Figure 146. The power spectrum of surface pressure fluctuations at $\alpha = 10^\circ$, $x/L = 0.772$, $\phi = 140^\circ$ made non-dimensional using ν/\bar{u}^2 as the time scale and τ_w as the pressure scale. Also shown is the curve that bounds the Analytical Integral Contribution (AIC) to \bar{p}^2 at $\alpha = 10^\circ$, $x/L = 0.772$, $\phi = 140^\circ$.
Figure 147. The power spectrum of surface pressure fluctuations at $\alpha = 20^\circ$, $x/L = 0.772$, $\phi = 130^\circ$ made non-dimensional using $\nu/\sqrt{\tau}$ as the time scale and τ_w as the pressure scale. Also shown are the curves that bound the Analytical Integral Contribution (AIC) to $\overline{p^2}$ at $\alpha = 20^\circ$, $x/L = 0.772$, $\phi = 130^\circ$.
Figure 148. Variation of RMS wall pressure fluctuations with ϕ position: \diamond, $\alpha = 10^\circ$, $x/L = 0.600$; \bigcirc, $\alpha = 10^\circ$, $x/L = 0.772$; Δ, $\alpha = 20^\circ$, $x/L = 0.600$; \Box, $\alpha = 20^\circ$, $x/L = 0.772$. The solid symbols immediately above the ϕ-axis denote the location of primary separation (Wetzel et al., 1998). The open symbols immediately above the ϕ-axis denote the approximate location of the shed vortex core. The letters R, V, and S denote the location of reattachment, secondary vortex core, and secondary separation, respectively, for $\alpha = 20^\circ$, $x/L = 0.772$.

FIGURES