LIST OF FIGURES

**Figure 1.1** Definition of supercritical region for a pure substance. CP: critical point (where the distinction between liquid and vapor disappears), TP: triple point (where liquid, solid and vapor coexist), $T_c$: critical temperature, $P_c$: critical pressure. ........................................ 1

**Figure 1.2** Critical line for a simple binary mixture of component 1 and 2. $P_{c1}$, $P_{c2}$, $T_{c1}$, $T_{c2}$ correspond to pure component critical pressures and critical temperatures. ......................... 3

**Figure 1.3** Variation of density with pressure for a pure fluid above and below the critical temperature ($T_c$). $T_1 > T_c > T_2$. The shaded area is the vapor-liquid two-phase region. .......................................................................................................................... 4

**Figure 1.4** Structures for PMMA, PCL, poly (MDO-co-MMA), poly (MDO-co-ST), poly (MDO-co-AN), and 2-methylene-1,3-dioxepane (MDO). .................................................. 6

**Figure 1.5** The phase behavior in polymer solutions as a function of carbon dioxide content of solvent. The solid lines are the liquid-liquid phase boundaries. Shaded sides depict the two-phase regions. .................................................................................................................. 8

**Figure 1.6** Schematic diagrams showing polymerization-induced phase separation (top). With the progress of polymerization, the lower critical solution temperature may be lowered or the upper critical solution temperature may increase, upon which homogeneous system enters two-phase region. ........................................................................................................ 10

**Figure 1.7** Schematic diagram for variation of transmitted light intensity, $I_{tr}$ with polymerization time in homogeneous or heterogeneous polymerizations. In heterogeneous polymerizations, phase separation occurs at time = $t_1$ and thereafter the polymerization proceeds in two phase region. ......................................................... 11

**Figure 1.8** Interrelations among different parts of the present program ............... 14

**Figure 2.1** Paths for solid-fluid (S-F) (crystallization) (path A) and liquid-liquid (L-L) (path B) phase separation. The dashed boundaries represent the phase boundaries for solvents with decreased solvent power (higher carbon dioxide content). ........................................ 19

**Figure 2.2** Schematic diagram of temperature versus concentration of polymer solutions at different pressures or with different solvent power. The shaded regions in these diagrams represent the immiscible regions. .................................................................................................................. 19

**Figure 2.3** Schematic diagrams for polymer particle formation. ........................ 38

**Figure 3.1** Schematic diagram of phase separation during viscosity measurement. Generally, the viscosity increases with pressure. When the phase separation takes place, the viscosity
shows decrease with pressure, which can be used to detect the phase separation in the system.

Figure 4.1 Schematic diagram of the view cell system. SL: solvent line, PL: pressure line, CO₂ C: CO₂ cylinder, SR: solvent reservoir, RPH: right pump head, LPH: left pump head, PG: pressure gauge, CV: check valve, RD: rapture disk, PGN: pressure generator, LVDT/PRU: linear variable differential transformer / position readout unit, VVP: variable volume part, HE: cartridge heater, MS: magnetic stirring, P/T S: pressure/temperature sensor, V1-V7: valves, E1-E6: exits.

Figure 4.2 Schematic diagram of the view-cell for density and phase behavior determinations. PFL: pressurized fluid line, PPS LVDT: piston position sensor linear variable differential transformer, FS: ferromagnetic slug, PI: piston, SL: solvent line, TC: temperature controller, CH: cartridge heater, VVP: variable volume part housing the piston, P = pressure; T = temperature, FOL: fiber optical illuminator, SW: sapphire window, PS/IS: photo sensor / transmitted light intensity, MS: magnetic stirrer.

Figure 4.3 Illustration of the different paths followed to determine phase boundaries and the corresponding changes in temperature (T), pressure (P) and transmitted light intensity (Iₜ) with time. The lower part of this figure demonstrates the incipient demixing pressure (Pᵢ) and temperature (Tᵢ) and the condition corresponding to transmitted light intensity going to minimum (Pᵢ and Tᵢ). Path A: constant temperature, Path B: constant pressure, Path C: variable pressure and temperature.

Figure 4.4 Variation of temperature, pressure, and transmit light intensity with time during depressurization at constant temperature of 354.7 K in the view cell for the solution of 5 wt % PCL in acetone containing 40 wt % CO₂.


Figure 4.6 Schematic diagram of the viscometer and the data processing procedure. SL: solvent line, PFL: pressurizing fluid line, PM: pull-up magnet, TLP: top loading port, FLP: front loading port, SW: sapphire window, EMS: electromagnetic stirrer, PI: movable piston, FS: ferromagnetic slug, PPS LVDT: piston position sensor linear variable differential transformer, S: sinker, V: LVDT signal; D: sinker fall distance.

Figure 4.7 Sinker LVDT signal (V) versus time during viscosity determination for acetone at 35 MPa and 100 °C.

Figure 4.8 Working diagram for data processing software package.

Figure 4.9 Calibration voltage-distance relations for the sinker position in the falling tube of the instrument. Raw calibration voltage-distance data (a); normalized calibration voltage-d...
distance data (b). The normalized data (b) are derived from the raw data by 1) divide all the
data into 6 sections according to the 6 peak areas; 2) find maximum for each peaks; 3)
normalize all the data by being divided by the 6 maximum for the 6 peak areas, respectively.
Some points that are at the beginning are deleted in the normalized figure (b). -………

**Figure 4.10** Sinker travel distance (D) versus time during viscosity determination for acetone
at 35 MPa and 100 °C. The sinker terminal velocity determined from the response of the 2\textsuperscript{nd}
and 3\textsuperscript{rd} LVDT coils (the slope of the fitted line) is 0.274 cm/s. ............................... 77

**Figure 4.11** (a). Sinker LVDT signal (V) versus time, and (b). Sinker travel distance (D)
versus time during viscosity determination for system of acetone + PMMA (10 wt\%, 15 K) at
35 MPa and 100 °C. The sinker terminal velocity is 0.152 cm/s. ......................... 78

**Figure 4.12** (a). Sinker LVDT signal (V) and (b). Sinker travel distance (D) versus time
during viscosity determination for system of acetone + PMMA (10 wt\%, 540 K) at 35 MPa
and 100 °C. The sinker terminal velocity is 0.062 cm/s. ............................ 79

**Figure 5.1** Variation of density with pressure at the nominal temperature of 323 K for
acetone, carbon dioxide, and acetone + carbon dioxide mixtures containing 10, 25, 50, and 75
wt \% carbon dioxide. (See Table 5.1 for exact temperature for each mixture). ............ 106

**Figure 5.2** Variation of density with pressure at the nominal temperature of 348 K for
acetone, carbon dioxide, and acetone + carbon dioxide mixtures containing 10, 25, 50, and 75
wt \% carbon dioxide. ................................................................................................. 107

**Figure 5.3** Variation of density with temperature for acetone + carbon dioxide mixtures
containing 10 wt \% carbon dioxide at 7, 14, 21, 28, and 35 MPa. .............................. 108

**Figure 5.4** Variation of viscosity with pressure at 323 K for acetone, carbon dioxide, and
acetone + carbon dioxide mixtures containing 10, 25, 50, and 75 wt \% carbon dioxide.
................................................................................................................................. 109

**Figure 5.5** Variation of viscosity with temperature for acetone + carbon dioxide mixture
containing 10 wt \% carbon dioxide at 7, 14, 21, 28, and 35 MPa. ............................. 110

**Figure 5.6** Variation of viscosity with density for acetone, carbon dioxide, and acetone +
carbon dioxide mixtures containing 10, 25, 50, and 75 wt \% carbon dioxide. ............ 111

**Figure 5.7** Variation of excess volume with carbon dioxide content for acetone + carbon
dioxide mixture at 323 K and at 14, 21, 28, and 35 MPa. Excess volumes at 35 and 55 MPa
are from literature (Pohler and Kiran, 1997a). ......................................................... 112

**Figure 5.8** Variation of excess volume with carbon dioxide content for acetone + carbon
dioxide mixture at 373 K and 28 and 35 MPa. ....................................................... 113
**Figure 5.9** Variation of viscosity with carbon dioxide content for acetone + carbon dioxide mixture at 323 K and 28 MPa. The viscosities include the experimental data and data calculated from 4 different mixing rules. See text for the mixing rules. ………………… 114

**Figure 5.10** Variation of viscosity with carbon dioxide content for acetone + carbon dioxide mixture at 373 K and 28 MPa. The viscosities include the experimental data and data calculated from 4 different mixing rules. See text for the mixing rules. ………………… 115

**Figure 5.11** Variation of excess viscosity with carbon dioxide content (mass %) for acetone + carbon dioxide mixture at 323 K and at 14, 21, 28, and 35 MPa. …………………… 116

**Figure 5.12** Variation of excess viscosity with carbon dioxide content (mass %) for acetone + carbon dioxide mixture at 373 K and at 28 and 35 MPa. …………………………… 117

**Figure 5.13** Variation of excess viscosity with excess volume for acetone + carbon dioxide mixtures containing 0, 10, 25, 50, 75, and 100 wt % carbon dioxide at 323 K and 373 K at 28 MPa. ……………………………………………………………………………………………… 118

**Figure 5.14** Top: Electron donor-acceptor complexes between acetone and carbon dioxide (Cabaco et. al., 2005) where \( \alpha_1 = 132.8^\circ, r_1 = 2.745 \text{ Å} ; \alpha_2 = 180.0^\circ, r_2 = 2.774 \text{ Å} \). Bottom: Dimer structures of carbon dioxide: the slipped parallel arrangement with C-C distance of 3.6 \text{ Å} (\( d_1 = 3.6 \text{ Å}, d_{11} = 1.9 \text{ Å}, d_{12} = 3.1 \text{ Å} \)) and T-shaped arrangement with C-C distance of 4.2 \text{ Å} (\( d_2 = 4.2 \text{ Å} \)) (Fedchenia and Schröder, 1997) ………………… 119

**Figure 5.15** Visualization of compositional variations in carbon dioxide – acetone mixtures. The diagrams consider possibilities for different forms of CO\(_2\) dimers, and CO\(_2\)-acetone complexes for different CO\(_2\):acetone ratios in the mixtures. ……………………………………………………………………………………………… 120

**Figure 5.16** Variation of viscosity with excess volume for acetone + carbon dioxide mixture at 323 K and 14, 21, 28, and 35 MPa. On each curve, from top to the bottom, the carbon dioxide contents for every point are 0, 10, 25, 50, 75, and 100 wt %. ………………… 121

**Figure 7.17** Variation of viscosity with excess volume for acetone + carbon dioxide mixture at 373 K and 28 and 35 MPa. On each curve, from top to the bottom, the carbon dioxide contents for every point are 0, 10, 25, 50, 75, and 100 wt %. ………………………… 122

**Figure 5.18** Correlation results for acetone using all the experimental data. …………. 123

**Figure 5.19** Correlation results. In this correlation, the parameters that were determined from data at 398 K were used to predict the viscosity at T = 373, 348, and 323 K. …………. 124

**Figure 5.20** Correlation results. In this correlation, the parameters that were determined from data at 373 K were used to predict the viscosity at T = 398, 348, and 323 K. …………. 125
Figure 5.21 Variations of model parameters, $l$ and $E_o$, with pressure. The parameters were determined at fixed pressure. ................................................................. 126

Figure 6.1 (a). Sinker LVDT signal (V) versus time, and (b) Sinker travel distance (D) versus time during viscosity determination for acetone at 35 MPa and 100 °C. The sinker terminal velocity determined from the response of the 2nd and 3rd LVDT coils (the slope of the fitted line) is 0.274 cm/s. ................................................................. 150

Figure 6.2 (a). Sinker LVDT signal (V) versus time, and (b) Sinker travel distance (D) versus time during viscosity determination for system of acetone + PMMA (10 wt%, 15 K) at 35 MPa and 100 °C. The sinker terminal velocity is 0.152 cm/s. .................. 151

Figure 6.3 (a). Sinker LVDT signal (V) and (b). Sinker travel distance (D) versus time during viscosity determination for system of acetone + PMMA (10 wt%, 540 K) at 35 MPa and 100 °C. The sinker terminal velocity is 0.062 cm/s. .................. 152

Figure 6.4 Variation of density with pressure at 50, 75, 100, and 125 °C for acetone. Literature data are from references (Lit. data (1): Pohler and Kiran, 1997a; Lit. data (2): Azevedo et. al., 2004). ................................................................. 153

Figure 6.5 Variation of viscosity with pressure at 50, 75, 100, and 125 °C for acetone. ........................................................................................................ 154

Figure 6.6 Variation of density with pressure for PMMA (10 wt %, $M_w = 15$ K) in acetone at 50, 75, 100, and 125 °C. ................................................................. 155

Figure 6.7 Variation of viscosity with pressure for PMMA (10 wt %, $M_w = 15$ K) in acetone at 50, 75, 100, and 125 °C. ................................................................. 156

Figure 6.8 Comparison of the variation of density with pressure for PMMA ($M_w = 15$ K) solutions (0, 10, 20 wt %) in acetone at 100 °C. ....................................................... 157

Figure 6.9 Comparison of variation of viscosity with pressure for PMMA ($M_w = 15$ K) solutions (0, 10, 20 wt %) in acetone at 100 °C. ....................................................... 158

Figure 6.10 Variation of density with pressure for PMMA (10 wt %, $M_w = 540$ K) in acetone at 50, 75, 100, and 125 °C. ................................................................. 159

Figure 6.11 Variation of viscosity with pressure for PMMA (10 wt %, $M_w = 540$ K) in acetone at 50, 75, 100, and 125 °C. ................................................................. 160

Figure 6.12 Comparison of variation of density with pressure for PMMA ($M_w = 540$ K) solutions (0, 5, 10, 20 wt %) in acetone at 100 °C. ....................................................... 161
Figure 6.13 Comparison of the variation of viscosity with pressure for PMMA ($M_w = 540$ K) solutions (0, 5, 10, 20 wt %) in acetone at 100 °C. ......................................................... 162

Figure 6.14 Comparison of the variation of viscosity with pressure for solutions of PMMA (20 wt %) in acetone at 100 °C. ................................................................. 163

Figure 6.15 Variation of density with pressure for solutions of PMMA (5 wt %, $M_w = 540$ K) in acetone + CO$_2$ mixtures at different CO$_2$ levels at 100 °C. ...................... 164

Figure 6.16 Variation of Viscosity with pressure for solutions of PMMA (5 wt %, $M_w = 540$ K) in acetone + CO$_2$ mixtures at different CO$_2$ levels at 100 °C. ...................... 165

Figure 6.17 Variation of viscosity with density for PMMA ($M_w = 15$ K) solutions (0, 10, 20 wt %) in acetone. ................................................................. 166

Figure 6.18 Variation of viscosity with density and concentration for PMMA ($M_w = 540$ K) solutions (0, 2, 5, 10, 20 wt %) in acetone. (a). Viscosity versus density; (b) 3-D representation. ................................................................. 167

Figure 6.19 Variation of viscosity with density and composition for PMMA (5 wt %, $M_w = 540$ K) solutions in acetone + CO$_2$ mixtures at CO$_2$ addition levels of 0, 1, 2, 4 wt %. (a). Viscosity versus density; (b) 3-D representation. ................................................................. 168

Figure 6.20 Variation of the viscosity with concentration for PMMA (540 K) solutions in acetone. The pressure/temperature conditions are as indicated in the figure inset. A significant jump in viscosity takes place in the concentration range between 0.4 to 0.8 g/cm$^3$ which is interpreted to be related to the onset of entanglements. ......................................................... 169

Figure 7.1 Variation of temperature, pressure, and transmitted light intensity with time (top three figures), and the determination of the phase separation (demixing) pressure from variation of $I_{tr}$ with pressure (lower figure) during depressurization at constant temperature of 354.7 K in the view cell for 5 wt % PCL solution in acetone. ......................................................... 186

Figure 7.2 Variation of density with pressure at 323, 348, 373, and 398 K for 5 wt % solution of PCL in acetone. ................................................................. 187

Figure 7.3 Variation of viscosity with pressure at 323, 348, 373, and 398 K for 5 wt % solution of PCL in acetone. ................................................................. 188

Figure 7.4 Variation of density with pressure at 323, 348, 373, and 398 K for mixtures of PCL (5 wt%) + acetone + CO$_2$ (1 wt %). ......................................................... 189

Figure 7.5 Variation of viscosity with pressure at 323, 348, 373, and 398 K for mixtures of PCL (5 wt%) + acetone + CO$_2$ (1 wt %). ......................................................... 190
Figure 7.6 Variation of density with pressure at 323, 348, 373, and 398 K MPa for mixtures of PCL (5 wt%) + acetone + CO\textsubscript{2} containing 0, 1, 2, 4, 40 wt % CO\textsubscript{2}. .......................... 191

Figure 7.7 Variation of viscosity with pressure at 323, 348, 373, and 398 K MPa for mixtures of PCL (5 wt%) + acetone + CO\textsubscript{2} containing 0, 1, 2, 4, 40 wt % CO\textsubscript{2}. ............ 192

Figure 7.8 Liquid-liquid phase boundary for mixture of PCL (5 wt %, 14 K) + acetone + CO\textsubscript{2} (40 wt %) as determined in the view cell. .......................................................... 193

Figure 7.9 Variation of density with pressure at 323, 348, 373, and 398 K MPa for mixtures of PCL (5 wt%) + acetone + CO\textsubscript{2} (40 wt %). (The demixing points are also included). ................................................................. 194

Figure 7.10 Variation of viscosity with pressure at 323, 348, 373, and 398 K MPa for mixtures of PCL (5 wt%, 14 K) + acetone + CO\textsubscript{2} (40 wt %). (The demixing points are also included). ......................................................................................... 195

Figure 7.11 Variation of viscosity with density for mixtures of PCL (5 wt %, 14 K) + acetone + CO\textsubscript{2} (0, 1, 2, 4, 40 wt %). The solid curves are correlations based on Doolittle equation. .............................................................. 196

Figure 7.12 Comparison of the variation of density with pressure at T = 373 K for the mixtures of PMMA (15 K) + acetone + CO\textsubscript{2}, PMMA (540 K) + acetone + CO\textsubscript{2}, and PCL (15K) + acetone + CO\textsubscript{2}. .......................................................... 197

Figure 7.13 Comparison of the variation of viscosity with pressure at T = 373 K for the mixtures of PMMA (15 K) + acetone + CO\textsubscript{2}, PMMA (540 K) + acetone + CO\textsubscript{2}, and PCL (15K) + acetone + CO\textsubscript{2}. .......................................................... 198

Figure 8.1 Demixing pressures for PCL ($M_w$ = 14 K) solutions in acetone + CO\textsubscript{2} containing 40 wt % CO\textsubscript{2} at different polymer compositions. The inserts are T-composition and P-composition diagrams generated from the P-T data at 15 and 20 MPa, and 370 and 380 K, respectively. .......................................................... 225

Figure 8.2 Demixing pressures for 5 or 10 wt % PCL ($M_w$ = 14 K) solutions in acetone + CO\textsubscript{2} containing 40 or 50 wt % CO\textsubscript{2}. ............................................................... 226

Figure 8.3 Demixing pressures for 10 wt % PCL solutions in acetone + CO\textsubscript{2} containing 40 wt % CO\textsubscript{2} for different polymer molecular weights ($M_w$ = 14 K or 65 K). ............ 227

Figure 8.4 Variation of demixing pressure with temperature for 5 wt % PCL ($M_w$ = 14 K) solutions in DME, HCFC-22, acetone + carbon dioxide (40 wt %), DME + carbon dioxide (37 wt %), and HCFC-22 + carbon dioxide (44 wt %) mixtures. (The data for systems other than acetone + CO\textsubscript{2} are from literature (Liu and Kiran, 2006)). .......................... 228
Figure 8.5 Variation of density with pressure for 5 wt % PCL ($M_w = 14$ K) solution in acetone + 10 wt % CO$_2$ at 323, 348, 373, and 398 K. ................................. 229

Figure 8.6 Variation of density with temperature for 5 wt % PCL ($M_w = 14$ K) solution in acetone + 10 wt % carbon dioxide at 7, 14, 21, 28, 35, 42, and 49 MPa. ......................... 230

Figure 8.7 Variation of density with pressure for 10 wt % PCL ($M_w = 65$ K) solution in acetone + 40 wt % carbon dioxide at 323, 348, 373, and 398 K. (The liquid-liquid phase separation points are shown with symbol “+”) .................................................. 231

Figure 8.8 Variation of density with pressure for mixtures of PCL ($M_w = 14$ K) + acetone + CO$_2$ (40 wt %) containing 5, 10, and 20 wt % PCL at 373 K. ................................. 232

Figure 8.9 Variation of density with pressure for 5 wt % PCL ($M_w = 14$ K) solution in acetone + carbon dioxide mixtures containing 0, 5, 10, 20, 40, 50, 60 wt % CO$_2$ at 348 K. ................................................................. 233

Figure 8.10 Variation of isothermal compressibility with pressure for 5 wt % PCL ($M_w = 14$ K) solution in acetone + carbon dioxide mixture containing 10 wt % CO$_2$ and the polymer-free solvent mixture acetone + carbon dioxide (~10 wt %) at 323, 348, 373, and 398 K. ................................................................. 234

Figure 8.11 Variation of isobaric expansivity with temperature for 5 wt % PCL ($M_w = 14$ K) solution in acetone + carbon dioxide mixture containing 10 wt % CO$_2$ at 7, 14, 21, 28, 35, 42, and 49 MPa and the polymer-free solvent mixture acetone + carbon dioxide (~ 10 wt %) at 7, 14, 21, 28, 35 MPa. ................................................................. 235

Figure 8.12 Schematic diagrams for intermolecular interactions in the PCL solutions (top row) and acetone + carbon dioxide solvent mixture (second row) at different temperatures. Acetone – CO$_2$ interactions are stronger than PCL- CO$_2$ interactions at lower temperatures which undergoes a reversal at a crossover temperature around 373 K. ................. 236

Figure 8.13 Variation of isothermal compressibility difference between 5 wt % PCL ($M_w = 14$ K) solution in acetone + 10 wt % carbon dioxide and the polymer-free solvent mixture acetone + carbon dioxide (~10 wt %) with temperature at 7, 14, 21, 28, and 35 MPa. ................................................................. 237

Figure 8.14 Variation of isobaric expansivity difference between 5 wt % PCL ($M_w = 14$ K) solution in acetone + 10 wt % carbon dioxide mixture and the polymer-free solvent mixture acetone + carbon dioxide (~10 wt %) with pressure at 323, 348, 373, and 398 K. ...... 238

Figure 8.15 Variation of isothermal compressibility with pressure for 5 wt % PCL ($M_w = 14$ K) solution in acetone + carbon dioxide mixture containing 40 wt % CO$_2$ and the polymer-free solvent mixture acetone + carbon dioxide (~42 wt %) at 323, 348, 373, and 398 K. ................................................................. 239
Figure 8.16 Variation of isothermal compressibility with pressure for 5 wt % PCL ($M_w = 14 \text{ K}$) solution in acetone + carbon dioxide mixture containing 10 and 40 wt % CO$_2$ at 323, 348, 373, and 398 K. ................................................................. 240

Figure 8.17 Variation of isothermal compressibility with pressure for 5 and 10 wt % PCL ($M_w = 14 \text{ K}$) solution in acetone + carbon dioxide mixture containing 40 wt % CO$_2$ at 323, 348, 373, and 398 K. ................................................................. 241

Figure 8.18 Variation of isothermal compressibility with pressure for 10 wt % PCL solutions in acetone + carbon dioxide mixture containing 40 wt % CO$_2$ with two different molecular weights of 14 K and 65 K at 323, 348, 373, and 398 K. ................................. 242

Figure 8.19 Variation of isobaric expansivity with temperature for 5 wt % PCL ($M_w = 14 \text{ K}$) solution in acetone + carbon dioxide mixture containing 40 wt % CO$_2$ at 14, 21, 28, 35, 42, and 49 MPa and for the polymer-free solvent acetone + carbon dioxide (42 wt %) at 14, 21, 28, and 35 MPa. ................................................................. 243

Figure 8.20 Variation of isobaric expansivity with temperature for 5 wt % PCL ($M_w = 14 \text{ K}$) solution in acetone + carbon dioxide mixture containing 10 and 40 wt % CO$_2$ at 7, 14, 21, 28, 35, 42, and 49 MPa. ................................................................. 244

Figure 8.21 Variation of isobaric expansivity with temperature for 5 and 10 wt % PCL ($M_w = 14 \text{ K}$) solution in acetone + carbon dioxide mixture containing 40 wt % CO$_2$ at 7, 14, 21, 28, 35, 42, and 49 MPa. ................................................................. 245

Figure 8.22 Variation of isobaric expansivity with temperature for 10 wt % PCL solutions in acetone + carbon dioxide mixture containing 40 wt % CO$_2$ with two different molecular weights of 14 K and 65 K at 7, 14, 21, 28, 35, 42, and 49 MPa. ................................. 246

Figure 9.1 The schematic of phase separation process in forming the blends. ............. 262

Figure 9.2 Variation of demixing pressure with temperature for 10 wt % PCL, PCL / PMMA blends, and PMMA (15 K) solutions in acetone (50 wt %) + carbon dioxide (40 wt %) mixture. Molecular weight: $M_w=14,000$ (PCL); 15,000 (PMMA). ................................. 263

Figure 9.3 Variation of demixing pressure with temperature for 10 wt % PCL (14 K), PCL (14 K)/ PMMA (540 K) blend, and PMMA (540 K) solutions in acetone (50 wt %) + carbon dioxide (40 wt %) mixture. ................................................................. 264

Figure 9.4 Variation of demixing pressure with temperature for solutions of 5 wt % PCL (14 K) + 5 wt % PMMA (15 K) and 5 wt % PCL (14 K) + 5 wt % PMMA (540 K) in acetone (50 wt %) + carbon dioxide (40 wt %) mixture. ................................................................. 265

Figure 9.5a First heating scans for original PMMA samples ($M_w = 15,000$ and 540,000). The heating rates are 10 K/min. The glass transition temperatures are indicated by the arrows. ................................................................. 266
Figure 9.5b First heating scan for original PCL samples ($M_w = 14,000$). The heating rate is 10 K/min. The doublet peaks represent the melting transitions. ............................................. 267

Figure 9.5c First heating scan for 75/25 PCL (14 K)/PMMA (15 K) blend. The heating rate is 10 K/min. The doublet peaks represent the melting transitions. ............................................. 268

Figure 9.5d First heating scan for 50/50 PCL (14 K)/PMMA (15 K) blend. The heating rate is 10 K/min. A Tg is suggested at around 100 °C in the enlarged insert. ......................... 269

Figure 9.5e First heating scan for 25/75 PCL (14 K)/PMMA (15 K) blend. The heating rate is 10 K/min. The enlarged insert indicates a Tg at around 90 °C. .............................. 270

Figure 9.5f First heating scan for 50/50 PCL (14 K)/PMMA (540 K) blend. The heating rate is 10 K/min. A Tg is detected at around 105 °C. .................................................. 271

Figure 9.6 Comparative of DSC scans (first heating scans) for PCL ($M_w = 14$ K), PMMA ($M_w = 15$ K), PMMA ($M_w = 540$ K) and their blends. .................................................. 272

Figure 9.7a First cooling scans for the original PMMA samples ($M_w = 15$ K and 540 K) showing the Tg’s. The cooling rate is 10 K/min. ........................................................... 273

Figure 9.7b First cooling scans for the original PCL samples ($M_w = 14$ K). The cooling rate is 10 K/min. ........................................................... 274

Figure 9.7c First cooling scans for the 75/25 PCL (14 K)/PMMA (15 K) blend sample. The cooling rate is 10 K/min. ........................................................... 275

Figure 9.7d First cooling scans for the 50/50 PCL (14 K)/PMMA (15 K) blend sample. The cooling rate is 10 K/min. ........................................................... 276

Figure 9.7e First cooling scans for the 25/75 PCL (14 K)/PMMA (15 K) blend sample. The cooling rate is 10 K/min. ........................................................... 277

Figure 9.7f First cooling scans for the 50/50 PCL (14 K)/PMMA (540 K) blend sample. The cooling rate is 10 K/min. ........................................................... 278

Figure 9.8 Comparative DSC scans (first cooling scans) for PCL ($M_w = 14$ K), PMMA ($M_w = 15$ K), PMMA ($M_w = 540$ K) and their blends. .................................................. 279

Figure 9.9 Variation of liquid-liquid phase boundary with PCL concentration for PCL ($M_w = 14$ K) + PMMA (15 K) blend (10 wt % total polymer) solutions in acetone (50 wt %) + carbon dioxide (40 wt %) at 15 and 20 MPa. The ambient pressure crystallization temperatures of the PCL + PMMA blends in the absence of solvent are also included. This is depicted as $T_c*$ in the insert figure. $T_c$ represents the crystallization curve in the presence of
solvent fluid. Starting at homogeneous conditions, increasing the temperature leads to L-L phase separation, and lowering the temperature leads to S-F phase separation.

**Figure 9.10** FTIR spectrum for original PCL sample. ........................................ 281

**Figure 9.11** FTIR spectrum for original PMMA sample. ................................. 282

**Figure 9.12** Comparison of FTIR spectra for PCL + PMMA blend samples. ...... 283

**Figure 9.13** Comparison of FTIR spectra for PCL ($M_w = 14$ K), PMMA ($M_w = 15$ K), and their blends. ................................................................. 284

**Figure 9.14** Comparison of FTIR spectra for PCL ($M_w = 14$ K), PMMA ($M_w = 15$ K), and their blends in the wavenumber range 600-2000 cm$^{-1}$. The band at 1295 cm$^{-1}$ is used to characterize the crystallinity of the PCL and its blends with PMMA. .................. 285

**Figure 10.1** GPC tests for PMMA samples formed from the MMA polymerizations in acetone at (i) $P = 28$ MPa; (ii). $P = 35$ MPa. .......................................................... 304

**Figure 10.2** Variation of temperature, pressure, density, and viscosity with time during polymerization at 21 MPa (Initial reactant mixture is MMA (10 wt %) + Acetone (90 wt %) + AIBN (0.04 wt %)). ................................................................. 305

**Figure 10.3** Variation of temperature, pressure, density, and viscosity with time during polymerization at 42 MPa (Initial reactant mixture is MMA (10 wt %) + Acetone (90 wt %) + AIBN (0.04 wt %)). ................................................................. 306

**Figure 10.4** Variation of density with time during polymerization at different pressures (Initial reactant mixture is MMA (10 wt %) + Acetone (90 wt %) + AIBN (0.04 wt %)). ................................................................. 307

**Figure 10.5** Variation of viscosity with time at different pressures during polymerization. ................................................................. 308

**Figure 10.6** Variation of Density with time during polymerization at different pressures. ................................................................. 309

**Figure 10.7** Variation of viscosity with time during polymerization at different pressures. ................................................................. 310

**Figure 10.8** Variation of viscosity increasing-rate with pressure for two stages. ...... 311

**Figure 10.9** Density comparisons between present reactant mixtures and other three systems (acetone, 10 wt % PMMA ($M_w = 15$ K) solution in acetone, 10 wt % PMMA ($M_w = 540$ K) solution in acetone). ................................................................. 312
Figure 10.10 Viscosity comparisons between present reactant mixtures and other three systems (acetone, 10 wt % PMMA ($M_w = 15$ K) solution in acetone, 10 wt % PMMA ($M_w = 540$ K) solution in acetone). .................................................. 313

Figure 10.11 Variation of density with MMA concentration for MMA + acetone mixture and PMMA + MMA + acetone mixture at 7, 14, 21, 28, 35, and 42 MPa. .................. 314

Figure 10.12 Variation of viscosity with MMA concentration for MMA + acetone mixture and PMMA + MMA + acetone mixture at 7, 14, 21, 28, 35, and 42 MPa. .......... 315

Figure 10.13 Comparison of the GPC elution times for 5 wt % PMMA solutions ($M_w = 15$ K and $M_w = 540$ K) with the elution times for 5 wt % MMA solutions in acetone that were kept in the viscometer at 343 K for 24 hours. For the GPC runs, the solutions were diluted 3 times with THF.......................................................... 316

Figure 10.14 Variation of MMA concentration with time derived from density data at different pressures. ............................................................................. 317

Figure 10.15 Variation of MMA concentration with time derived from viscosity data at different pressures. ............................................................. 318

Figure 10.16 Comparison of density-derived and viscosity-derived variation of MMA concentration with time at 35 MPa. .................................................. 319

Figure 10.17 Variations of MMA concentration with time for polymerizations at different pressures. The MMA concentrations are derived from density information of the reaction mixtures. (See also Figure 10.14) .................................................... 320

Figure 10.18 Variations of $\ln [M]$ with time for polymerizations at different pressures. .......................................................................................... 321

Figure 10.19 Evaluations of slopes of the $\ln [M]$ versus time plots for polymerizations in the initial 300 mins at different pressures from density data. Pressures are in MPa, and rate constants are in min$^{-1}$ units. ............................................................... 322

Figure 10.20 Variations of MMA concentration with time for polymerizations at different pressures. The MMA concentrations are derived from viscosity information of the reaction mixtures. ........................................................................ 323

Figure 10.21 Variations of $\ln [M]$ with time for polymerizations at different pressures. ......................................................................................... 324

Figure 10.22 Evaluations of slopes of the $\ln [M]$ versus time plots for polymerizations in the initial 300 mins at different pressures from viscosity data. ..................... 325

Figure 11.1 Molecular structure for poly (ε-caprolactone) ............................... 326
Figure 11.2 Catalyzed ring-opening polymerization of $\varepsilon$-caprolactone ($\varepsilon$-CL) to produce poly ($\varepsilon$-caprolactone) (PCL). ................................................................. 327

Figure 11.3 Ring opening polymerization of 2-methylene-1,3-dioxepane (MDO) to produce poly ($\varepsilon$-caprolactone). ................................................................. 328

Figure 11.4 Branch formations in the free-radical polymerization of MDO .......................... 329

Figure 11.5 Copolymerization of MDO with MMA. .................................................. 330

Figure 11.6 Copolymerization of MDO with ST. .................................................. 331

Figure 11.7 Copolymerization of MDO with AN. .................................................. 331

Figure 11.8 Polymerization temperature, pressure, and transmitted light intensity as a function of polymerization time for free-radical homopolymerizations of MDO in CO$_2$ at high pressure (P = 28 MPa, T = 323 K, polymerization time = 24 hrs, concentration of MDO = 20.9 wt %, and AIBN concentration = 2.79 wt %). [Polymerization # 2 in Table 11.1] ................................................................. 347

Figure 11.9 $^1$H NMR spectrum for PCL from MDO polymerization (No. 3 in Table 11.1). ................................................................. 348

Figure 11.10 $^{13}$C NMR spectrum for PCL from MDO polymerization (No. 3 in Table 11.1). ................................................................. 349

Figure 11.11 Polymerization temperature, pressure, and transmitted light intensity as a function of polymerization time for free-radical copolymerization of MDO with MMA (50/50) in CO$_2$ at high pressure (P = 28 MPa, T = 343 K, polymerization time = 24 hrs, concentration of MDO = 9.0 wt %, MMA= 9.0 wt %, and AIBN = 2.8 wt % (relative to amount of comonomers)) [Polymerization # 1 in Table 11.3]. ................................................................. 350

Figure 11.12 Polymerization temperature, pressure, and transmitted light intensity as a function of polymerization time for free-radical copolymerization of MDO with MMA (20/80) in CO$_2$ at high pressure (P = 28 MPa, T = 343 K, polymerization time = 24 hrs, concentration of MDO = 3.6 wt %, MMA= 13.6 wt %, and AIBN = 3.4 wt % (relative to amount of comonomers)). [Polymerization # 2 in Table 11.3] ................................................................. 351

Figure 11.13 Polymerization temperature, pressure, and transmitted light intensity as a function of polymerization time for free-radical copolymerization of MDO with MMA
(10/90) in CO\textsubscript{2} at high pressure (P = 28 MPa, T = 343 K, polymerization time = 24 hrs, concentration of MDO = 1.9 wt %, MMA= 15.3 wt %, and AIBN = 3.0 wt % (relative to amount of comonomers)). [Polymerization # 3 in Table 11.3] ................................. 352

**Figure 11.14** Polymerization temperature, pressure, and transmitted light intensity as a function of polymerization time for free-radical copolymerization of MDO with MMA (5/95) in CO\textsubscript{2} at high pressure (P = 28 MPa, T = 343 K, polymerization time = 24 hrs, concentration of MDO = 0.9 wt %, MMA= 16.2 wt %, and AIBN = 3.0 wt % (relative to amount of comonomers)). [Polymerization # 4 in Table 11.3] ................................. 353

**Figure 11.15** Polymerization temperature, pressure, and transmitted light intensity as a function of polymerization time for free-radical copolymerization of MDO with styrene (50/50) in CO\textsubscript{2} at high pressure (P = 28 MPa, T = 343 K, polymerization time = 24 hrs, concentration of MDO = 9.0 wt %, ST= 8.8 wt %, and AIBN = 2.8 wt % (relative to amount of comonomers)). [Polymerization # 5 in Table 11.3] ................................. 354

**Figure 11.16** Polymerization temperature, pressure, and transmitted light intensity as a function of polymerization time for free-radical copolymerization of MDO with acrylonitrile (50/50) in CO\textsubscript{2} at high pressure (P = 28 MPa, T = 343 K, polymerization time = 24 hrs, concentration of MDO = 10.1 wt %, AN= 9.6 wt %, and AIBN = 4.1 wt % (relative to amount of comonomers)). [Polymerization # 6 in Table 11.3] ................................. 355

**Figure 11.17** \textsuperscript{1}H NMR spectrum for PMMA. .......................................................... 356

**Figure 11.18** \textsuperscript{13}C NMR spectrum for PMMA. .......................................................... 357

**Figure 11.19** \textsuperscript{1}H NMR spectrum for MDO-MMA copolymer (No. 1 in Table 11.3). .................................................................................................................. 358

**Figure 11.20** \textsuperscript{13}C NMR spectrum for MDO-MMA copolymer (No. 1 in Table 11.3). .................................................................................................................. 359

**Figure 11.21** DSC tests for the 50/50, 20/80, 10/90, 5/95 MDO-MMA copolymers. The second heating scans are shown and the heating rate is 10 K/min. ...................... 360

**Figure 11.22** DSC test for 50/50 MDO-ST copolymer sample (No. 5 in Table 13.3). .................................................................................................................. 361

**Figure 11.23** DSC test for 50/50 MDO-AN copolymer sample (No. 6 in Table 13.3). .................................................................................................................. 361