Robust Electric Power Infrastructures. Response and Recovery during Catastrophic Failures.

Arturo Suman Bretas

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University
In partial fulfillment of the requirement for the degree of

Doctor of Philosophy
In
Electrical Engineering

Dr. Arun Phadke, Chair
Dr. Yilu Liu
Dr. Hugh VanLandingham
Dr. Jaime De La Ree Lopez
Dr. Werner Kohler

December 4, 2001
Blacksburg, Virginia

Keywords:
Power System Restoration, Artificial Neural Networks (ANN), Wide-Area Disturbances

Copyright 2001, Arturo Suman Bretas
ROBUST ELECTRIC POWER INFRASTRUCTURES.
RESPONSE AND RECOVERY DURING CATASTROPHIC
FAILURES.

ARTURO SUMAN BRETAS

ABSTRACT

This dissertation is a systematic study of artificial neural networks (ANN) applications in power system restoration (PSR). PSR is based on available generation and load to be restored analysis. A literature review showed that the conventional PSR methods, i.e. the pre-established guidelines, the expert systems method, the mathematical programming method and the petri-net method have limitations such as the necessary time to obtain the PSR plan. ANN may help to solve this problem presenting a reliable PSR plan in a smaller time.

Based on actual and past experiences, a PSR engine based on ANN was proposed and developed. Data from the Iowa 162 bus power system was used in the implementation of the technique. Reactive and real power balance, fault location, phase angles across breakers and intentional islanding were taken into account in the implementation of the technique. Constraints in PSR as thermal limits of transmission lines (TL), stability issues, number of TL used in the restoration plan and lockout breakers were used to create feasible PSR plans. To compare the time necessary to achieve the PSR plan with another technique a PSR method based on a breadth-search algorithm was implemented. This algorithm was also used to create training and validation patterns for the ANN used in the scheme. An algorithm to determine the switching sequence of the breakers was also implemented. In order to determine the switching sequence of the breakers the algorithm takes into account the most priority loads and the final system configuration generated by the ANN.

The PSR technique implemented is composed by several pairs of ANN, each one assigned to an individual island of the system. The restoration of the system is done in parallel in
each island. After each island is restored the tie lines are closed. The results encountered shows that ANN based schemes can be used in PSR helping the operators restore the system under the stressful conditions following a blackout.
Acknowledgments

To Dr. Phadke for his guidance and patience.

To the entire Power Faculty especially to Dr. de la Ree, Dr. Centeno and Dr. Liu.

To all my friends in the Power Laboratory.

To Carolyn and Glenda for their help and great sense of humor.

To the Conselho Nacional de Pesquisa e Desenvolvimento (CNPq) that financially supported this project.

To my eternal girlfriend Fabiana.
This Dissertation is dedicated to

My lovely family

Especially to my son Leonardo
List of Figures

Figure 1-1 Computer Aided Restoration ... 2
Figure 1-2 Cooperative Restoration ... 3
Figure 3-1 Line Power versus Power Angle ... 14
Figure 3-2 Transmission Line and Circuit Breakers ... 20
Figure 4-1 Typical Biological Neuron ... 25
Figure 4-2 Nonlinear Mathematical Model of a Neuron 26
Figure 4-3 Transformation produced by the addition of the Bias 28
Figure 4-4 Logistic Function for different a .. 29
Figure 4-5 Hyperbolic Tangent Function .. 29
Figure 4-6 Multilayer Feedforward Network .. 30
Figure 4-7 Block Diagram of the Supervised Learning Paradigm 32
Figure 4-8 Two Basic Direction Flows in the Back-Propagation Algorithm 33
Figure 4-9 Signal Flow .. 38
Figure 4-10 Stopping Rule Based on Cross-Validation 43
Figure 4-11 Hyperbolic Tangent Function and its Limits 45
Figure 5-1 Island Restoration Diagram Block Scheme 49
Figure 5-2 New England 39-Bus Transmission System 50
Figure 5-3 The SCADA System for the Electric Power System 52
Figure 5-4 The EMS for the Electric Power System ... 53
Figure 5-5 ANN responsible for the Local Restoration Load Forecast 55
Figure 5-6 ANN responsible for the Final System Restoration Configuration 57
Figure 5-7 Transmission System under a Permanent Symmetric Fault 58
Figure 5-8 Transmission System Under a Permanent Fault with Proportionality Assumption ... 59
Figure 5-9 One Cycle Discrete Fourier Transform .. 60
Figure 5-10 Number of Samples and Phasor Representation Relationship 61
Figure 5-11 Switching Sequence Program Diagram Block 63
Figure 5-12 Block Diagram of the Switching Sequence Program 68
Figure 5-13 One Line Diagram of Electric Island #1 .. 70
Figure 5-14 One Line Diagram of Electric Island #2 .. 72
Figure 5-15 One Line Diagram of Electric Island #3 .. 73
Figure 5-16 One Line Diagram of Electric Island #4 .. 74
Figure 5-17 One Line Diagram of Electric Island #5 .. 76
Figure 5-18 One Line Diagram of Electric Island #6 .. 78
Figure 5-19 One Line Diagram of Electric Island #7 .. 79
Figure 5-20 One Line Diagram of Electric Island #8 .. 81
Figure 5-21 One Line Diagram of Electric Island #9 .. 82
Figure 5-22 One Line Diagram of Electric Island #10 .. 83
Figure 5-23 Block Diagram of PSR Breadth-Search Algorithm 85
Figure 6-1 Threshold Function .. 100
Figure 6-2 Restored Island Configuration Generated by IRS #1 103
Figure 6-3 Restored Island Configuration Generated by IRS #2 112
Figure 6-4 Restored Island Configuration Generated by IRS #3 119
Figure 6-5 Restored Island Configuration Generated by IRS #4 125
Figure 6-6 Restored Island Configuration Generated by IRS #5 133
List of Tables

Table 3-1 Thermal Rating of EHV Transmission Lines of 200 miles .. 15
Table 3-2 Circuit Breaker Failures ... 21
Table 3-3 Restoration Problems by Frequency of Occurrence .. 21
Table 5-1 Permanent Faults in a 10-year span in a 500kV Transmission System 56
Table 5-2 Transmission Paths of Electric Island #1 ... 71
Table 5-3 Transmission Paths of Electric Island #2 ... 72
Table 5-4 Transmission Paths of Electric Island #3 ... 74
Table 5-5 Transmission Paths of Electric Island #4 ... 75
Table 5-6 Transmission Paths of Electric Island #5 ... 76
Table 5-7 Transmission Paths of Electric Island #6 ... 78
Table 5-8 Transmission Paths of Electric Island #7 ... 80
Table 5-9 Transmission Paths of Electric Island #8 ... 81
Table 5-10 Transmission Paths of Electric Island #9 ... 82
Table 5-11 Transmission Paths of Electric Island #10 ... 83
Table 5-12 Input Generation File Information .. 86
Table 5-13 Input Load File Information ... 87
Table 5-14 Number of Training and Validation Patterns of the 1st ANN of IRS - Island#1 90
Table 5-15 SSE progress during the Training of 1st ANN 14-8-4-1 of IRS – Island #1 91
Table 5-16 Final SSE of the Island Restoration Load Forecast ANNs 92
Table 5-17 Number of Training and Validation Patterns of the 2nd ANN of IRS - Island#1 93
Table 5-18 Architecture and Final SSE of 2nd ANN of IRS of Island #1 93
Table 5-19 Final Characteristics of the remaining 2nd ANNs of Islands #2 to #10 94
Table 6-1 Pre-Wide Disturbance Real Load Pattern of Island #1 .. 97
Table 6-2 Pos-Wide Disturbance Data of Island #1 ... 98
Table 6-3 Input Pattern of IRS #1 for a Specific Power System Restoration Scenario 98
Table 6-4 Output Pattern of ANN #1 for a Specific Power System Restoration Scenario 99
Table 6-5 Input Pattern of ANN #2 for a Specific Power System Restoration Scenario 99
Table 6-6 Output Pattern of ANN #2 for a Specific Power System Restoration Scenario 99
Table 6-7 Output Pattern of Threshold Function for a Specific Power System Restoration Scenario .. 101
Table 6-8 Output Pattern of the SSP for a Specific Power System Restoration Scenario 102
Table 6-9 Load Flow Analysis of the Proposed IRS #1 Restoration Plan for a Specific Power System Restoration Scenario 104
Table 6-10 Power Flow through Transmission Paths of the Restoration Plan for a Specific Power System Restoration Scenario .. 107
Table 6-11 Feasibility Check of Restoration Plans generated by IRS #1 for Test Restoration Scenarios ... 107
Table 6-12 Pre-Wide Disturbance Real Load Pattern of Island #2 ... 108
Table 6-13 Pos-Wide Disturbance Data of Island #2 ... 108
Table 6-14 Input Pattern of IRS #2 for a Specific Power System Restoration Scenario 108
Table 6-15 Output Pattern of ANN #1 for a Specific Power System Restoration Scenario 109
Table 6-16 Input Pattern of ANN #2 for a Specific Power System Restoration Scenario 109
Table 6-17 Output Pattern of ANN #2 for a Specific Power System Restoration Scenario 109
Table 6-18 Output Pattern of Threshold Function for a Specific Power System Restoration 110
Table 6-53 Load Flow Analysis of the Proposed IRS #5 Restoration Plan for a Specific Power
System Restoration Scenario .. 134
Table 6-54 Power Flow through Transmission Paths of the Restoration Plan for a Specific Power
System Restoration Scenario ... 135
Table 6-55 Feasibility Check of Restoration Plans generated by IRS #5 for Test Restoration
Scenarios .. 136
Table 6-56 Pre-Wide Disturbance Real Load Pattern of Island #6 .. 137
Table 6-57 Pos-Wide Disturbance Data of Island #6 .. 137
Table 6-58 Input Pattern of IRS #6 for a Specific Power System Restoration Scenario........ 137
Table 6-59 Output Pattern of ANN #1 for a Specific Power System Restoration Scenario.... 138
Table 6-60 Input Pattern of ANN #2 for a Specific Power System Restoration Scenario....... 138
Table 6-61 Output Pattern of ANN #2 for a Specific Power System Restoration Scenario..... 139
Table 6-62 Output Pattern of Threshold Function for a Specific Power System Restoration
Scenario ... 139
Table 6-63 Output Pattern of the SSP for a Specific Power System Restoration Scenario...... 140
Table 6-64 Load Flow Analysis of the Proposed IRS #6 Restoration Plan for a Specific Power
System Restoration Scenario ... 142
Table 6-65 Power Flow through Transmission Paths of the Restoration Plan for a Specific Power
System Restoration Scenario ... 143
Table 6-66 Feasibility Check of Restoration Plans generated by IRS #6 for Test Restoration
Scenarios ... 145
Table 6-67 Pre-Wide Disturbance Real Load Pattern of Island #7 .. 146
Table 6-68 Pos-Wide Disturbance Data of Island #7 .. 146
Table 6-69 Input Pattern of IRS #7 for a Specific Power System Restoration Scenario........ 147
Table 6-70 Output Pattern of ANN #1 for a Specific Power System Restoration Scenario.... 147
Table 6-71 Input Pattern of ANN #2 for a Specific Power System Restoration Scenario....... 147
Table 6-72 Output Pattern of ANN #2 for a Specific Power System Restoration Scenario..... 148
Table 6-73 Output Pattern of Threshold Function for a Specific Power System Restoration
Scenario ... 149
Table 6-74 Output Pattern of the SSP for a Specific Power System Restoration Scenario...... 150
Table 6-75 Load Flow Analysis of the Proposed IRS #7 Restoration Plan for a Specific Power
System Restoration Scenario ... 151
Table 6-76 Power Flow through Transmission Paths of the Restoration Plan for a Specific Power
System Restoration Scenario ... 153
Table 6-77 Feasibility Check of Restoration Plans generated by IRS #7 for Test Restoration
Scenarios ... 155
Table 6-78 Pre-Wide Disturbance Real Load Pattern of Island #8 .. 156
Table 6-79 Pos-Wide Disturbance Data of Island #8 .. 156
Table 6-80 Input Pattern of IRS #8 for a Specific Power System Restoration Scenario........ 157
Table 6-81 Output Pattern of ANN #1 for a Specific Power System Restoration Scenario.... 157
Table 6-82 Input Pattern of ANN #2 for a Specific Power System Restoration Scenario....... 157
Table 6-83 Output Pattern of ANN #2 for a Specific Power System Restoration Scenario..... 158
Table 6-84 Output Pattern of Threshold Function for a Specific Power System Restoration
Scenario ... 158
Table 6-85 Output Pattern of the SSP for a Specific Power System Restoration Scenario...... 159
List of Symbols

PSR Power System Restoration
SCADA Supervisory Control and Data Acquisition System
EMS Energy Management System
PN Petri Net
ANN Artificial Neural Network
CLPU Cold Load Pick Up
EHV Extra High Voltage
SVC Static Var Compensator
MFN Multilayer Feedforward Network
IRS Island Restoration Scheme
LRLF Local Restoration Load Forecast
DFT Discrete Fourier Transform
SSP Switching Sequence Program
SNNS Stuttgart Neural Network Simulator
SSE Sum of the Squared Errors
P_{ij} Real Power Transmitted through Buses i and j
V_i Voltage of Bus i
X reactance of the transmission line between buses i and j
δ_{ij} Angle difference between buses i and j
M Inertial constant of the machine
D Damping constant of the machine
P_m Constant mechanical power input of the machine
P_e Electric power output of the machine
ω Rotor angular velocity of machine
ω_R Reference angular velocity
θ_{ij} Angle difference between the rotors at buses i and j
u_k Total input
w_{kj} Weighted input j of neuron k
x_j Input j
i_k Induced local field
b_k The bias
$e_j(n)$ Error of output of neuron j at iteration n
$d_j(n)$ Desired output of neuron j at iteration n
$y_j(n)$ Output of neuron j at iteration n
$v_j(n)$ Induced local field of neuron j at iteration n.
$w_{ji}(n)$ Weight of connection between input i and neuron j.
$y_i(n)$ i^{th} input of neuron j at iteration n.
m Total number of inputs
φ_j Activation function of neuron j
Δw_{ji} Weight connection correction.
η Learning-rate parameter
$\delta_j(n)$ Local gradient at iteration n
a Constant greater than zero

b Positive constant

$o_i(n)$ Obtained output in iteration n

$d_i(n)$ Desired output in iteration n

W Total number of free parameters in the network

ε Fraction of classification errors permitted on the test data

$O(\cdot)$ Order of quantity enclosed within

E_{F_s} Voltage phasor at the fault

E_S Voltage phasor at the sending end bus

E_R Voltage phasor at the receiving end bus

Z_S Complex impedance of the equivalent system behind the sending end bus

Z_R Complex impedance of the equivalent system behind the receiving end bus

V_{R_s} Thevenin voltage of the system behind the receiving end bus

V_S Thevenin voltage of the system behind the sending end bus

I_S Phasor current at the sending end

I_R Phasor current at the receiving end

I_F Phasor current at the at the fault

k Fault distance from the sending end bus

ΔI_S Variation of the sending end terminal current

d Constant value

E_{S_i} Sending end real pos-fault voltage phasor

E_{S_r} Sending end imaginary pos-fault voltage phasor

I_{S_i} Sending end imaginary pos-fault current phasor

I_{S_r} Sending end real pos-fault current phasor

X Imaginary part of the total transmission line impedance

R Real part of the total transmission line impedance

ΔI_{S_i} Sending end imaginary current variation

ΔI_{S_r} Sending end real current variation

ϑ Sampling angle

I_n Phasor representing current injected in node n

V_n Phasor representing voltage of bus n

Y_{nn} Self admittance of bus n

Y_{nnn} Mutual admittances between buses n and m

P_i Real power injected at bus i

Q_i Reactive power injected at bus i

y Variable representing the output of the threshold function

x Variable representing the input of the threshold function
Table of Contents

TITLE PAGE ... i
ABSTRACT .. ii
ACKNOWLEDGEMENTS ... iv
DEDICATORY ... v
LIST OF FIGURES ... vi
LIST OF TABLES ... viii
LIST OF SYMBOLS .. xii

Chapter 1 Introduction ... 1
 1.1 Importance of Power System Restoration ... 1
 1.2 Power System Methodologies .. 1
 1.2.1 Mathematical Programming Techniques for Power System Restoration 4
 1.2.2 Knowledge-Based Systems For Power System Restoration 4
 1.2.3 Petri Nets in Power System Restoration .. 4
 1.2.4 Limitations of the Proposed Power System Restoration Techniques 5
 1.3 Scope of this dissertation .. 5
 1.3.1 Area of interest .. 5
 1.3.2 Arrangement of the Dissertation .. 6

Chapter 2 Restoration of Bulk Power Systems ... 7
 2.1 Reactive Power Balance ... 7
 2.2 Load and Generation Balance ... 8
 2.3 Fault Location ... 8
 2.4 Phase Angles ... 9
 2.5 Intentional Islanding ... 9
 2.6 Interconnection Assistance ... 10
 2.7 Cold Load Pick Up .. 11
 2.8 Common Concerns of Power System Restoration Schemes 12

Chapter 3 Constraints in Power System restoration ... 13
 3.1 Operational Limits of Transmission Lines ... 13
 3.2 Power System Stability .. 16
 3.3 Number of Transmission Lines used in the Power System Restoration Plan 18
 3.4 Lockout of Circuit Breakers .. 19

Chapter 4 Artificial Neural Networks ... 23
 4.1 Biological Neuron ... 24
 4.2 Mathematical Model of a Biological Neuron ... 26
Chapter 5 Power System Restoration Scheme using Artificial Neural Networks

5.1 Description of the Proposed Restoration Scheme
5.2 Load Flow Analysis
5.3 Input/Output Data
5.3.1 Restoration Load Forecast Artificial Neural Network
5.3.2 Artificial Neural Network Restoration Plan Builder
5.3.3 Switching Sequence Program
5.4 Switching Sequence Algorithm
5.5 Study System
5.6 Breadth Search Algorithm
5.7 Training the Artificial Neural Networks of Each Island Restoration Scheme

Chapter 6 Results

6.1 Island #1 Restoration Plan Development under Unseen Restoration Conditions
6.2 Island #2 Restoration Plan Development under Unseen Restoration Conditions
6.3 Island #3 Restoration Plan Development under Unseen Restoration Conditions
6.4 Island #4 Restoration Plan Development under Unseen Restoration Conditions
6.5 Island #5 Restoration Plan Development under Unseen Restoration Conditions
6.6 Island #6 Restoration Plan Development under Unseen Restoration Conditions
6.7 Island #7 Restoration Plan Development under Unseen Restoration Conditions
6.8 Island #8 Restoration Plan Development under Unseen Restoration Conditions
6.9 Island #9 Restoration Plan Development under Unseen Restoration Conditions
6.10 Island #10 Restoration Plan Development under Unseen Restoration Conditions
6.11 Power System Restoration Breadth-Search Scheme vs. ANN- Based Power System Restoration Scheme

Chapter 7 Conclusions

7.1 Conclusions
7.2 Contributions
7.3 Future Work

References

Appendix A
Appendix B
Appendix C
VITA