Application of Magnetorheological Dampers for Vehicle Seat Suspensions

by

Brian A. Reichert

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Master of Science

in

Mechanical Engineering

Approved:

Mehdi Ahmadian, Chairman
Harley H. Cudney
Pushkin Kachroo

December 3, 1997
Blacksburg, Virginia

Keywords: Seat Suspension, Magnetorheological, Skyhook, Groundhook, Damper, Experimental, Semiactive, Brian A. Reichert
APPLICATION OF MAGNETORHEOLOGICAL DAMPERS FOR VEHICLE SEAT SUSPENSIONS

by

Brian A. Reichert

Mehdi Ahmadian, Chairman

Mechanical Engineering

This study evaluates and provides solutions to the problem of poor subjective feel of seat suspensions that employ magnetorheological (MR) dampers and skyhook control. An Isringhausen seat suspension that had been modified to replace the stock passive damper with a controllable MR damper was used to evaluate the problems and potential solutions. A seat suspension tester was built using materials from 80/20 Incorporated and a hydraulic actuation system from MTS. An HP Dynamic Signal Analyzer was used as the main piece of data acquisition equipment, along with a Pentium PC and National Instruments Data Acquisition card. All of the hardware is installed in a controlled laboratory facility at Virginia Tech's Advanced Vehicle Dynamics Lab.

The first task was to analyze the source of the unexpected peak in the acceleration spectrum of the suspended seat. This analysis was accomplished using a combination of pure tone inputs and a Fourier analysis of a simple model of the system. This analysis indicated that the peak is actually three times the resonant frequency of the seat suspension. The analysis also indicates that the frequency components continue at odd multiples of the resonant frequency, however, the third peak is the most noticeable. The third multiple is in the resonant frequency range (4-8 Hz) of the human body, so it was initially blamed for the poor subjective feel of the seat. However, solutions to remove this harmonic were tested without success.

The work progressed to a time domain analysis, which eventually led to determining the source of the poor subjective feel. The seat suspension was excited with a variety of inputs. The seat acceleration and damper control current were examined in
the time domain to show that the cause of the poor subjective feel is the control signal discontinuities. The control policy was modified to remove the control signal discontinuities and was found to improve the subjective feel of the seat.

Finally, several two-degree-of-freedom control policies were implemented and tested. Although the results from this testing are inconclusive, they generated several recommendations for future research.
Acknowledgments

I would like to thank my advisor, Dr. Mehdi Ahmadian, for his help and encouragement throughout graduate studies in the Mechanical Engineering Department. I would also like to thank Drs. Harley Cudney and Pushkin Kachroo for serving on my graduate committee. I also would like to thank Lord Corporation and the Mechanical Engineering Department at Virginia Tech for funding my graduate studies. The generous donations by 80/20 Corporation and PCB Piezotronics, Incorporated, which made feasible the many tests that were required for this study, are greatly acknowledged.

Finally I would like to thank my mother and father, Paul and Elizabeth Reichert, my brothers, John, Jeff, and Kevin, and my best friends Nona and Shawn for all their love and support throughout the years that I have spent at Virginia Tech.
Contents

1 Introduction..1
1.1 Magnetorheological Seat Suspension Development Problems1
1.2 Literature Review ...2
 1.2.1 Keyword: Semiactive..3
 1.2.2 Keyword: Magnetorheological ...5
 1.2.3 Keyword: Seat Suspensions..6
 1.2.4 Keyword: Skyhook ...7
 1.2.5 Keyword: Hybrid Suspension Control.........................7
1.3 Research Objective...8
1.4 Outline ..8

2 Background..9
2.1 Skyhook Control of an SDOF System..9
 2.1.1 Passive Suspension for an SDOF Base-Excited System....9
 2.1.2 Ideal Skyhook Control..11
 2.1.3 Semiactive Realization of Skyhook Control.................14
2.2 Magnetorheological Dampers ..16
 2.2.1 Magnetorheological Fluids ...16
 2.2.2 Construction of an MR Damper17
 2.2.3 Performance of the MR Damper...................................18

3 Magnetorheological Seat Suspension...22
3.1 Isringhausen Seat Suspension and Damper Controller22
3.2 Skyhook Control and the Needed Sensors...................................25
 3.2.1 Relative Position and the Rate Filter25
 3.2.2 Absolute Seat Acceleration and Analog Integrator29
3.3 Control Signal Reconstruction and Power Amplification32
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Conclusions</td>
<td>80</td>
</tr>
<tr>
<td>8.1</td>
<td>Summary</td>
<td>80</td>
</tr>
<tr>
<td>8.2</td>
<td>Recommendations for Future Research</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>Vita</td>
<td>86</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Literature Search Flow Chart According to Keywords and Number of "Hits".3
2.1 SDOF Passive Base-Excited System ..10
2.2 Passive Suspension Transmissibility ...11
2.3 Ideal Skyhook Configuration ...12
2.4 Ideal Skyhook Transmissibility ...13
2.5 Semiactive Suspension ..14
2.6 Functional Representation of an MR Damper ..17
2.7 Lord MR Seat Damper, (a) Schematic Representation, (b) Actual Hardware 18
2.8 Linear Damper Characteristics ...19
2.9 Bilinear, Asymmetric Damping Characteristics..19
2.10 Ideal MR Damper Performance ...20
2.11 MR Damper Performance Envelope ..21
3.1 Isringhausen Seat Suspension ..23
3.2 Scissors Seat Suspension ...23
3.3 Lord Seat Controller ..24
3.4 Position Measurement ...26
3.5 Variation of Sin(θ/2) Over the Measurement Range27
3.6 Rate Filter Variation with F ...29
3.7 Accelerometer Position ..30
3.8 Analog Integrator Circuit ..30
3.9 Frequency Response of the Analog Integrator ...31
3.10 Rate Filter for Accelerometer Input ...32
3.11 Reconstruction Filter Circuit ...33
3.12 Current Driver Circuit ..34
3.13 Summary of Controller Construction...35
4.1 Virginia Tech AVDL Seat Tester...37
4.2 Universal Seat Mount ..38
4.3 MTS 502 Hydraulic Power Supply ...39
4.4 Hydraulic Service Manifold...39
4.5 MTS 242 Series Hydraulic Actuator ..40
4.6 MTS 407 Controller ..40
4.7 ISO Class 2 Excitation ..41
4.8 ISO2 Base Displacement Sample ...42
4.9 HP 35665A Dynamic Signal Analyzer ...43
4.10 Accelerometer Positions ..44
4.11 Frequency Devices Analog Filter...45
4.12 Pentium Computer Used for Data Acquisition ...45
4.13 Tektronix A622 Current Probe ...46
4.14 Lord Seat Test Actuator ..47
5.1 PSD of ISO2 Excitation ..50
5.2 PSD of Seat (Suspended Mass) Response to ISO2 Excitation50
5.3 Hard Mode 1.4-Hz Seat Response ...51
5.4 Soft Mode 1.4-Hz Seat Response ...52
5.5 Skyhook Control 1.4-Hz Seat Response ...52
5.6 Skyhook Damper Current PSD for 1.4-Hz Excitation54
5.7 Relationship Between V1, V12, and Damper Current54
5.8 Velocities and MR Damper Force vs. Time ..55
5.9 Filtered Skyhook Control Seat Response ..57
5.10 Dual Controller Design ..59
5.11 Dual Controller ISO2 Response ...59
6.1 ISO2 Synchronized Base Displacement for Time Domain Analysis61
6.2 Skyhook Controller, G=32, 1.4-Hz Pure Tone Input Excitation62
6.3 Skyhook Controller, G=32, ISO2 Excitation ...63
6.4 Modified Skyhook Continuous Control Current

6.5 Modified Skyhook Controller, \(\gamma = 128 \), 1.4-Hz Pure Tone Excitation

6.6 Modified Skyhook Controller, \(\gamma = 128 \), ISO2 Excitation

6.7 Computed Jerk for Skyhook Control and 1.4 Hz Input

6.8 Computed Jerk for Skyhook Control and ISO2 Input

6.9 Computed Jerk for Modified Skyhook and 1.4 Hz Input

6.10 Computed Jerk for Modified Skyhook and ISO2 Input

6.11 Skyhook Control Seat Suspension Transmissibility

6.12 Modified Skyhook Control Seat Suspension Transmissibility

7.1 A 2DOF Model of the Cab and Seat Suspension

7.2 Skyhook Formulation for the 2DOF System

7.3 Groundhook Formulation for the 2DOF System

7.4 Hybrid Control

7.5 Block Diagram of the Hybrid Controller

7.6 SIMULINK Code for the Hybrid Controller

7.7 Acceleration Transmissibility of Groundhook Control

7.8 Time Response of the Groundhook Controller

7.9 Hybrid Transmissibility for \(H = 32 \)

7.10 Hybrid Transmissibility for \(H = 50 \)

7.11 Acceleration Time Response for \(\alpha = 0.25 \) and \(H = 50 \)

7.12 Acceleration Time Response for \(\alpha = 0.75 \) and \(H = 32 \)

7.13 Acceleration Time Response for \(\alpha = 0.75 \) and \(H = 50 \)