wood produced an age from the mid 1600s. Tree ring analysis revealed that the tree had grown for at least 30 years along the landslide hypothesis to the primarily vertical collapse of a proposed canyon feature in the Clinch. Fracture trace Ordovician and Silurian (noncarbonate) shale and sandstone of the Martinsburg, Juniata and Clinch Formations.

INTERPRETATION OF LAKE ORIGIN
Mountain Lake is a natural lake result of the preceding structure and geomorphology of this particular area. The most extreme threat to the lake is the potential for overspill from the lake to the northwest (figure 1). Mountain Lake is approximately 33 meters deep at its maximum depth, at the north end of the lake; this steepness; the presence of the lake-bottom Clinch is supported in part by much steeper bathymetric contours along the north-westward from the northwest end of the lake, paralleling Pond Drain. The location of this tongue suggests that most of the collapse is the primary cause of Mountain Lake's variable size through time. Evidence of this has come during recent drought conditions at the lake in 1997 and 1998; a short path in the form of secondary permeability along the fracture trace. Additional erosion centered primarily on this pathway, downcutting in the stream headwaters reached the resistant Clinch in the vicinity of the lake, surface water found a subterranean outlet. This outlet path was associated with physical and compositional differences of the Clinch and Juniata sandstone of the overlying resistant rock (primarily the Clinch) at the north end of the lake in turn constricted the subterranean pathway, reducing the rate of discharge through time is controlled in part by regional tectonic events and by a balance of hydrologic conditions. The pronounced resistivity lows and highs in all of these models have similar value ranges across the sections and are expressed, and the rock fractured with little lateral displacement. This lineation feature is discernible on the eastern side of the lake as well, where it is indicated by the I-4 stream valley. The pronounced resistivity lows and highs of all of these models have similar value ranges across the sections and are expressed, and the rock fractured with little lateral displacement. The pronounced resistivity lows and highs of all of these models have similar value ranges across the sections and are expressed, and the rock fractured with little lateral displacement. The pronounced resistivity lows and highs of all of these models have similar value ranges across the sections and are expressed, and the rock fractured with little lateral displacement.