AN INVESTIGATION OF THE EFFECTIVENESS OF A STROBE LIGHT AS AN IMMINENT REAR WARNING SIGNAL

by
Lisa M. Schreiner

Thesis submitted to the faculty
of the Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
In
Industrial and Systems Engineering

APPROVED:

Thomas A. Dingus, Chair

__________________________ _______________________
Brian M. Kleiner Suzanne E. Lee

November 15th, 2000
Blacksburg, Virginia

Keywords: Collision Avoidance, Rear signaling, Vehicles, Safety, Strobe Lights, Rear-End Collisions, Reaction Times, Strobe Signal.
AN INVESTIGATION OF THE EFFECTIVENESS OF A STROBE LIGHT AS AN IMMINENT REAR WARNING SIGNAL

Lisa Schreiner

ABSTRACT

Strobe lights have been used successfully in many transportation applications to increase conspicuity. It was hoped that a strobe signal could also be applied to more effectively warn distracted drivers of an unexpected rear end conflict.

This “proof of concept study” used a 2 x 2 between-subjects design using thirty-three subjects (16 subjects in the strobe condition, 17 subjects in the no strobe condition) who were divided into two age groups: younger (25-35) and older (60-70). The driver unexpectedly encountered a stopped “surrogate” vehicle in the roadway (with or without a rear-facing strobe light) in a controlled on-road study at the Smart Road located at the Virginia Tech Transportation Institute (VTTI).

Results suggested that younger subjects’ perception times improved as a result of being exposed to the strobe signal. Faster perception of the situation allowed more time to initiate a brake response. Older subjects perception and response times remained unchanged by the strobe signal. More severe initial steering rate and subjective responses indicated that the strobe conveyed a sense of urgency irrespective of age.

Visual distraction of subjects proved difficult. Hence, the impact of the strobe on attracting the attention of a visually distracted driver to the stimulus could not be as fully investigated as originally hoped. The formulation of a more difficult distraction task was suggested for future research to truly assess the ability of the strobe light at alerting visually distracted drivers.
ACKNOWLEDGEMENTS

As I reflect back on the times and events that have passed during the process of writing this thesis I have many acknowledgments to convey. First of all, I would like to thank my committee members, Tom Dingus, Suzanne Lee, and Brian Kleiner. They challenged me, supported me, and inspired me in many different ways throughout this process. Additional thanks go to Andy Peterson, Jared Bryson, and Mark Young, all hard working employees at the hardware laboratory at the Virginia Tech Transportation Institute. Their technical support and expertise helped to quickly resolve many glitches throughout the running of this experiment.

I owe a huge hug and thanks to my husband, Chris Schreiner. Throughout this difficult graduate school process, he has provided overwhelming support. Chris, you continue to amaze me with your unlimited intelligence, wisdom, strength, and love. I have no doubt that I would not have been able to achieve this level of accomplishment without you. Thank you.

Finally, my thoughts go to Sarah Hardy, a close friend of mine who committed suicide in February of 2000. Despite my attempts to help my friend, events had led her past a point of no return. Her death was the hardest obstacle I faced during my time at Virginia Tech. I miss her. Together we had overcome limitations placed on us by circumstance. We had an unspoken promise to continue to grow beyond expectations and to encourage one another on our way. She was a special person who showed incredible thought and generosity to all who knew her. I would like to dedicate this work to my friend Sarah. In honor of her memory, I promise to continue to go beyond everyone’s expectations.
TABLE OF CONTENTS

ABSTRACT .. ii
ACKNOWLEDGMENTS ... iii
LIST OF FIGURES .. x
LIST OF TABLES ... xiii

CHAPTER 1. LITERATURE REVIEW .. 1
 Introduction .. 1
 Crash Causation .. 1
 Rear End Crashes ... 2
 Driver Error .. 3
 Perceptual Factors .. 3
 Short headways .. 5
 Inattentive behavior ... 6
 Countermeasures ... 8
 Rear Signaling Improvements ... 9
 In-Vehicle Collision Avoidance Warning Systems ... 12
 Intelligent Cruise Control .. 14
 Nuisance/False Alarms ... 15
 Warning Design .. 15
 Flashing Signals ... 16
 Signal Colors .. 18
 Signal Positioning ... 20
 Light Intensity .. 20
 Warning Activation Criteria ... 20
 The Impact of Perception-Reaction Times of Drivers ... 23
 The Limited Channel Model ... 24
 The Strobe Light as an Effective Warning Signal .. 25
 Applications in Transportation ... 26
 Research Approaches to Evaluation of Warning Systems ... 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Subjective Opinion</td>
<td>82</td>
</tr>
<tr>
<td>Effectiveness of methodology</td>
<td>82</td>
</tr>
<tr>
<td>Effectiveness of a strobe warning signal</td>
<td>85</td>
</tr>
<tr>
<td>CHAPTER 6: CONCLUSIONS</td>
<td>88</td>
</tr>
<tr>
<td>Recapitulation</td>
<td>88</td>
</tr>
<tr>
<td>Perception Time</td>
<td>89</td>
</tr>
<tr>
<td>Rate of Steering</td>
<td>90</td>
</tr>
<tr>
<td>Age Differences in Response Times</td>
<td>91</td>
</tr>
<tr>
<td>Validity of the Methodology</td>
<td>92</td>
</tr>
<tr>
<td>Summary</td>
<td>92</td>
</tr>
<tr>
<td>CHAPTER 7: SUGGESTIONS FOR FUTURE RESEARCH</td>
<td>93</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>96</td>
</tr>
<tr>
<td>APPENDIX A. RESULTS OF PILOT TESTING</td>
<td>104</td>
</tr>
<tr>
<td>APPENDIX B: POST DRIVE QUESTIONNAIRE FOR SUBJECTS</td>
<td>105</td>
</tr>
<tr>
<td>EXPOSED TO THE STROBE CONDITION</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C. POST DRIVE QUESTIONNAIRE FOR SUBJECTS</td>
<td>111</td>
</tr>
<tr>
<td>EXPOSED TO THE NO STROBE CONDITION</td>
<td></td>
</tr>
<tr>
<td>APPENDIX D: POWER ANALYSIS</td>
<td>117</td>
</tr>
<tr>
<td>APPENDIX E: DEMOGRAPHIC AND HEALTH SCREENING QUESTIONNAIRE</td>
<td>118</td>
</tr>
<tr>
<td>APPENDIX F: PREDRIVE HEALTH QUESTIONNAIRE</td>
<td>123</td>
</tr>
<tr>
<td>APPENDIX G: INFORMED CONSENT</td>
<td>125</td>
</tr>
<tr>
<td>Appendix</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>H</td>
<td>Instructions</td>
</tr>
<tr>
<td>I</td>
<td>Driver's Comfort Rating Scale</td>
</tr>
<tr>
<td>J</td>
<td>Debriefing and Informed Consent Form</td>
</tr>
<tr>
<td>K</td>
<td>Individual Driver Behavior Graphs</td>
</tr>
<tr>
<td>L</td>
<td>Means Tables</td>
</tr>
<tr>
<td>M</td>
<td>ANOVA Summary Tables</td>
</tr>
<tr>
<td>N</td>
<td>LSMEANS Tables to Assess Simple Effects</td>
</tr>
<tr>
<td>O</td>
<td>Graphs of Ratings Provided by Subjects</td>
</tr>
<tr>
<td>P</td>
<td>Free Responses</td>
</tr>
<tr>
<td>Q</td>
<td>Free Responses</td>
</tr>
<tr>
<td>R</td>
<td>Free Responses</td>
</tr>
<tr>
<td>S</td>
<td>Free Responses</td>
</tr>
<tr>
<td>T</td>
<td>Free Responses</td>
</tr>
<tr>
<td>U</td>
<td>Free Responses</td>
</tr>
<tr>
<td>V</td>
<td>Free Responses</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1. Average Viewing Angles for Each Flash Frequency.............................. 37
Figure 3.2. Average urgency ratings.. 37

Figure 4.1. Timeline Showing Summary of Dependent Measures (response times only)... 42
Figure 4.2. Surrogate Vehicle: Rear View.. 49
Figure 4.3. Surrogate Vehicle: Side View... 50
Figure 4.4. Positioning of Strobe Light on Surrogate Vehicle: Rear View............. 50
Figure 4.5. Typical Quad-Split Image From the In-Vehicle Camera...................... 51
Figure 4.6. Picture of Passenger Van to be Used as Lead Vehicle......................... 52
Figure 4.7. Headway Display.. 52
Figure 4.8. Final Distances and TTC Used in Study... 55
Figure 4.9. Rear-end Conflict Scenario... 60
Figure 4.10. Hiding Position of the Surrogate Vehicle Prior to the Rear End Conflict Scenario.. 61
Figure 4.11. View of the Surrogate Hidden Behind The Trailer As Subject Drives Away From Top Loop... 62
Figure 4.12. View of the Hidden Surrogate and Tow Vehicle On Approach to Top Loop... 62

Figure 5.1. Perception Time: Two-Way Interaction Between Condition and Age Range... 70
Figure 5.2. Brake Response Time: Two-Way Interaction Between Age Range and Condition.. 74
Figure 5.3. Ratings of Endangerment by All Participants...................................... 82

Figure A-1. Urgency Rating Scale... 103
Figure K-1. Subject 13, Strobe/No Steer... 131
Figure K-2. Subject 23, Strobe/No Steer... 132
Figure K-3. Subject 24, Strobe/No Steer... 133
Figure K-31. Subject 90, No Strobe/Steer... 161
Figure K-32. Subject 92, No Strobe/Steer... 162
Figure K-33. Subject 95, No Strobe/Steer... 163

Figure O-1. Ratings Concerning Level of Realism Experienced By Subjects........ 173
Figure O-2. Ratings Concerning Level of Surprise Experienced By Subjects........ 174
Figure O-3. Ratings Concerning Level of Distraction Experienced By Subjects..... 175
Figure O-4. Ratings Concerning Level of Effectiveness of the Strobe Signal as A Warning... 176
Figure O-5. Subject Choice in Multiple Choice Question Concerning Familiarity with Strobe Lights... 177
LIST OF TABLES

Table 4.1. Experimental Design and Data Collection Chart

Table 5.1. Frequency Table: People Who Did or Did Not Steer As Part of Avoidance Maneuver

Table 5.2. Frequency Table: People Who Initiated Steering or Brake Response as First Response During Perception Response Time

Table 5.3. Perception Time

Table 5.4. Means Table Showing Brake Response Times

Table 5.5. Rate of Steering (Degrees per Second)

Table A-1. Average Viewing Angles

Table A-2. Average Urgency Ratings

Table L-1. Time-to-Collision (Seconds)

Table L-2. Velocities At The Time The Surrogate Vehicle First Appeared (mph)

Table L-3. First Response Times (Seconds)

Table L-4. Perception Response Times (Seconds)

Table L-5. Time to Brake Press (Seconds)

Table L-6. Brake Movement Time (Seconds)

Table L-7. Time to Steer (Seconds)

Table L-8. Steering Response Time (Seconds)

Table L-9. Steering Movement Time (Seconds)

Table L-10. Maximum Brake Press (%)

Table L-11. Maximum Steering Deviation (Degrees)

Table L-12. Surrogate Visible To Full Stop

Table L-13. Subjects Final Stopping Distance (feet)

Table M-1. Dependent Variable: TTC

Table M-2. Dependent Variable: Velocity
Table M-3. Dependent Variable: Perception Time
Table M-4. Dependent Variable: First Response Time
Table M-5. Dependent Variable: Perception Response Time
Table M-6. Dependent Variable: Time To Brake Press
Table M-7. Dependent Variable: Brake Response Time
Table M-8. Dependent Variable: Brake Movement Time
Table M-9. Dependent Variable: Time To Steer
Table M-10. Dependent Variable: Steering Response Time
Table M-11. Dependent Variable: Steering Movement Time
Table M-12. Dependent Variable: Maximum Brake Press
Table M-13. Dependent Variable: Maximum Steering Deviation
Table M-14. Dependent Variable: Rate Of Steering
Table M-15. Dependent Variable: SVTOFSTP
Table M-16. Dependent Variable: Subjects Final Stopping Distance

Table N-1. Least Square Means COND*AGERANGE Effect Sliced by AGERANGE for Perception Time
Table N-2. Least Square Means COND*AGERANGE Effect Sliced by COND for Perception Time
Table N-3. Least Square Means COND*AGERANGE Effect Sliced by AGERANGE for Brake Response Time
Table N-4. Least Square Means COND*AGERANGE Effect Sliced by COND for Brake Response Time