Carbon Nanotube Mechanics:
Continuum Model Development from Molecular Mechanics Virtual Experiments

by
Aaron T. Sears

Dissertation submitted to the faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
In
Department of Engineering Mechanics

Dr. R.C. Batra
Dr. S.W. Case
Dr. J.J. Lesko
Dr. D.R. Bevan
Dr. M.L. Madigan

11/7/2006
Blacksburg, VA

keywords:
carbon nanotubes, molecular mechanics, material properties,
buckling, van der Waals forces, multiwalled nanotubes
Carbon Nanotube Mechanics:
Continuum Model Development from Molecular Mechanics Virtual Experiments

by
Aaron T. Sears

ABSTRACT
Carbon Nanotubes (CNTs) hold great promise as an important engineering material for future applications. To fully exploit CNTs to their full potential, it is important to characterize their material response and ascertain their material properties. We have used molecular mechanics (MM) simulations to conduct virtual experiments on single-wall and multi-wall carbon nanotubes (SWNTs and MWNTs respectively) similar to those performed in the mechanics of materials laboratory on a continuum structure. The output (energy and deformation rather than the load and deflection) is used to understand the material response and formulate macroscopic constitutive relations.

From results of MM simulations of axial and torsional deformations on SWNTs, Young’s modulus, the shear modulus and the wall thickness of an equivalent continuum tube made of a linear elastic isotropic material were found. These values were used to compare the response of the continuum tube, modeled as an Euler-Bernoulli beam, in bending and buckling with those obtained from the MM simulations.

MM simulations have been carried out to find energetically favorable double-walled carbon nanotube (DWNT) configurations, and analyze their responses to extensional, torsional, radial expansion/contraction, bending, and buckling deformations. Loads were applied either to one wall or simultaneously to both walls of an open-ended DWNT. These results were compared against SWNT results. It was found that for simple tension and torsional deformations, results for a DWNT can be derived from those for its constituent SWNTs within 3% error. Radial deformations of a SWNT were achieved by considering a DWNT with the SWNT as one of its walls and moving radially through the same distance all atoms of the other wall of the DWNT thereby causing a pseudo-pressure through changes in the cumulative van der Waals forces which deform the desired wall. Results of radial expansion/contraction of a SWNT were used to deduce an expression for the van der Waals forces, and find through-the-thickness elastic moduli.
(Young’s modulus in the radial direction, \(E_r \), and Poisson’s ratio \(\nu_{r\theta} \)) of the SWNT. We have found four out of the five elastic constants of a SWNT taken to be transversely isotropic about a radial line.

MWNTs were studied using the same testing procedures as those used SWNTs. Based on the results from those simulations a continuum model is proposed for a MWNT whose response to mechanical deformations is the same as that of the MWNT. The continuum structure is comprised of concentric cylindrical tubes interconnected by truss elements. Young’s modulus, Poisson’s ratio, the thickness of each concentric tube, and the stiffness of the truss elements are given. The proposed continuum model is validated by studying its bending and buckling deformations and comparing these results to those from MM simulations.

The major contributions to the field on nanotubes and the scientific literature is a simple and robust continuum model for nanotubes. This model can be used to study both SWNTs and MWNTs in either global or local responses by applying different analytic techniques. This model was developed using a consistent engineering methodology that mimicked traditional engineering testing, assumptions and constraints.
Acknowledgements

First and foremost, I would like to thank my family. My mom for her support and love, Russ, Cheryl and Karen—thanks for opening your homes to me and giving me the chance to reconnect. Dr. Dad, for the insight, guidance and help that few students ever have access to. I love all of you. And to my friends I shared Blacksburg with—Jamie, the Gentlemen’s Film Society, Mike, Angie, Todd, Dave, Vanessa, Ali, Jeanine, Goff, McGlumphy, New River Rapids ’91s, Dylan, all the Lisantis, Nick, Joe, Babacaw and Austin. Lastly, to all those I’ve ever had the pleasure to share the pitch with.

This work was partially supported by the Office of Naval Research grants N00014-98-1-0300 and N00014-06-1-0567 to Virginia Polytechnic Institute and State University, and the AFoSR MURI awarded to Georgia Institute of Technology that gave a subcontract to VPI&SU. Opinions expressed in this work are those of the author and neither of the funding agencies nor of VPI&SU.
Table of Contents

Abstract .. ii
Acknowledgements .. iv
List of Figures ... vii
List of Tables ... ix
1 Introduction ... 1
 1.1 Nanotube Overview ... 1
 1.2 Nanotube Models .. 5
 1.2.1 Continuum Models ... 6
 1.2.2 Molecular Models .. 10
 1.2.2a Quantum Mechanics .. 11
 1.2.2b Molecular Mechanics .. 12
 1.3 Experimental Results ... 16
 1.4 Molecular Simulations and Results ... 18
 1.5 Motivation and Goals .. 19
 1.6 Methodology ... 21
 1.6.1 Virtual Experiments .. 21
 1.7 References ... 23

2 Deduction of Macroscopic Properties of Carbon Nanotubes from Molecular
 Mechanics Simulations ... 27
 2.1 Introduction ... 27
 2.2 Potentials .. 29
 2.3 Virtual Experiments .. 32
 2.4 Response in Simple Tests ... 33
 2.5 Determination of the Wall-thickness of the Equivalent Continuum Tube . 37
 2.6 Bending and Buckling of a SWNT .. 38
 2.6.1 Bending of a Cantilever Beam .. 38
 2.6.2 Buckling .. 40
 2.6.2a Column Buckling .. 40
 2.6.2b Shell Wall Buckling ... 41
 2.6.2c Axial Compression .. 41
 2.6.2d Torsional Buckling ... 42
 2.7 Combined Loading of a SWNT ... 43
 2.8 Contributions to the Strain Energy from Different Terms in the MM3
 Potential .. 43
 2.9 Conclusions ... 44
 2.10 References .. 45

3 Continuum Models of Multi-Walled Carbon Nanotubes 47
 3.1 Introduction ... 47
 3.2 Molecular Mechanics Simulations ... 53
 3.2.1 Molecular Mechanics Potential ... 53
 3.2.2 Computer Code ... 55
 3.2.3 MWNT Structures ... 55
 3.2.4 Virtual Experiments ... 57
 3.3 Response to Simple Deformations .. 60
Table of Contents

3.3.1 Axial Deformations ... 60
3.3.2 Torsional Deformations .. 63
 3.3.2a Buckling under torsional loads 65
3.3.3 Expression for van der Waals Forces 66
3.4 Equivalent Continuum Structure .. 67
3.5 Validation of the Continuum Model 69
 3.5.1 Bending Deformations .. 69
 3.5.2 Buckling Deformations .. 72
3.6 Conclusions ... 73
3.7 References ... 74

4 Buckling of Multi-Walled Carbon Nanotubes in Axial Compression ... 76
 4.1 Introduction ... 76
 4.2 Analysis of the Problem ... 80
 4.2.1 Molecular Mechanics Potential 80
 4.2.2 Virtual Experiments ... 80
 4.2.3 Continuum Models .. 82
 4.3 Results .. 86
 4.3.1 Buckling of a SWNT .. 86
 4.3.2 Correlation Between the Buckling of SWNTs and MWNTs 87
 4.3.3 Results from the Continuum Model of a MWNT 91
 4.4 Conclusions ... 95
 4.5 References ... 96

5 Uniform Radial Expansion/Contraction of Carbon Nanotubes and their
 Transverse Elastic Moduli ... 98
 5.1 Introduction .. 98
 5.2 Analysis of Radial Deformations 102
 5.2.1 Molecular Mechanics Potential 102
 5.2.2 Analysis Technique ... 103
 5.2.3 Strain Energy Derived from MM Simulations 104
 5.2.4 Deduction of Transverse Elastic Moduli 105
 5.2.5 Effect of Wall Thickness on Computed Transverse Elastic Moduli 108
 5.3 Conclusions .. 109
 5.4 References ... 109

6 Conclusions ... 110
 6.1 SWNTs and the Individual Wall Model 111
 6.2 MWNTs and Wall Interactions ... 111
 6.3 MWNT Buckling and Correlation with SWNTs 112
 6.4 Radial Wall Properties .. 113

Appendix - TINKER users guide for VEM tests of CNTs 114
Appendix - curriculum vitae ... 126
List of Figures

1.1. Atomic structures of a C60 fullerene (left) and a (5,5) nanotube (right) ... 1
1.2. An SWNT with the hexagonal bond structure highlighted and a double wall nanotube ... 2
1.3. Schematics of the bonds and structure; (top), the sp2 and pi-bonds; (left), the roll-up vector; (right), the 5775 Stone-Wales transformation 3
1.4. A continuum structure equivalent (right) compared to a molecular model ... 8
1.5. Common molecular mechanics variables .. 12
1.6. Comparison of bond stretching terms for four MM potentials 15
2.1. Single wall carbon nanotube and an equivalent cylindrical tube 28
2.2. Definitions of variables r, θ and φ used in defining pair-wise potentials 30
2.3. Variation with the bond strain of the Morse, the MM3, the TB and the Amber bond stretching potentials ... 32
2.4. Strain energy results from (top) the axial (bottom) the torsional deformation of a SWNT with the MM3 and the TB potentials 35
2.5. Comparison of the second and the third order fits to the MM3 strain energy results ... 36
2.6. Variation with the axial strain of Poisson’s ratio derived from the MM3 and TB potentials ... 37
2.7. Deformed shape of a cantilever beam computed with the MM simulation employing the MM3 potential ... 39
2.8. Comparison of the strain energy computed from the MM simulations with the MM3 potential with those obtained from the Euler-Bernoulli theory for the equivalent continuum tube .. 40
2.9. Four buckling modes found during the MM simulations: (a) shell wall, (b) columnar, (c) columnar with crimping, and (d) torsional (with boundary conditions high lighted) ... 41
3.1. TEM image of the end-cap geometry of MWNTs 49
3.2. Definitions of variables r, θ and φ used in defining pair-wise MM3 potentials ... 54
3.3. For DWNTs, (a) intermolecular energy vs. wall separation distance, and (b) the separation strain vs. the initial distance between walls of relaxed SWNTs constituting the DWNT .. 58
3.4. For axial deformations, strain energy of a fully constrained DWNT vs. axial strain, and sum of strain energies of the constituent SWNTs vs. axial strain 61
3.5. Differences in strain energy/atom of a DWNT and the sum of strain energies/atom of constituent SWNTs for both fully constrained (unconnected points), and slip (solid curves) cases 61
3.6. Comparison of strain energy due to intermolecular van der Waals forces and the difference in strain energies of a DWNT loaded under slip conditions and identically loaded constituent SWNT 62
3.7. Strain energy/atom for torsional deformations with loads applied only on the outer wall of DWNTs (slip condition), and SWNTs with the same atomic structures as those of the outer walls of DWNTs ... 64
3.8. Strain energy/atom for torsional deformations of fully constrained DWNTs and that obtained by adding the strain energy/atom of their constituent SWNTs .. 64
3.9. Buckled shapes of (16,0) SWNT, and ((16,0),(25,0)) DWNT under torsional loads .. 64
3.10. Strain energy due to van der Waals force vs. distance between two adjacent walls of a DWNT; results for three DWNTs lie on the same curve .. 65
3.11. Radial pressure vs. radial strain derived from MM simulations of radial expansion/contraction of a wall of a nanotube .. 65
3.12. Left: a continuum structure equivalent to a DWNT; Right: a cross-section showing trusses connecting the two concentric tubes to account for van der Waals force .. 66
3.13. Deformed configurations of three cantilever DWNTs loaded by a point load at the free end ... 66
3.14. Strain energies of cantilever DWNTs with a point load at the unclamped end computed by MM simulations and the Euler beam theory using the equivalent continuum model .. 67
3.15. Variation with the tip deflection of the percentage error in the strain energy computed by using the Euler beam theory for continuum structures equivalent to the three DWNTs. The three colors correspond to different values of the tube thickness .. 67
3.16. Variation with the tube length of the axial strain at buckling for two differently structures DWNTs, their constituent SWNTs, and that predicted by the Euler buckling theory and FEA by using the equivalent continuum model .. 68
3.17. Examples of various FEA DWNT buckled shapes; (left): column buckling, (middle): column buckling with crimping, (right): shell wall buckling 68
4.1. Left: Molecular structure of a SWNT (with endcaps); Right: Molecular structure of a bent DWNT (without endcaps) .. 69
4.2. TEM images of endcaps of a MWNT and the rippling pattern in a bent MWNT ... 69
4.3. Left: a continuum structure equivalent to a DWNT; Right: a cross-section of the FE model showing truss elements connecting nodes on two concentric tubes .. 70
4.4. Radial pressure vs. radial strain derived from MM simulations of radial expansion/contraction of a wall of a nanotube .. 70
4.5. Van der Waals energy vs. distance between two adjacent walls of a DWNT 70
4.6. Axial strain at buckling vs. tube length for a (16,0) SWNT (tube diameter = 11.9 Å) computed from MM simulations, FE analysis and the Euler buckling theory .. 71
4.7. Axial strain at buckling for two differently structured DWNTs and their constituent SWNTs vs. the tube length .. 71
4.8. Buckling of a ((7,0),(7,0)) DWNT in the absence of van der Waals forces ... 89
4.9. Axial strain at buckling for a TWNT and its constituent SWNTs 90
4.10. Emergence of rippling waves in a TWNT followed by deep shell wall buckled shape with increasing axial compressive strain 91
4.11. Axial strain at the initiation of buckling vs. the tube length from FE analyses for a DWNT of five continuum structures (3 Euler column models which differ in E and wall thicknesses, and 2 FE models) and the MM simulations .. 93
4.12. Buckling modes for DWNTs computed with (top) FE analyses of equivalent continuum structures with truss elements connecting corresponding atoms of the two tubes, and (bottom) MM simulations; pictures in the bottom part are shifted to the left to align them with proper values of their lengths ... 94
4.13. For a TWNT, axial strain at buckling vs. tube length computed from the FE analysis of equivalent continuum structures and MM simulations 95
5.1. (a) Plane graphene sheet in the rz-plane, (b) Single-wall carbon nanotube (SWCNT), and, (c) cylindrical hollow tube equivalent to the SWCNT 102
5.2. Schematic sketch of a double wall carbon nanotube 103
5.3. Strain energy/atom vs. the hoop strain for radial deformations of different SWCNTs ... 104
5.4. Anisotropy parameter, n, and Poisson’s ratio \(\nu_{r\theta} \) vs. wall thickness of a SWCNT .. 108

List of Tables

1.1. Material property results from CNT mechanical experiments 17
1.2. Material property predictions of CNTs from molecular simulations 18
2.1. Values of Young’s modulus computed from experimental data 29
2.2. Values of Young’s modulus predicted from atomistic simulations 29
2.3. Wall thickness and elastic constants of an equivalent linear elastic continuum tube 38
3.1. Literature values of Young’s modulus for a MWNT; these studies assumed that a MWNT can be modeled as a linear elastic, homogeneous and isotropic cylindrical tube as described above 50
3.2. Summary of tube structures, deformations from SWNT relaxed configurations, and non-bonded, inter wall energy comparisons. The lowest separation strain for each series is shown in bold. Furthermore, \(\varepsilon_{ri} \) = circumferential strain in the inner wall, \(\varepsilon_{ro} \) = circumferential strain in the outer wall, \(E_{int} \) = inter atomic energy, circumferential strain = radial displacement / initial radius .. 60