Learning to Land: A Qualitative Examination of Pre-Flight and In-Flight Decision-Making Processes in Expert and Novice Aviators

Edward L. Deitch

Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Human Development

A. Wiswell, Chair
M. Boucouvalas
M.G. Cline
L. Combs
S. Parson

November 28, 2001
Falls Church, Virginia

Key Words: Decision-making, Novice, Expert, Pilot, Aviation
Abstract

The National Transportation Safety Board has cited deficiencies in judgement and decision-making as contributing factors in numerous general aviation accidents. Several studies have also indicated that some pilots exhibit hazardous attitudes in their decision-making processes. Although decision-making and judgment training is mentioned by the Federal Aviation Administration as areas that should be taught to aspiring pilots, there are relatively few current guidelines to assist flight or ground school instructors.

This study centers on the decision-making characteristics of expert and novice pilots. Four expert and four novice pilots were selected by the researcher. All of the subjects were interviewed about their decision-making processes as they related to four aeronautical decision-making scenarios. Experts exhibited characteristics and themes that differed noticeably from that of the novices. One of the more pertinent differences involved what some writers have referred to as cognitive maps. These mental guides appeared to be used effectively by experts in attempting to cope with problems associated with the scenarios. Novices also appeared to make use of cognitive maps in their decision-making processes. Their maps, however, were primitive in comparison to the experts and resulted in difficulties when attempting to address specific scenarios.

The findings regarding the decision-making thought processes of experts were consistent with previous studies (e.g., decisions were based on pertinent mental cues from their experiences). The findings related to novices revealed five themes that included: a. the quantity and quality of information acquired to assess risk was often deficient; b. the interpretation of the risks associated with each scenario reflected a lack of attention to pertinent issues related to the scenarios; c. decision-making was often based on recognition of familiar conditions with which novice subjects could relate; d. decision-making often reflected an emphasis on rules and procedures that novices had been taught or acquired through independent research and e. novices exhibited hazardous attitudes in their decision-making processes. The researcher reviewed significant findings and areas in need of further research. A brief conclusion and recommendations conclude the study.
Table of Contents

Chapter 1: Introduction of the Problem pg. 1
 Introduction pg. 2
 Background of Problem pg. 5
 Purpose of Study pg. 8
 Importance of Study pg. 8
 Statement of the Problem pg. 11
 Research Question to be Answered pg. 11
 Assumptions pg. 11
 Conceptual Framework pg. 12
 Definition of Terms pg. 12
 Scope and Delimitations of the Study pg. 15
 Outline of the Remainder of the Study pg. 16

Chapter 2: Review of Related Literature pg. 17
 Overview pg. 18
 Purposes to be Served by Review of Research Literature pg. 18
 Need for Study and Likelihood of Obtaining Meaningful and Significant Results pg. 18
 Relevant Literature pg. 19
 Decision-Making Theory & Models pg. 19
 Expert and Novice Judgment pg. 30
 Defining Expertise pg. 30
 Comparisons Between Experts & Novices pg. 33
 Training Designed to Help Novices Acquire the Skills of Experts pg. 36
 Aeronautical Decision-Making Studies pg. 42
 ADM Studies Prior to 1991 pg. 43
 Recent ADM Studies pg. 49
 Summary pg. 52
Chapter 3: Methods

Overview
Research Question
Pilot Studies
Research Design
The Sample
Selection Criteria
Previous Training of Student Pilots
Data
Aeronautical Decision-Making Scenarios
Response Format
Probing Techniques for Interviews

Instrumentation

Field Procedures
Data Analysis
Limitations
Threats to External Validity
Summary

Chapter 4: Findings

Introduction
Expert Pilots

Establishing the Context
Defining the Situation
Prioritizing Plans and Alternate Plans
Recognizing and Using Familiar Experiences
Assessing Risks
Student Pilots

Information Acquired to Assess Risks
Interpretation of Risks
Recognition of Familiar Conditions
Emphasis on Rules and Procedures
Hazardous Attitudes

Comparisons of Pre-Flight and In-Flight Decision-making
Processes of Experts and Novices

Student Pilot Pre-flight and In-flight Decision-making
Expert Pilot Pre-flight and In-flight Decision-making
Student Pilot Pre-flight
Student Pilot and Expert Pilot In-flight
Student Pilot In-flight and Expert Pilot Pre-flight
Student Pilot Pre-flight and Expert Pilot In-flight

Discussion of Major Findings

Chapter 5: Conclusion

Introduction
Methods
Relating Findings to the Literature
Findings
Need for Further Research
Recommendations
Conclusion

References
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Primary Decision Types For Aeronautical Decision-Making Models</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>General Aviation Accidents: 1982-1999</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Student Pilot Injuries Sustained During Solo Flight</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Conventional Decision-Making Model</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Aeronautical Decision-Making Model</td>
<td>21</td>
</tr>
<tr>
<td>6</td>
<td>Central Features of Naturalistic Decision-Making</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Characteristics of Expert Pilots</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>Expert Pilot Decision Maker: Competencies and Components</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>Relating Dreyfus’ Stages to Experience Levels of GA Pilots</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>Chappell’s Recommended Training Techniques</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>The DECIDE model</td>
<td>46</td>
</tr>
<tr>
<td>12</td>
<td>Sample of ADM Studies Prior to 1991</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>Sample of Recent ADM Studies</td>
<td>53</td>
</tr>
<tr>
<td>14</td>
<td>Overview of Research Design</td>
<td>56</td>
</tr>
<tr>
<td>15</td>
<td>Ideal and Actual Student Pilot Subjects</td>
<td>57</td>
</tr>
<tr>
<td>16</td>
<td>ADM Scenarios Provided to Subjects</td>
<td>60</td>
</tr>
<tr>
<td>17</td>
<td>Scenario 2: Presented to Student and Expert Subjects</td>
<td>60</td>
</tr>
<tr>
<td>18</td>
<td>Interview Guide: Topics to be Discussed With Subjects</td>
<td>63</td>
</tr>
<tr>
<td>19</td>
<td>Relationship of Knowledge Areas in PPGS to Scenarios</td>
<td>65</td>
</tr>
<tr>
<td>20</td>
<td>Student Pilot Decision-making Themes and Characteristics</td>
<td>87</td>
</tr>
<tr>
<td>21</td>
<td>Expert and Novice Pre-flight and In-flight ADM Characteristics</td>
<td>103</td>
</tr>
<tr>
<td>22</td>
<td>Expert and Novice ADM Themes and Characteristics</td>
<td>115</td>
</tr>
<tr>
<td>23</td>
<td>Scenario 3: Presented to Student and Expert Subjects</td>
<td>117</td>
</tr>
<tr>
<td>24</td>
<td>Differences in Expert and Novice Pre-flight & In-flight Decision-making</td>
<td>121</td>
</tr>
<tr>
<td>25</td>
<td>Model PPGS/ADM Syllabus</td>
<td>126</td>
</tr>
</tbody>
</table>
Tables

1. Judgment Errors Reported by General Aviation Pilots pg. 3
2. Subject Areas Included in the Private Pilot Written Examination pg. 15
3. Characteristics of Naturalistic Decision-Making pg. 25
4. Stepich’s Training Recommendations For Helping Novices Acquire the Skills of Experts pg. 39
Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The Expert Pilot Model</td>
<td>140</td>
</tr>
<tr>
<td>B</td>
<td>Syllabus for Private Pilot Ground School & ADM Components</td>
<td>141</td>
</tr>
<tr>
<td>C</td>
<td>Personal Minimums Checklist</td>
<td>142</td>
</tr>
<tr>
<td>D</td>
<td>General Aviation Accidents Involving Student Pilots in Solo Flight</td>
<td>143</td>
</tr>
<tr>
<td>E</td>
<td>Aeronautical Decision-Making Scenarios</td>
<td>147</td>
</tr>
<tr>
<td>F</td>
<td>Expert Pilot Codes</td>
<td>157</td>
</tr>
<tr>
<td>G</td>
<td>Expert Pilot Transcripts</td>
<td>162</td>
</tr>
<tr>
<td>H</td>
<td>Novice Pilot Codes</td>
<td>216</td>
</tr>
<tr>
<td>I</td>
<td>Novice Pilot Transcripts</td>
<td>223</td>
</tr>
<tr>
<td>J</td>
<td>Informed Consent</td>
<td>271</td>
</tr>
</tbody>
</table>
This study is dedicated to my wife Margie and daughter Bethany. Their support, encouragement, patience and love was all I ever really needed.
Acknowledgments

A study such as this would not be possible without the help, support and guidance of others. First and foremost, I would like to thank the members of my committee. Their wisdom, patience and timely suggestions helped me to focus on key issues and sustained my motivation.

I would also like to thank Dr. David Hunter of the FAA. Early in my program I met Dr. Hunter. His suggestions and advice were invaluable in helping me to select a topic related to aeronautical decision-making.

Mr. Robert Gawler, an FAA designated examiner, was also extremely supportive. Bob provided me with FAA video scenarios that were particularly relevant to novice pilots. One of those video scenarios was vital in helping me to acquire data for this study.

I am also indebted to Mr. Hans Gaussman. Hans proof read my drafts and was particularly helpful in pointing out my oversights. He always seemed to be available and assisted me in addressing issues in a clear and concise manner.

Mr. Monty Lilley was also supportive of my efforts during this study. Mr. Lilley, the owner of Congressional Air Charters, permitted me to use his facility to conduct all interviews. In addition, he arranged for me to use one of his offices and made available audio visual equipment.

I would also like to thank my colleagues in Virginia Tech’s coding seminar. Their timely suggestions and unique perspectives helped me to analyze my data. They were also particularly helpful in providing me with insights related to interviewing subjects and organizing my findings.

Last, but far from least, I would like to thank Norman Endlich. Early in my program at Virginia Tech his support and sage advice convinced me that completing this program was possible. He remains an outstanding example of what friendship is all about.