Figure 128. Secondary streamlines with contour levels of the correlation coefficient (R_{pu}) between the surface pressure and the fluctuating u-velocity component, $\alpha = 10^\circ$, $x/L = 0.772$. The pluses (+) along the ϕ-axis denote the ϕ locations at which radial profiles of simultaneous velocity (LDV) and surface pressure measurements were carried out. The radial coordinate (r) is plotted on a logarithmic scale and the dashed lines show lines of constant r^*. The irregular shape of the inner boundary is defined by the measurement locations nearest the model surface.
Figure 129. Secondary streamlines with contour levels of the fluctuating u-velocity component, $\alpha = 10^\circ$, $x/L = 0.772$. The pluses (+) along the ϕ-axis denote the ϕ locations at which radial profiles of simultaneous velocity (LDV) and surface pressure measurements were carried out. The Xs (×) along the ϕ-axis denote the ϕ locations at which radial profiles of velocity were carried out using a 4-hot-wire probe. The asterisks (*) denote ϕ-locations at which velocity profiles were carried using both LDV and the 4-hot-wire probe. The radial coordinate (r) is plotted on a logarithmic scale and the dashed lines show lines of constant r^*. The irregular shape of the inner boundary is defined by the measurement locations nearest the model surface.
Figure 130. Secondary streamlines with contour levels of the correlation coefficient (R_{pv}) between the surface pressure and the fluctuating v-velocity component, $\alpha = 10^\circ$, $x/L = 0.772$. The pluses (+) along the ϕ-axis denote the ϕ locations at which radial profiles of simultaneous velocity (LDV) and surface pressure measurements were carried out. The radial coordinate (r) is plotted on a logarithmic scale and the dashed lines show lines of constant r^*. The irregular shape of the inner boundary is defined by the measurement locations nearest the model surface.
Figure 131. Secondary streamlines with contour levels of the fluctuating v-velocity component, $\alpha = 10^\circ$, $x/L = 0.772$. The pluses (+) along the ϕ-axis denote the ϕ locations at which radial profiles of simultaneous velocity (LDV) and surface pressure measurements were carried out. The Xs (×) along the ϕ-axis denote the ϕ locations at which radial profiles of velocity were carried out using a 4-hot-wire probe. The asterisks (*) denote ϕ-locations at which velocity profiles were carried using both LDV and the 4-hot-wire probe. The radial coordinate (r) is plotted on a logarithmic scale and the dashed lines show lines of constant r^*. The irregular shape of the inner boundary is defined by the measurement locations nearest the model surface.
Figure 132. Secondary streamlines with contour levels of the correlation coefficient (R_{pw}) between the surface pressure and the fluctuating w-velocity component, $\alpha = 10^\circ$, $x/L = 0.772$. The pluses (+) along the ϕ-axis denote the ϕ locations at which radial profiles of simultaneous velocity (LDV) and surface pressure measurements were carried out. The radial coordinate (r) is plotted on a logarithmic scale and the dashed lines show lines of constant r^*. The irregular shape of the inner boundary is defined by the measurement locations nearest the model surface.
Figure 133. Secondary streamlines with contour levels of the fluctuating w-velocity component, $\alpha = 10^\circ$, $x/L = 0.772$. The pluses (+) along the ϕ-axis denote the ϕ locations at which radial profiles of simultaneous velocity (LDV) and surface pressure measurements were carried out. The Xs (×) along the ϕ-axis denote the ϕ locations at which radial profiles of velocity were carried out using a 4-hot-wire probe. The asterisks (*) denote ϕ-locations at which velocity profiles were carried using both LDV and the 4-hot-wire probe. The radial coordinate (r) is plotted on a logarithmic scale and the dashed lines show lines of constant r^*. The irregular shape of the inner boundary is defined by the measurement locations nearest the model surface.