and flexible and hence nonspecific, but it must possess that wider efficaciousness that we call polyvalence.”

Hertzberger tells us that architects must give the users of the space some type of influence or limitations on what can be done in a place. Designers need to find the ground somewhere between neutrality, a result of too much flexibility, and specificity, a consequence of too much expression. It is important that the architecture consist of forms which can be associated with many functions. Their ability to change intent without changing impression makes these forms significantly more architectural.

As in any city or college campus, change and growth happen frequently. It is not unreasonable to think that construction of one kind or another will take place around this site. A project such as this creates a very strong presence and an equally important idea. These would require the respect of future planners and designers. Examples such as the Campidoglio in Rome and the Piazza della Santissima Annunziata in Florence show us the important effect that a second designer can have on a space. A project such as this one could easily be regarded as only a beginning, a course set for future designers.
The college campus, like a small town, can grow in a chaotic manner without proper planning. It is not difficult to find unplanned, irregular spaces nestled between buildings. This project site is in one of those forgotten places—until game days, when thousands of people pass through it as a path to the stadium...

...but that is all they do. There is no aesthetic reward for being in this place as it stands.

The challenge of this thesis is to create order in the site through the design of buildings that not only form boundaries and edges, but also paths and filters for the resulting spaces.

The imposition of order on this site is based on formally enclosing the space into a cohesive unit. Designing two new structures that form boundaries within the immense site begins to define the space. Creating buildings, such as these, divides the site into consequential spaces. These spaces are connected physically and visually through filtering elements. In order to unify the site into a more harmonic place, the structures are generated in the same concrete language as the existing structures, thus strengthening the presence of the architectural style of the stadium and coliseum.

It is rare to find architecture that can exist without its context. This project is fully dependant upon its relationship with its surroundings. The design reinforces the path through the site and creates a threshold to the adjacent stadium. It takes an existing space and develops an architecture that imposes an order that begins to draw out and highlight the existing context of the surrounding structures.

Conclusion

Aerial Photograph of Lane Stadium on pg. 12 http://www.hokievision.com/hokievision/hokievenues/ Nov. 1 2000
Jason Thomas Hejduk
born June 27, 1973

Master of Architecture
Virginia Polytechnic Institute and State University
Blacksburg, Virginia
November 2000

Study Abroad
Virginia Tech Center for European Studies and Architecture
Riva San Vitale, Switzerland
Spring 1999

Architectural Designer / Draftsman
ALLTEL Communications Inc.
Land and Buildings Department
Northeast Market Headquarters
Hudson, Ohio
1995 - 1997

Bachelor of Science in Technology
Architectural and Environmental Design
Bowling Green State University
Bowling Green, Ohio
August 1995