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Electronic Textiles for Autonomous Location Awareness

Madhup Chandra

(ABSTRACT)

The mature textile industry coupled with our familiarity andcomfort level with fabrics and
the possibility of seamless integration of electronic compents such as sensors, processors,
and power sources in the fabric opens up a new dimension of porng. The electronic tex-
tile presents a suitable substrate over which numerous apgaions can be developed. Location
awareness is one such application that can reap the bene fseetextiles such that it can be
widely deployed at a reasonable cost for assisting visuahypaired people or to provide nav-
igational help during emergency situations. This thesis sieribes an autonomous, wearable
location awareness system that will determine a user's loaati within a building given a map
of that building. The thesis examines the issues, constriEnand challenges concerning the
design of such a system. The two-part location awareness alfpon computes the location
and orientation within a room as well as determines the userlmovement between rooms.

The excacy of the proposed system is demonstrated with a wdaeaprototype.
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Chapter 1

Introduction

1.1 Motivation

The increasing need and demand of ubiquitous computing coepl with a mature textile
industry calls for a new perspective to look at the textiles offte future. The highly spe-
cialized, precision, low cost, and automated textile manufaaring process when integrated
with electronics components serves as a new host platform foveeal computing applica-
tions. With the change in computing paradigm from stand-alon@rocessing to distributed
and ubiquitous computing, e®orts have been made to look foew techniques and technolo-
gies that can meet these computing demands. The familiarity Wi fabrics and textiles for
decades and the omnipresence of textiles, ranging from clotbiand carpets to upholstery
makes them a suitable candidate to serve as a host to electronangponents such as sensors,
processors, and power sources. Also, because the electronics is dddzkinto the textiles
seamlessly, they have a comfortable form factor which does n@tgnagged by moving parts
of the human body. This new promising eld of computing has be@enamed \E-Textiles."

Some early work done in e-textiles [1] [2] proves the feasityiland the bene ts of embedding



electronics into textiles.

User location awareness is one of the many application topicsathare needed in a ubiquitous
computing environment. Many applications arising in the el of wearable computing require
some knowledge of the location and orientation of the user [3][[5]. This information can
allow appropriate cues to be given to a wearer with impaired ght, help tracking people
within a closed environment, or help in designing a mobile augmted reality system. This
problem of location awareness is seen in a variety of forms angp#cations [6] [7] [8] [9]
helping the user maintain a large and complex industrial envdnment, inform the emergency
services in the case of casualty, or even help re- ghters in as&ie operation. In most
open, outdoor settings, location awareness can often be satisfaity determined using a
combination of a Global Positioning System (GPS) unit and a digal magnetic compass. In
most large buildings, however, the GPS signal is typically unailable and the readings from
a digital compass are distorted. To address this limitation, systns have been proposed that
include an infrastructure installed in the building to assist in @termining the location of a
given user [10] [11] [12] [13].

On the other hand, autonomous location systems are desirablechese they do not require
the extra cost of installing the infrastructure and the securityof location information is
maintained. Systems that are not autonomous have to trust thenfrastructure to maintain
location privacy, which might not be acceptable to some users. his thesis presents an
autonomous wearable system for location awareness within a loimg that does not rely on

an installed infrastructure.



1.2 Contributions

This thesis presents the design and implementation of a rst evéime-of-°ight sensor based
autonomous wearable location awareness system that does nolyren any installed in-
frastructure. The fundamental issues, constraints and limitatns involved in designing a
wearable location awareness system are addressed. The thesis gsep a novel algorithm
that combines the simulation needed to interpret complex sensdata with the real world
data to determine user's location. A new class of re°ecting ehents is added in the simu-
lation model of the sensors, which improves predicting the sendeghavior in a real world.

To demonstrate the excacy of the proposed algorithm, a wearabbelt-based prototype has

Thus, the thesis presents an entire framework for designing andnstructing an autonomous

wearable location awareness system.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 lays out the baplund of e-textiles and
location awareness systems by discussing the various related wiorkheir “elds. Chapter 3
presents the various issues and constraints in the design of an @ubmous wearable system
for location awareness. The simulation model used for ultrasorpcopagation in the proposed
system is described in Chapter 4. The algorithm proposed for thedation awareness system
to locate the user within a building is given in Chapter 5. Finly, experimental results are

presented in Chapter 6 and the concluding remarks are given @hapter 7.



Chapter 2

Background

The rst section of this chapter gives an overview of wearableomputing and e-textile ap-
plications. The second section presents previous work related location awareness and

discusses them in the context of wearable e-textiles.

2.1 Electronic Textiles and Wearable Computing

The world of ubiquitous and pervasive computing spread wingdstar Weiser presented his
vision in the early nineties [14]. The integration of low poweand inexpensive electron-
ics, network framework to communicate between distributed ooputational elements, and
a supported software architecture is essential for a successful gubtous application. Sev-
eral technigue, methodologies and computational architeoes have developed since then to
enable ubiquitous and pervasive computing. Electronic teiés (e-textiles) provide another

means to provide the computational power ubiquitously.

Omnipresence of fabrics and the mature process of weaving fiabpresents an excellent



Figure 2.1: E-textile pants for context recognition and gaianalysis

opportunity to serve as an underlying platform for ubiquitols computing. The conceptual
interpretation of e-textiles varies from seamless integratn of the interconnection bers and

electronic components to the fabric to a fabric woven with ewuctive bers.

Numerous wearable computing applications for e-textiles i@ been developed in the past
decade spanning the diverse areas of medical monitoring, etagment, user interfaces,
context awareness, and assistance to people. An early initiative e-textiles was taken by
the MIT Media Lab [15], where they utilized embroidery and cpacitive sensing to develop
applications such as the fabric musical instrument and the ref dress, made of a two layers
of conducting fabric separated by non conductive bers. The ats of applications, such as a
musical jacket, a ball, and a tablecloth made use of the capaei properties of fabrics that
when pressed, activated the embroider circuitry. They demonsited the visual, tactile, and

mechanical potential of sewing circuitry into textiles.

Wearable applications that are not e-textiles have been delped to recognize the user
context. Starlab Research [16] recognizes the user motion, Isuas walking or running by

attaching accelerometers to the pants of the user. The datacin these accelerometers was



organized and ordered using Kohenen Self Organizing Maps ki probabilistic nite state
machine to transition between the states. Alternate rounds of &ining and testing ensured
that the pants recognize the user's context. Another context ssing application, developed
by Clarkson [17], uses only a wearable camera and microphonergégister high level user
contexts such as leaving/entering an oxce, sitting on the grassntering the subway etc. The
classes of user context were modeled and trained with Hidden MarkModels and was used
to predict context on maximum likelihood criteria. The sensobadge and jacket [18] uses
accelerometers and °exible fabric sensors to classify user camtey di®erentiating the voltage
generated in di®erent classes of activities. The simulation eronment for motion analysis is
described in [19]. It demonstrates the use of simulation via a gaiype pair of pants shown
in Figure 2.1, which embeds accelerometers, piezo-electsitips and temperature sensor
among other sensors for user context recognition and gait ansiy. The design framework

towards the development of e-textiles is presented in [20].

In the eld of medical monitoring and care, the Wearable Motkrboard project [21] demon-
strated the possibility of integrating di®erent types of sensorspmmunication, and compu-
tational elements into the fabric. This motherboard was deghed to be used as an assistive
tool for monitoring the gun wounds for injured soldiers in a ambat situation by detecting
discontinuity in the optical ber. The sensate liner project [2] materializes as a form tting
garment used for monitoring the medical conditions of soldier The garment has biological
and physical sensors integrated into an elastic fabric supportég an intra-sensor data fusion

network that analyzes the casualty status of the soldier.

Acoustic applications such as speech processing and source sepandt23] and large-scale
beamforming applications [24] add another dimension to thepglications possible on an
electronic fabric. The large-scale beamforming applicatip shown in Figure 2.2, was one of
the rst applications to deploy sensors and computational eleemts in a fabric. The data

from the acoustic sensors was used for computing a vehicle's diren of arrival (DOA).



Figure 2.2: Large scale beamforming prototype

Wearable computers have been put to use for helping visuallyallenged people. The people
sensor project [3] is one of these, where the distance between tiser and an obstacle is
conveyed to the user via a vibrotactile feedback. The projecises pyroelectric and ultrasonic
sensors to di®erentiate between animate and inanimate objeend to measure distances to
an obstacle respectively. Similar to this is the VibraVest [25which conveys the velocity
of an object moving towards the user through vibrotactile fedback. Wearables also help
people in their day to day life as the shopping jacket [26]. Itreompasses a pinger, which
is used to signal the presence of a shop and its website and a GPS uwitich speci es the
particular branch of the shop. The wearable uses these infornian to determine if the user

needs to be reminded for any shopping or not.

Electronic computers are nding uses in entertainment and amented reality. Context
Compass [27], Touring Machine [28], and Augmentable Realitg9] are some of the work

related to augmented reality. The applications augment metdata about the environment



over the user's head mounted display so that the user has a bettandwledge of the physical
space in which he is currently present. A spatial conferencingape [30] makes it possible

for the user to interact with his/her colleagues in cyberspace.

Various 1/0 mechanisms have also been constructed using wearmlglectronic textiles. The
lightglove [31] is a watch-sized virtual typing device worn mderneath the wrist. The light
beams in the glove sense the movement of hand and ngertips toadte typing on a virtual
keyboard. Use of piezoelectric sensors as an input mechanism wasdnstrated in [2] where
the movement and tapping of ngers was detected by the piezeetric sensors embedded in
a glove. Interaction of the wearable e-textile with the user as demonstrated in [32] with

the use of a tactile display, which stimulates the perceptual mees of the skin.

The issues involved in all the above applications include the/pe, quantity, and placement
of sensors, power consumption, software, and network architeotuenabling communication

and the comfort assessment of the user wearing a electronic testil

2.2 Location Awareness

This section describes the related work in the area of indoordation awareness systems
using ultrasonic time-of-°ight based systems, with a focus on issussch as number/other
type of sensors required and processing/storage requirements.cabon aware systems can
be broadly classi ed into two categories, those that require amstalled infrastructure and

those that are autonomous.

Most of the personal indoor location aware systems to date havegrered an infrastructure,
including Active Badge [10], Active BAT [11] [12], Cricket [1B and RADAR [33]. Active

Badge uses di®use infrared (IR) technology with a transmitterotated on a user. The



transmitter emits an IR beam, which is received by the sensorsstalled throughout the

building and sent to a central server that computes the user's ¢ation. A similar concept

is implemented in another system [34], where along with compang the location of the

user, the system identi es the user as well. The IR transmitter biiks the user code, like
an IP address, which is picked up by the cameras and the user isntleed. Active BAT

is similar to the Active Badge system except that it uses ultrasonitransmitters/receivers

rather than IR. The receivers, which are embedded in the enenment, compute the time
of °ight to determine their distance from the user and forward his information on to a

central computer to nd the location of the wearer. The users foboth these systems do
not know their own location, but locations are known by a cemél monitoring server. The

Cricket system reverses this con guration by installing the trasmitters in the environment

and placing the receiver with the user. Each user's system can aukendently determine their
location given knowledge of transmitter locations. The RADAR sysim takes advantage of
an existing wireless network infrastructure to compute user lation based on information
such as signal strength and signal-to-noise ratio. A pre-detemad table of signal strength
and signal-to-noise ratio data is computed and kept in the datmse. As the user walks
through the building, the real time data is matched with the atries in the table and the

best tis declared as the user's present location.

In the world of robotics, nding the 2-D location as well as theorientation of the robot

is known as \pose estimation." Most autonomous location and posstimation systems for
robotics have been designed for the purpose of either navigegithrough a building or con-

structing a map of a building as the robot moves through it. E#s [35] uses a probabilistic
pro ling method to generate the map of the environment, desitred by occupancy grids,
marked by empty and occupied regions. Elfes acknowledges thiave spreading characteris-
tics of the ultrasonics and uses this knowledge to calculategloccupied and empty region

probability. The maps generated at two di®erent positions arthen correlated to compute
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the location of the robot. This algorithm has large computabnal and storage requirements,
making it problematic for wearable applications, and provids more functionality than is re-
quired for simple navigation. Finally, experimental resultsn [35] indicate that twenty-four

or more sensors are required for adequate functionality. Crtay [36] described a navigation
system for a known environment that continuously updates a motef the environment.

This model is used for comparison with the latest ultrasonic sensogadings to estimate the
location. This system has the drawback that it builds up the netork of places in a special
active learning mode, with the learning phase preceding theawigation phase. Also, it needs
up to 120 sensor readings per 360 degree scan, which, for statignaody-mounted sensors
would be prohibitively expensive in cost and area; the robot fahis system uses a rotary

sensor, which would not be wearable.

Sha®er [37] and Rencken [38] give algorithms for featuresbd pose estimation in which
thousands of scan points are collected from the environment difieatures are extracted out
of those scan points. These features are then matched with the greted features in the real
environment and the pose giving the best correlation is assumed be the current location
and orientation. The range sensor used in this system can be eitHaser or ultrasonic, but
the underlying principle of matching extracted features ash predicted features is the same.
Gonzalez [39] uses a technique called iconic pose estimatiohgre matching is carried out
between the current range scan points and a map consisting ofdisegments connecting the
range points from previous scans. Each point is tested as a matefth the line segments in
the map. The pose is computed by minimizing the error in distamcbetween the map's line
segments and the current range scan points. These methods use mptaltrasonic sensors to
provide thousands of sample points. A comparison of these two postimation techniques

is presented in [40].

There have been a few wearable autonomous location and natign systems. The problem

of location recognition is tied to the problem of context awaness in [41] [42]. The system
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recognizes the user motion using accelerometers, which is thesed to determine the user's
location via integration of incremental motions. When the sy&tm detects a walking behavior,
the location recognition method updates the current locabn using dead reckoning. The
system uses fuzzy logic-based inferences to recognize the usdiram@nd tries to match the
walking pattern stored in a pre-computed location transitiontable to the current walking
pattern to compute location. The location transition table dso contains the orientation of
the user captured through a digital compass in the training plree. The system can recognize
the user's motion of walking on a ground level, going up the stai and going down the stairs.
Once, the unit has been trained on a sequence of unit motionsatrsitioning from one place
to another, these recorded sequences (location and orientat) are converted to fuzzy logic
rules for matching with the real sequence during the testing @atse. During the testing phase,
the unit tries to match the unit motion of walking with the dat abase created during training.

Once a match is found, the current location of the user is updedl.

By analyzing the environment's characteristics and combing it with the pattern of human
motion, a user can navigate within a closed environment as dengirated in [43]. This system
uses a 3-D magnetometer, uorescent light detector, and tenmag¢ure sensor to capture the
environment's characteristics at a particular location. Tle human motion pattern is detected
using accelerometers. The system learns the model of the envirent during a training
phase and uses this model to infer the user's location at run timeThe training phase
creates a Gaussian distribution of the sensor readings at a loaatiand these readings are
used to update the probability distribution function of beingat a location during run time.
The probability distribution function is updated again with the dead reckoning data that is

collected through the accelerometers.

The other methods of location recognition in wearables magese of image pattern matching.
Finding a user's location based on image-based registration tmeen video frames and set of

images taken beforehand is described in [44]. The system acgsipanoramic images of the
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environment and augments those images with information abbthem and their relationship

to the neighboring images. The video frames are transformed #ocylindrical surface using
multiple assumptions corresponding to the angle of view. Therhése transformed images
are matched with the recorded panoramas. The location givintpe best cross-correlation
between the image and panorama is the user's location. It alsoimmizes the e®ect of
ambient light by taking the weighted sum of the absolute di®enee of brightness and it's
gradient between frames. Similar to this method is one that usechromatic histograms for
location recognition [45]. During the training phase, the usenoves around the environment,
with the system computing and storing the chromatic histogram foeach frame. At run time,

when the user is moving in the same environment, the chromatigghograms for the current

frames are matched with the ones in the database. The best matbletween the recorded

and current histogram gives the user's location.

In all of the location awareness systems that were reviewed, let the system needed an
installed infrastructure or even when they were autonomous, ¢hnumber of data samples
needed for a successful location estimate was beyond the reach wfearable computer. For
wearable location awareness/recognition systems, the unit had be trained rst before they
could actually be put to use. Also, for many of them, once the systeswitched users, the
training phase had to be repeated again as these systems dependedhe individual user's

motion.



Chapter 3

Design

This chapter addresses the various issues and constraints in degig an autonomous location
awareness system. Deciding the design variables in the early €agf the development life
cycle of a product helps in reducing the time and e®ort reqed. Changing the design
variables often during the development phase might lead to predictable and unwanted
results, which complicates the design process further. The ootoe of the design process
should be a set of hardware-software solutions that can delivene required result with an

acceptable accuracy and cost.

The rst section of this chapter enumerates the design variatdeinvolved in the design of
a wearable autonomous location system. The subsequent sectiomscdsses each of these

design variables in detail.

13
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3.1 Design Variables

The design variables for a wearable autonomous location awaess system span multiple
domains including the physical environment to be sensed, the timn of the human body,
tolerance to the motion and the software architecture of the sgem. The design variables to

be explored for such a system are the following.

2 What types of sensors are required?

2 How many sensors of each type are required?

2 What is the optimum placement of sensors on the human body?

2 What algorithms provide the accuracy necessary for analyzirtbe sensor data?

2 What processing targets are available to compute the locaticawareness algorithms?

2 How should information be reported to the wearer?

The answers to the rst four questions are interrelated, with tke choice in one area a®ecting
the choices made in the other areas. For example, limiting theumber of sensors chosen
will eliminate from consideration some of the pose estimationgdrithms that requires many
sensor readings. Also, the type and variety of sensors used will helgtermine the software
algorithm for the system. Thus an eigen-set is desired, partitiong the solution optimally

into hardware and software.
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3.2 Choice of Sensors

Sensors can be referred to as the windows of the engineering egst Sensors act as an
interface to the physical environment providing their charateristics. The sensors should
also be able to accurately sense the information and provide ib tthe system in a timely

fashion. The di®erent kinds of sensors used in a typical locatiawareness system consist of

the range sensor, the orientation sensor, and the user motion sensor

3.2.1 Range Sensors

The heart of the location awareness system lies in the range measuent sensor. Range
sensors provide the distance to the nearest obstacle in the senstine of sight. A 360 degree
set of these range readings will be used to calculate the weasddcation within the environ-
ment. Possible options available to measure distance to an obd&am air include ultrasound,
laser and infrared (IR). These sensors are evaluated in terms odvger consumption, cost,

size, accuracy, maximum range, and comfort level.

Laser Range Sensor

The laser range sensors are known to be extremely coherent, dir@nal, inert to environmen-
tal conditions and accurate in measuring the distance to an olastle in their line of sight. The
laser range sensors have some drawbacks as well. Outdoor lasegeamders [46] [47] [48] [49]
have the limitation that the minimum distance they can measuras in excess of nine meters.
The high-end, sophisticated laser range nders from SICK and AI$0] [51] [52] have no
minimum distance constraint and can measure distances up to thafbm. However, these

Sensors are expensive, consume signi cant power (about 32wattahd are bulky, weigh-
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ing approximately 3.2kgs. There are smaller and lighter laseamge sensors available from
Micro-Epsilon [53], that are low power and comparatively ligt weight but they have a lim-
ited range, measuring about 400mm. The cost, weight, and poweonsumption of these

laser range sensors makes them unusable for a wearable applicati

Infrared Range Sensor

Infrared sensors are inexpensive, small, light-weight, and pewezcient, but in its native

form can be highly susceptible to levels of background, °uorest light and IR re°ectance.

The most commonly available IR range sensing kit is availabledm Sharp [54] in both
analog and digital versions. The analog sensors have a non-linealtage response to the
measured distance. The distance corresponding to this voltagencbe either curve tted or

approximated, which sometimes falls beyond the capabiliseof a small micro-controller. The
maximum distance that can be measured by commonly used IR sens@s80cm. There are
high-end digital versions available for the same sensor, but th&o are incapable of detecting
any object greater than 80cm away in the best environmental nditions. The in°uence of
environmental conditions on the distance measured and the miemum measurable range

discourage their use in an autonomous wearable location awaess system.

Ultrasonic Range Sensor

Ultrasound refers to any sound whose frequency is above the addibange, i.e. above 20kHz.
Ultrasonic range sensors receive or radiate ultrasonic energytire range of 20kHz-60kHz.
Ultrasonic sensors provide a nice compromise choice between IRl daisers because, while
they sacri ce the high directionality of lasers, they are accate, light weight, low power, not
highly susceptible to background noise, and relatively inexpsive. Typical ultrasonic range

sensors are commercially distributed by Devantech and Poladb[55] [56]. The Devantech
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Table 3.1: Design Space for Range Sensors

Accuracy | Cost | Range Pros Cons
Ultra 1% of the | Low 10m | Low cost, low power,| Temperature and humid-
sound | range light weight, small, | ity of the environment af-
easy to operate and fects the speed and the
accurate. attenuation.
Laser 2mm Very 100m | Almost inert to envi- | Very expensive, intrusive,
High ronment conditions. | bulky and power hungry.
Highly accurate, di-
rectional and long
range
IR 3cm Low 80cm | Low cost, small, light | Limited range, accu-
weight and power ef-| racy  dependent  on
“cient background, °uores-
cent lighting and IR
re°ectance of obstacle.

range units have a separate transmitter and receiver and can asire distances up to ten
feet whereas the Polaroid transceivers have both the transrtet and the receiver embedded
into a single unit and can measure up to thirty ve feet with an eror of less than one percent.
Table 3.1 compares the three classes of range sensors with respeeiccuracy, cost, range,

and other environmental conditions.

Polaroid sensors provide suxcient merits over the other rangerssors and hence could be used
successfully in a wearable location awareness system. Table &®lihe various commercially
available Polaroid range sensors along with their charactstics. For a wearable system, use

of a transceiver (integrated transmitter and receiver) is pfferable to a separate transmitter
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Series Model Features Beam Freq Size
Angle
(Deg)
Electrostatic | Series 600 Transceiver, Range: 6' to| 15-17 50kHz Diameter:
Transceivers | and 700 | 35", 1% accuracy, weights 1.69inch
8.2gm, excellent Receive
sensitivity, suitable in harsh
environment
Piezo-electric | Series 900 Transceiver, very rugged, 17 X 35 45kHz 1.44in X
Sensors resistance to mechanical 1.04in
shocks and chemicals
K-Series 40KT/R Separate transmitter and re-| 30 - 125 40kHz Diameter:
XX ceiver, closed face and envi- 9.1-25mm
ronmentally rugged
K-Series High| 120KHF25, Transceiver, closed face and 10 120-210kHz| Diameter:
Frequency 200KHF18 environmentally rugged, 18 - 25mm
Transceiver optimum exciency and
impedance matching in air
L-Series 40LT/R Separate transmitter and re-| 55 - 85 40kHz Diameter:
XX ceiver, open face, reduced 9.7-
ringing and increased sensi- 16.2mm
tivity
L-Series 40LPT16 | Transceiver, open face, rer 55 40kHz Diameter:
Transceiver duced ringing and increased 16.2mm

sensitivity
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Figure 3.1: Polaroid Electrostatic Environment Grade Sensor

and receiver because of the space bene ts of a transceiver. Alsosemsor with narrow
beam angle should be chosen as a wide beam angle leads to incdeapecular re°ections
as explained in Chapter 4. These criteria narrow the list to thelectrostatic sensors or the
high frequency K-Series sensors. It is known from the laws of f#hys that low frequency
waves travel farther than the high frequency waves, but the dictivity of a high frequency
ultrasound is better than that of a low frequency ultrasound. Bcause the beam angle of
these two types of sensors do not di®er much, one does not o®eri signt advantages over
the other in terms of directivity. The electrostatic sensor show in Figure 3.1, operates at
a lower frequency, measuring larger distances, and because efdase of integration, it is

suitable to be used in a wearable system.
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3.2.2 Orientation Sensor

To address the pose estimation problem, information on the userbrientation is required.

Two candidate sensor types are digital magnetic compasses andagpmpass.

Magnetic Compass

A magnetic compass displays the direction of the horizontal ogponent of the earth's mag-
netic eld at the point of observation. In simpler words, a magnic compass will always
point towards the earth's magnetic north. A magnetic compass always associated with
two kinds of error: variation and deviation [57]. Variationis measured in angles and is the
di®erence between the north pointed by the compass and the magic north. The variation
error of a compass is due to the earth's magnetic eld being wen. Though this kind of
error will not a®ect adversely its use in a location awareness sst, the other source of error
has a signi cant e®ect on the accuracy of the compass. Deviatiisnthe e®ect of the imme-
diate environment on the accuracy of the compass. A digital magtic compass is a®ected
by magnetic elds in the environment such as those associated tvitarge metal reinforcing
structures in buildings or due to electrical equipment keptn the vicinity of the compass;
errors of up to 80 degrees have been observed in our laboratéoy Honeywell HMR3000
magnetic compass [58]. Further, a digital compass also needsbditaing time on the order
of seconds before a reliable reading can be obtained, limdiits utility for some applications

and algorithms.

Gyrocompass

A gyrocompass is a heading sensor based on the principle of a gyops; which nds the

true north of earth using an electric spinning wheel. A gyroscepis capable of more reliable
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directional information and is not in°uenced by the enviroment like a magnetic compass,
but is very sensitive to power supply °uctuations, requires fragent calibration, and its

accuracy is dependent on the motion and speed of the user whilalking [59]. Because of
these complexities, no sensor for directly determining user amtation is selected. Instead,
this information will be computed indirectly based on ultrasaic sensor readings in a fashion

similar to that used in the pose estimation algorithms reviewediChapter 2.

3.3 Sensor Quantity

The next design issue to be addressed is the choice of the apprajgriaumber of ultrasonic
range sensors to achieve acceptable accuracy at a reasonabtt aod wearability. From
the perspective of the cost of the system, as few sensors as possidedasired, but fewer
sensors may lead to insutcient data and inaccurate results. The @agracy of the system is
typically a function of the number of sensors used and the sampijirate. Moreover, there
is also a relationship between the sampling rate and the numbef gensors as interference
between the transceivers should be avoided, i.e., the ultragsosignal from one sensor should
not be confused with that of another sensor. This calls for a timgeparation between each

successive ring of the sensor a®ecting the sampling rate.

Some increase in sampling rate could be achieved by using trangees that operate at
di®erent frequencies. In this con guration, multiple sensorsan be red at the same time
without interfering with each other and the sampling rate canbe increased by a factor
of number of di®erent frequencies used. Unfortunately, this not an option available in
inexpensive, commercially available systems. Increasing themioer of sensors also after
a certain limit will not improve the accuracy of the system signtantly because of data

saturation. Chapter 6 discusses the experimental results explog the optimum number of
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Figure 3.2: Possible con gurations for Sensor Placement

sensors that should be used in the system to deliver an acceptablewacy with a reasonable

cost.

3.4 Sensor Placement

Sensor placement on the human body is tightly coupled with thaumber of sensors being
used in the system and the application in hand. The application mght require locating
nearby or distant obstacles based on whether the application dynamically updating the
map of the environment or computing location information othe wearer. If the application
needs to locate nearby obstacles, then the sensors will have to fdaced over the entire
body. This will facilitate the capture of every feature of tle environment. For the purpose
of location awareness, obstacles are typically more distant]J@king the cone associated with
the ultrasonic signal to spread, making the upper half of the bgdmore desirable. Figure 3.2
shows some possible con gurations of the sensors on the upper froatf of the body. A
similar placement is required on the back for 360-degree coage. For all of the location
awareness algorithms, a 360-degree scan of the environmentaquired, forcing a similar

requirement for sensor placement.

The two aspects of the human body that need consideration wheretgrmining sensor place-
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ment are size and motion. While the size of the body will determé the spacing between
each sensor, human motion is a much more complex aspect to handibe system must take
into account the wide range of motion that is associated with seor placement, e.g., on the
arms and legs and the obstructing e®ect of the motion on the rg® measurement. A fault
tolerant system should contain some redundant sensors placed ampiately such that when

some sensors are blocked by swinging arms and legs, the redundansses can provide the
range readings. Due to the prototyping constraints, the simpledit prototype discussed in
Chapter 6 places all sensors in a single plane equally spaced arbthe waist of the user

with no fault tolerant architecture, but further explorati on of this design space is desirable.

3.5 Software Algorithms

The design of the application software is crucial to the succesktbe system. The software
includes the low-level software communicating with the undlying hardware in the system
and the high-level software computing the location awarenessformation based on the
data generated by the low-level software. This low-level sofare is hardware dependent,
which needs to be reworked if the hardware is modi ed where#éise high-level software is

independent of the underlying hardware.

The low-level software has to excite the sensors, poll the dataoim the sensor, preprocess
that data and integrate it in a fashion that it can be meaningflly acted upon to compute
the location of the user. The high level software (the locatiomwareness algorithm) has
to be chosen from a class of algorithms that are compatible witthe number and type of
sensors chosen, taking into account the accuracy, reliabilisange, and sampling rate of those
sensors. This high level software should also be fault tolerantgi, if some of the sensors fall

to give a reading, it should gracefully handle the missing dataA detailed description of the
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properties of ultrasonic transceivers and a model for the pragation of ultrasonic signals
in buildings is described in the following chapter. This modas used as the basis for the

location awareness algorithm that is described in Chapter 5.

3.6 Processing Target

There are various targets where the location awareness algiom can be computed including

2 on a desktop computer or a handheld computer,
2 on reprogrammable logic, or

2 on an embedded microprocessor.

The underlying hardware in the system can transfer the raw dataota high-speed, high-
performance desktop computer or a handheld computer. Using asttéop in the system will

make the system unwearable and hinder the mobility of the user. hE system can still be
wearable by using a handheld computer, but handheld computesu®er from the fact that
most of them do not have °oating point processing capabilities. &b, any general purpose
computer will have far more functinality than required for @mputing location awareness

algorithms, increasing the cost.

Programmable logic is another kind of processing device usedardigital hardware system.
The discussion of programmable logic in this thesis will be limed to an FPGA. An FPGA
is a regular structure of logic cells and interconnect undehg control of the user, which the

user can design and program to implement any function that the syem has to perform [60].

The internal structure of an FPGA composed of logic cells, progmmable interconnect,

control muxes, memory, and 1/0O blocks is shown in Figure 3.3. Tenlogic cells are made up
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Figure 3.3: Internal structure of an FPGA

of look up tables that can be used to implements combination&dgic, synchronous RAM or
a shift register. The control muxes are in turn used to control te operation of these lookup
tables. The FPGA is classi ed either as SRAM based or anti-fuse basdépending on the

mechanism used to make connections in the device.

An FPGA su®ers from multiple drawbacks that prevent its use in a arable location aware-
ness system. Firstly, the location awareness algorithm is typilba written in a high level
language like C/C++, which cannot be directly mapped into anFPGA. There are no readily
available reliable commercial tools that can compile and sthresize these designs written in
high level language into excient bit streams running in an FP@. The current commer-
cial tools generate the bit streams from a hardware descriptidanguage such as VHDL or
Verilog, which are the expertise of a hardware engineer as aged to a software designer
implementing the high level location awareness algorithms. hls, the absence of a C to
HDL to bit stream compiler is the biggest obstruction in the way ofusing FPGA in the
system. Secondly, FPGA's are priced signi cantly higher than a foro-controller rendering

it uneconomical to use in large scale.
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Using embedded microprocessors/DSP's can solve most of the limitats of an FPGA but
not all. While there is no dearth of simulators and debuggersvailable for microprocessors,
and the user code can be directly programmed into the programemory of the micropro-
cessor, the microprocessors have limited data memory. The loast low-power, low-e®ort
option provided by embedded micro-controllers seems to be atable candidate as the pro-
cessing target for the location awareness algorithm. Howevehet processing capabilities of
the current micro-controllers is not suzcient to execute a amplex location awareness algo-
rithm in real-time. The Moore's law states that the number of tansistors per square inch on
an integrated circuit will double every 18 months, indicatig an increase in the processing
power available per square inch. Thus, the location awarenedga@ithm is expected to be
used on a low-power processor within a few years. For the protogplescribed in Chapter 6

a desktop computer is used for computing the high level locaticawareness algorithm.

3.7 Information Reporting

Information reporting refers to the interface mechanism, é¢&nt and timeliness of the pose
estimation information that should be conveyed to the wearerThis design issue of infor-
mation reporting falls in the domain of Human-Computer Inteaction, which o®ers several
service models for usage. Based on the needs of the user and thdiegpon, the user can

interact with the system within the speci cs of an appropriate serice model.

The rst design exploration for information reporting is the ssue of the user interface to
the system. The information ready for presentation to the user cabe conveyed through
a graphical user interface (GUI) on a handheld, through text ora terminal or on a Head
Mounted Display (HMD) [61]. The issue of user interface is tightlgoupled to another design

issue concerning where the location is calculated, either &ly or remotely. The possible
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Figure 3.4: Application Scenario 1: Fireman navigating in artsis situation

options to this design issue are dependent on the needs of the kggdion. If security and
data privacy is crucial to the application, the location pra@essing should be done locally
and one of the above display methods can be used to convey theomfation as shown in
Figure 3.4. Alternatively, if the motion of users has to be traed in a building, the location
information can be processed at a remote location with the wearhaving no knowledge of
it's current location as shown in Figure 3.5. In this case, nothg is being reported to the
wearer of the system. Another service issue to be explored relatesthe time instant at
which the location information should be displayed to the userln one service, the system
continuously reports the pose estimation information to the usewhereas another service
model displays the pose estimation only when the user requests The prototype used in
this research processes the location information locally andrginuously updates the user.

More thorough research in this area is desirable.



Figure 3.5: Application Scenario 2: People Location Monitarg
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Chapter 4

Ultrasonic Signal Characterization

and Simulation Model

This chapter describes the behavior and properties of ultrasic wave propagation as they
travel, re°ect and di®ract in a medium. This understanding Wi be helpful in building a
simulation model, which will in turn be used to predict the rang measurement returned by

the ultrasonic sensors.

This rst section of this chapter discusses the principle of timef-°ight (TOF) based range
measurement systems. The second section describes the physicalasttaristics of an ultra-
sonic wave propagation in a real environment and suggests a ta@ue to employ this theory
of propagation into a simulation model. The last section compas and discusses another

simulation model used for range estimation.

29
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Figure 4.1: Principle of Time of °ight ranging system; (a) Sensand obstacle con guration,

(b) Waveform detected at the face of the sensor

4.1 Time of Flight System

Many of the acoustic range measurement devices available Sosystems consist of a sep-
arate transmitter and receiver units whereas some have bothdhransmitter and receiver

embedded into one.

Figure 4.1 shows the principle involved in a TOF based ranging stem. Part (a) of the gure
shows the physical con guration of the environment with sensoma the obstacle placedd
units apart. Part (b) of the gure shows the impulsive voltage gcitation of the sensor. At

time t = 0, the sensors emits a burst of ultrasonic wave towards the obsta¢cwhich re°ects
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the wave back to the sensor. The range measurement is achievedcbynputing the time, t,
that it takes for an ultrasonic signal to travel from a transceier to an obstacle and return

to the transceiver.

The rst echo whose amplitude exceeds a threshold is taken to bevalid echo for time

measurements and any further echo received is ignored. Thengg measurement is thus
calculated asd = c£ t=2, wherec = speed of sound in air. For simplicity, the possibilities
of echos from the roof or the °oor of the space is ignored, as we @oncerned with a two-
dimensional scan of the environment. To generate a reading, &F reading is placed at
this range along the sensor's line of sight. This process is repeel sequentially, for every

sensor in the system to form a 360-degree representation of the suimdings.

Apart from ignoring multiple echoes, the system also ignores thébsence of an echo. If
the sensor does not detect an echo within a certain time framehd absence of an obstacle
is inferred in that orientation and a large range reading (tvce the maximum range that

the sensor can measure) is produced. This large reading is etiated while processing the

location information.

4.2 Ultrasonic Wave Propagation

Unfortunately, propagation and interpretation of the ultrasonic signals is not simple and
needs further examination. The wave transmitted from an o@hke-shelf ultrasonic transmitter
is not an in nitely narrow beam with strong directionality. T he ultrasonic wave interacts
with elements of the environment in a complex way such that thecho received by the
receiver is not necessarily due to re°ection from an obstacle the transmitter's line-of-

sight. The echo can be received after multiple re°ections, re€tion from any obstacle in

the beam, or after di®raction from the obstacle as shown in Figai4.2. The sensor in the
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Figure 4.2: Multiple sources of re°ection

“gure emits an ultrasonic signal towards the cornelC, but after leaving the transmitter
the wave spreads in the shape of a cone and gets re°ectedAyB and D. This signal also
experiences multiple re°ections aE and F before it reaches the receiver. The re°ection that
produces a range reading is dependent on the angle of inctina of the ultrasonic wave front
to the re°ecting object, distance to the obstacle, radius of # sensor, beam width, and the
operating frequency of ultrasonic sensors used. Therefore, vaed a simple yet explanatory
model depicting the physical characteristics and behavior d@he ultrasonic waves and the
way it interacts with the structures in the environment. This model will be used in the

construction of the algorithm in the next chapter.

The ultrasonic model that we used in our system is a model describleg Kuc and Seigel [62].
This model uses the principles of linear systems theory, acoustj and digital signal process-

ing to derive a impulse-response model for acoustic waves.

The model separates the transmitter and receiver and breaksedmm into small elements for
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analysis based on Huygen's Principle. The model follows a imgive response approach in
which the impulse is provided by the ultrasonic signal producebly the transmitter and the
response is the echo received at the receiver after re°ectiondn obstacle. The convolution of
this impulse-response and the original ultrasonic pulse wavefioproduces the signal observed
by an element of the sensor. The impulse response of each small efgneeintegrated to
derive the impulse-response of the whole sensor. For simplicithet model makes some
assumptions without sacri cing much accuracy. It is assumed thahe re°ecting surface is in
the far eld of the sensor such that the spherical wave front origating from the transmitter
can be taken as a planar wave front by the time it hits the obstde. Another simplifying
assumption made in this model is that re°ections are lossless. Thast assumption made is

that intersecting walls are perpendicular to one another.

Because the receiver membrane is sensitive to only the normaihcident waves, an atten-
uation factor of cos®is applied to the output of each element of the sensor if the senger
inclined at an angle of® to the wave. Kuc derives the impulse-response of the transmitter
receiver pair as 7

2z+asin ®=c

hrr = hr(é;z;a;@:hr(ti ¢;2,a,@d¢ (4.1)

2zj asin®=c

H iz
2ccos® At 2z=92
r(tzia:®) lasin® ' aZsif® (4-2)
when ZL2sh® . ¢ . 22+8sn® gand 0<j ®j< Beam width of the sensor,
hr(t;z;a;®) = Hti 2z=0; (4.3)
when®= 0, and
hr(t;z;a;®) =0; (4.4)

for other values oft; ®, wherea is the sensor radius® is the angle of inclination of the sensor

to the re°ecting element, andz is the distance to the obstacle.
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Figure 4.3: Wall, corner, and an edge

In the process of detecting echoes, if the sensor is normal to thews front, the wave plane
traveling towards the receiver is swept across the face of thenser instantaneously. But, if
the sensor is inclined to the wave front at an angle, there is a ite time for the wave plane
to travel across the receiver. This time is directly proportnal to the angle of incidence and
accounts for the limits of the convolution. By reciprocity,the transmitter, when excited by
an impulse, will also have the same impulse-response as that of tleeeiver in the detection
process. Thus, when the wave front is perpendicular to the sensdret amplitude of the
impulse-response is maximum. The amplitude decreases and theation of the impulse
response increases with increasing inclination angle. From timapulse-response equations,
it is clear that a range reading will be produced only when thangle of incidence of the

ultrasonic wave front to an obstacle is within the beam width othe sensor.

Kuc applies these propagation fundamentals to deduce the rg@ readings produced by the
sensor in a real world. The simulation model of Kuc classi es the psical environment

into walls, corners (concave right angles between walls), amdiges (convex right angle be-
tween walls) as shown in Figure 4.3. The waveform detected atdhreceiver after re°ec-

tion/di®raction from walls, corners, or edges can be representas

rt) = p(e) £ hrr(ti ¢) dé; (4.5)

il

where p(¢) is the pulse waveform. The rst echo received at the receiverithy a signal
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strength greater than a certain threshold will give the rangeaading.

An important point is that the walls and corners cause acoustic aves to re°ect whereas
an edge will di®ract waves, with the edge as thg point source fiie di®racted waves. The
di®raction will attenuate the signal by a factor of 2, P z=, ! 1, where, is the wavelength
of the ultrasonic waves. Corners will also di®ract ultrasonic was but the magnitude of the
di®racted signal is much smaller than the magnitude of the re€eed signal. Therefore the

di®racted part of the signal for a corner is ignored.

4.3 Another simulation model

The previous section presented a simple propagation model fdtrasonic waves along with
a simulation model to predict the range measurement. The ac@gy of a sonar model is
directly proportional to the details of propagation charateristics represented. A detailed
representation will increase the model complexity requiringigh computational power and
time. The simulation model described in the previous section kaacceptable accuracy and
processing requirements for a system such as location awareness.eréhare much more
sophisticated ultrasonic models available such as the model delsed by Dudek [63] that
predicts the sonar reading better. This model is studied brig°to decide if it can be used

exciently in the location awareness system.

This model utilizes the same underlying propagation conceptut di®ers in the way these
concepts are implemented in the simulation model. Rather tlmaccounting for only a
single re°ection, this model goes a step further by modeling rtiple specular re°ections.
A real environment is seldom composed of a single re°ecting sw#abut multiple re°ecting
surfaces that account for multiple re°ections. They use a metldosimilar to a ray tracing

algorithm following the path taken by the pulse as it interacs with di®erent structures in
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the environment. This algorithm works by generating a fan ofays from the transmitter,
and if the intersection of these rays with the closest obstacle isthwithin the ray spacing of
a corner or is not perpendicular to the wall, then the re°eciéray is generated and stored in
a queue. The signal strength of the ray is attenuated after eack°ection. The next closest
obstacle is then checked, and the process is repeated until ttay reaches the receiver or is

suzciently attenuated.

This process requires high computational power and time thagiven the imprecise knowledge
of our environment, is not warranted in our application. Ths imprecise knowledge arises
because, while we have a map of the building, we do not know thechtion and re°ective
nature of every object within the rooms of that building. Thee objects include stationary
furniture such as desks, movable furniture such as chairs, books lmookshelves, doors that

may be open or closed, and people moving throughout the buifdj.



Chapter 5

Description of the Algorithm

Having familiarized ourselves with the model of propagationfaltrasonic waves, we are now
ready to explore the location awareness algorithm in detailThis chapter will describe a
new algorithm for computing a user's location and orientatio given readings from a set of
ultrasonic sensors and a map of a building. The location awaresgealgorithm described in
this chapter can be subdivided into two parts, pose estimation @room occupancy. The rst
section describes pose estimation, which refers to the knowledgf location and orientation
of the user within a room. The next section describes the room agmancy algorithm, which

refers to the knowledge of the room in which the user is currdptiocated.

5.1 Pose Estimation

The rst task of the location awareness system is to determine a u&eposition in a two di-
mensional co-ordinate frame along with the torso orientatianThe pose estimation algorithm

is an e®ort towards achieving this goal in an environment witno supporting infrastructure.

37
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Figure 5.1: Sample Room

Pose estimation is a phrase widely used in the world of robotics @dmumerous algorithms
have been designed to estimate the pose of robots. But while thesgoaithms are acceptable
for use on machines, they are not acceptable for wearable cortipg as they use rotatory,
bulky, intrusive, and unwearable sensors. Poor wearability anlbw comfort level in using
these machine-based systems on humans has motivated the devwelept of new algorithms
speci cally to be used on wearable computers. The algorithm fpose estimation for wearable
computing uses range measurements that come from an array ofrasonic transceivers,
much fewer in number than used in robotics, placed on a single pkof the user's body,
and positioned to produce a 360-degree scan of the surroundind@$ie algorithm attempts
to match these readings to simulated measurements computedrfraan implementation of
the model in the preceding chapter. The matches are attempmteagainst a set of postulated
locations and orientations for the user, and the best match isIseted as the user's current

location and orientation.
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This algorithm takes as initial input an architectural map (in a text format) and an initial
estimate of the user's location and orientation. The architéaral map of a building is
partitioned into rooms and each room is then converted intoeixt format. The architectural
map of a room is converted to text format by classifying the feates of the room into walls,
corners and edges. The walls are marked by its end points, whesecorners or edges are
marked by the intersection point of the two walls forming them The architectural map of a

sample room shown in Figure 5.1 can be converted to text formas @hown in Table 5.2.

The rst row of the table lists the number of walls, corners and egks in the map and the

following rows describe them. The syntax to describe a wall is

f1g fx19 fy19 fxog fy.g

where ;Y1) and (Xz;y,) are the end points of the wall. The syntax for the description fo

the corners is

f2g fxg fyg
and for an edge is

f3g fxg fyg

where ;y) is the intersection point of the walls forming the corners/edes.

The last set of rows in the table correspond to the two edges of tlemdpoints of the door of
the sample room. The frame of the door mounted in the walls di@cts the ultrasonic waves
and acts like an edge of the ultrasonic propagation model. Irhé absence of these edges
in the text based architectural map of a room, error in estimatig the pose increases as a
user approaches the exit. Because the location of the exits it the rooms are known from
the blueprint, these artifacts are added to the text based ardtectural map to improve the

accuracy of pose estimation.



Figure 5.2: Architectural map in text format

10 7 5
1 0 0 0 6.45
1 0 645 4 6.45
1 4 645 4 75
1 4 75 0 75
1 0 75 0 20
1 0 20 4 20
1 4 20 4 22
1 4 22 19 22
1 19 22 19 O
1 19 O 0 0
2 0 0
2 0 645
2 0 75
2 0 20
2 4 22
2 19 22
2 19 O
3 4 645
3 4 75
3 4 20
3 19 15
3 19 19

40
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After the architectural maps of each room are converted to thetext format, higher-level
information about the position of the rooms in the building isneeded. This information
is stored in a con guration le, which stores the door positionn all of the rooms. This
door information is augmented by the details of the room to wbh this door opens. A

con guration Ie will have the format
f CurrentRoomg fx;g fy;g fOpeningRoong fx,g fy,g

where (X1;y1) is the door position in the current room and X;; y») is the same door's position
in the opening room. Each door in the architectural map of theuilding will have an entry in
the con guration Te. Thus, a combination of the text-based ma les and the con guration

“Te will convey all of the information needed from a blueprin of the building.

The algorithm starts with the approximate initial user pose andestimates the user's pose
thereafter. For example, a user should note which entrance wasing used when rst entering
the building. Once the algorithm begins execution, the systetakes range readings from all
of the sensors, making two passes and averaging them to mitigateete®ect of noisy data.
This gives the average distance to a perceived obstacle in eaemsor's line of sight. Because
the echo received at the receiver can be due to specular refens, and may not represent
the actual distance to an obstacle, spurious points due to speatlre®ections should be
eliminated. We use the knowledge that, due to specular re°eots, the distance returned
by the sensor will be substantially greater than the actual distace, to eliminate outliers in

the set of readings.

Speci cally, the data samples in the set outside of the range oli¢ mean plus twice the
standard deviations,mean+ 2 £ std will be treated as outliers and ignored. This ensures
that only the scan points that are very distant from the rest of tke points are ignored. A
set of scan points in a room is shown in Figure 5.3. The scan pointa¢e and four are very

distant from the rest of the population and are eliminated fronthe scan set.
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Figure 5.3: Outliers due to specular re°ections

In order to match the simulated measurements with the real measements, the algorithm
postulates the user movement between successive scans. The postdlaiser movement
between sensors readings (approximately one second per scanha implementation) is
bounded by how far a person is expected to move during one secafcormal movement.
Results from the Motion Capture Library of CMU [64] indicate hat a person normally walks
at approximately 1.65 feet/second. The postulated movemenbff location computation
is slightly expanded over 1.65 feet to compensate for poteritiarrors in the position and
orientation computation. We have bounded the postulated usemnotion to within a circle
of radius ve feet. Further, the results from the Motion Captue Library of CMU indicate
that a person rotates a maximum of 30 degrees/second when vegrileft or right during
walking and it takes about two seconds to veer. Thus the user @ion is about 15 degrees
per second. The postulated user motion is constrained ®20 degrees between samples in

the implementation.
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Figure 5.4: Set of postulated positions and orientations to $ for location

Given these bounds, a discrete set of points and orientations igrgrated that represent
candidates for the user's position and orientation within thee bounds as shown in Figure 5.4 .
Prior to matching a candidate point against the real data, thepoint is rst tested for inclusion
to make sure that point is indeed within the room being checkedrl'he inclusion test begins
by drawing a horizontal line through the candidate point andcounting the number of times
it intersects with the walls of the room. If it intersects the wéls of the room an even number
of times, then the point is outside the room, whereas if the linmtersects the walls an odd
number of times, then the point is de nitely within the room ard can be matched with the
real ultrasonic data. Figure 5.5 shows a scenario with a hypotligal room in which a line
through points A, B, and D intersects the room boundary an evenumber of times and
the line through point C intersects the room wall only once. Tas, points A, B, and D are
outside the room and will not be included for matching, whereasimulated measurements

will be generated for the point C and will be matched with the eal set of measurements.
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Figure 5.5: Candidate points within and outside the room

Then, for each candidate location/orientation, the set of rages that would be expected to
be read from the sensors is computed using the simulation model.hi$ expected set of
readings is matched against the actual data with the best matcheing chosen. Speci cally,
the matching process selects the candidate location/oriertan that minimizes the weighted
sum of di®erence of the real points and simulated points. In theewhting system, the
re°ections from walls are given more weight than the re°eatns from corners or edges, based
on the observation that single re°ections from the walls recad at the sensor will not be
specular, and thus should be given more weight than others. Thuthe matching process
with unequal weights will try harder to match the range measwements from wall re°ections
rather than from corner/edge re°ections. As will be shown expanentally in Chapter 6, the
best results are achieved when the wall weightingy,, is twice or more than the corner/edge

weighting, w;.

The objective function to be minimized is the function



45

20 w7
151 B
10+ ¢ 7 4
¢
5L LX) i
) 6‘ 5
¢ 10 L
g ok « =43 |
LL ‘ 11 ® 11 ‘ 2
_5 = 4
P &3 ¢!
.10 |- 4
s H{ = Wall Reflection & u ¢ ,
® Corner Reflection
4 Real measurement

.20 T I I I
-20 -15 -10 -5 0 5 10

Feet
Figure 5.6: Insuxcient match points

. P .
wi(real j simulated), + wy(real j simulated),

; 5.1
win + wom ' ( )

wheren is the number of wall readings andn is the number of corner/edge readings.

Further, if the number of potential matching points falls béow a threshold value (four
matches in the implementation), then the candidate locatio is discarded. The simulation
always returns the range readings for fewer number of sensdnam used in the system as some
sensors are not oriented to the re°ecting elements within theglam width of ultrasonic waves.
For an erroneous orientation, the range readings returned Ithe simulation may be even less.
If for some of the sensors for which the simulation returned a raageading, the real data is
ignored because of the outlier elimination process, the corresuling matching points may
fall below the threshold, causing the candidate location to béiscarded. Figure 5.6 shows the
simulated range measurements for eight sensors at an erroneausation. Only three range
readings were generated from simulation, providing reasorabgrounds for discarding the

candidate point due to insuxcient matching points. Furthermae, for one of the simulated
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sensors, sensor number eleven, the real reading is expunged inahiier elimination process,
leading to only two matches for this candidate location. Thefore, this candidate location

will not be considered for matching.

5.2 Room Occupancy

The preceding section described an algorithm for determiningser location within a single
room. But for an e®ective location awareness system, it shoulds@lbe able to provide
higher level location information to the user. This higher kel information includes, but is

not limited to the knowledge of the occupant °oor level, halway, or room in the building.

This section describes an algorithm that works with the algaotihm for location within in a
room to determine which room a user moves to when leaving a rootm addition to testing
a set of hypothetical positions within a room, the algorithm ao tests adjacent rooms as
candidates for the user's location when the user moves near aqtérom the current room.

A °owchart for the overall location awareness algorithm is gen in Figure 5.7.

The speci cs of the room occupancy algorithm are as follows. tHe current position is close
(within four feet in the implementation) to the exit of the current room, the set of sensor
readings collected at this position are matched with the cuent as well as the adjoining
rooms. These adjoining rooms are called \candidate rooms," aradqueue is maintained to
hold the candidate rooms along with the likelihood of the usdreing in that room (likelihood

is based on the quality of the match). The likelihood of the cafidate rooms are updated
after each match and is directly dependent on the quality ofie match of the current room

versus the candidate room.

The following algorithm is used to compute these likelihood \@es. The current room is
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denoted asCR and the next candidate room adfNR in the next set of equations. If the
match of the set of sensor readings with the current room is bette¢han the match with
the candidate room,matchcg < match ygr, then the likelihood of being in the new room is
updated as

H matchcr T

P(NR)= P(NR)+ =2; 5.2
(NR) (NR) matchyg + matchcg ' (5-2)

otherwise, if the match with the candidate room is better tharthe match with the current

room,
_ matchcr

pNew= matchcg + matchyg (5.3)

P(NR)= P(NR)+ pNew; (pNewf£ P(NR)): (5.4)

If the probability of the user being in the candidate room exass a threshold (80% is used
in the implementation), then the candidate room is assumed toebthe new current room.
In the event of a candidate room being declared as the currerdom, the candidate queue is
°ushed and is populated again based on the criteria listed abavkikewise, if the probability
of the candidate room falls below a threshold (10% in the impigentation), then the room
is purged from the candidate queue. In this scenario, the caiddte queue is updated by

shifting the candidate rooms after the deleted room one pos up.

When a match is computed with each of the candidate rooms, theobnds on the postulated
movement and the rotation of the user are increased by a factof two. This is done because
as the user approaches the exit of the current room, the obstaslin the adjoining room start
becoming visible to some of the sensors, while the other sensors stilasure the distance
to obstacles in the current room. This deteriorates the quali of the match near the exit
and increases the error in estimating pose during transitioningpoms as none of the rooms
can match the real scan points well. Once the room occupancygatithm computes the
candidate room as the current room, error begins to drop. Altaatively, if the user moves

suzciently away from the exit of the current room, the sensors s seeing the elements of
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the adjoining room because the ultrasonic waves traveling irhat direction are obstructed

by the frame of the exit door, resulting in the error drop again



Chapter 6

Results

This chapter veri es and validates the correctness of the posstimation as well as the room
occupancy algorithm presented in Chapter 5. The rst section dhis chapter discusses in
detail the prototype used for conducting the location awaresss tests. The rest of the chapter

discusses and analyzes the results of the location awareness t@sts variety of situations.

6.1 The Prototype

To validate the correctness of the algorithm describe in Chaet 5, a prototype that can
perform a 360 degree range scan of the environment is requir@dhis prototype is critical to
the validation process as the real range readings needed by talgorithm will be provided
by it. As discussed in Chapters 3 and 4, only ultrasonic range sensevdl be used as the
sensing elements for the prototype. Also, a feedback system disphay the user's current
pose and room information in the form of a graphical user inteate or a text based display

will be integrated.

50
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Figure 6.1: Polaroid 6500 Series Sonar Ranging Module

For the experimentation and prototyping purposes, Senscomp @5 Series Sonar Ranging
Modules [65] were used. This kit drives a 49.4 kHz Polaroid u#tsonic transducer that can
sense obstacles from 6 inches to 35 feet with a typical absolutea@cy 8 1% of the reading
over the entire range. The Polaroid Electrostatic transduceused in the prototype has a
beam width of 15 degrees and the assembly comes with a perfodapeotective covering for

increased durability.

The sonar ranging module is capable of operating in single echmde as well as multiple
echo mode with an ability to di®erentiate objects three inas apart. The module is TTL
compatible and has an accurate clock output for external uselhe ampli cation factor of
the receiver is a function of time with the ampli cation reabing its maximum 38ms after
emission of the acoustic waves. This is done to compensate for theeauation of the signal

with increasing distance. Due to the selective echo exclusionpedilities of the ranging
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Figure 6.2: Prototype

module, the user can control the minimum distance measured.

The current prototype is in the form of a wearable belt with ararray of 15 Polaroid ultrasonic
range sensors placed approximately 24 degrees apart as showirigure 6.2. The reason
for a particular number of sensors, and angular separation beter sensors is explained in
Section 6.2.2. This ensures a full 360 degree scan of the envinent. Due to the prototyping
constraints, the ultrasonic sensors are placed in a single planedamo mechanism has been

deployed to mitigate the e®ect of obstructing arms movement.

The commercial Polaroid Sonar Ranging module is designed tatarface to a single elec-
trostatic transducer only. Driving 15 of these transducers in th naive way will require 15
ranging modules, which will increase the cost and the e®ort totath them to the belt. A

smarter solution to the problem is to drive these multiple sensossith one ranging module.

To do this, an interfacing circuit is required that can share tke control signals from the
ranging module between the sensors. To achieve this, a custom mfaee board was designed
that controls up to 16 sensors. This board contains a Microchipl 18F242 [66] processor
that multiplexes the ring signal from the ranging module to the sensors on the belt via

solid-state relays and a multiplexer. Figures 6.3 and 6.4 shoWwe front and the back of the
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Figure 6.3: Front Side of the interfacing board

interfacing board, respectively.

The PIC res each sensor in a circular fashion with the time delapetween two rings
corresponding to the twice the maximum range measured by the sems. This is essential to
minimize the interference between di®erent sensor rings. Ifsensor res while the acoustic
waves from previous rings are still bouncing in the environent, the ranging module can
incorrectly interpret those waves because of the current rip and can result in a false
range reading. Therefore, spacing the rings suzciently apain time will ensure minimum

interference.

The PIC on the interface board is responsible for measuring theOF for each sensor, com-
puting the distance to the obstacle and transferring this dataer UART to an HP iPaq
1945 running Pocket PC 2003 [67]. The iPaq was used for displayithe estimated user's

location within the building.
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Figure 6.4: Back side of the interfacing board

6.2 Location Awareness Tests

With this prototype, results are presented in a variety of situdons to demonstrate the
location awareness algorithm within a single room, justify thegype and the number of sensors
used, illustrate the e®ect of weights on the matching processnaenstrate the performance
of the room occupancy algorithm, and enumerate a few failureases. The tests for the
autonomous location awareness were run using our prototypechim a moderately to highly
cluttered laboratory environment. The algorithm ran on an htel Plll 1.1GHz machine
with 1GB SDRAM running Linux v2.4.18 operating system. The matking algorithm is
implemented in MATLAB while the simulation model and the inclwsion test is implemented
in C. The C routines were converted to mex les so that they can e invoked through
MATLAB. A single matching process for one room takes approximaty forty seconds to

run. The matching algorithm employs loops to test each candide position. Because loops
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Figure 6.5: Match between simulated and real data

have to be interpreted each time they are executed [68], thexezution of the matching
algorithm is slowed. It is believed that the performance wilbe much faster if implemented
fully in C/C++.

6.2.1 Single Room Performance

This section will validate the sanity of the pose estimation algithm by showing it's perfor-
mance in a single room. The results of a match between the simwddtand the real range

readings are shown and the correctness of the algorithm is ved.

The performance of the location awareness algorithm in a siegloom was tested by taking
range scan samples from 15 sensors at a randomly chosen locati@ntattempting to match
against all postulated locations and orientations. The best mah of real to simulated data

is shown in Figure 6.5. This match corresponds to correct logah and orientation of the
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Figure 6.6: Surface Plot of the Error

user. The diamond shaped markers are the range measurementsatigsrned by the ultrasonic
sensors and the circular as well as the square markers are geteztdy the simulation model.
The square markers are the range readings generated due to Bng°ection o® a wall whereas
the circular markers are generated due to re°ection from a gwer or an edge. The gure
shows an inconsistency in the real and the simulated readings fbe sensor number two, ve
and six. That is attributed to the shelves that are located in tlose corners. These shelves
act as an obstacle to the ultrasonic waves and re°ect them. Evemth these inconsistent
readings, the pose estimation algorithm matches the real anddhsimulated range readings

giving the correct pose for the user.

To give further insight, error as a function of postulated user gsition within the room
(given the correct orientation) is plotted in Figure 6.6. The surface plot clearly shows
a valley indicating that the error of the match increases as # postulated location moves
farther from the actual location and that there is only one nmima for this matching function.
Presence of a single minima indicates that there is only one ptosn for which there is a best

match and that position with the corresponding orientation isthe correct pose of the user.
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However, there is no guarantee that there will be only one mma. This particular case is

shown in Section 6.2.5.

The match between the real and the simulated data for a di®ereroom of much larger size,
19' X 22', is shown in Figure 6.7. The quality of the match for tis room is better than that
of the previous room because the real sensor readings in thismoalmost superimpose the

simulated readings.

Performance evaluation

To prove the correctness and evaluate the performance of thigarithm, the pose estimation
test was carried out in rooms of di®erent sizes as shown in Fig@s. Three sets of tests
were performed in each room and the error statistics were calated from the computed

location. Each set consists of ten locations at which the data iecorded and location error
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Error (Feet)

Setl Set2 Set3 Mean | Std

Room 1| 0.618 0.62| 0.458 0.28| 0.478 0.31| 0.51 | 0.40
Room 4| 0.558 0.39| 0.308 0.25| 0.358 0.3 | 0.41 | 0.31
Room 5| 1.208 1.01| 1.238 0.93| 1.038 1.12| 1.15 |1.02
Room 3| 1.028 0.57| 0.848 0.39| 0.898 0.46| 0.91 | 0.47
Room 6| 2.888 3.45| 2.638 2.70| 2.628 2.72| 2.71 | 2.95
Hall 2778 1.44| 2538 1.22| 2598 1.07| 2.63 |1.24
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Table 6.1: Single Room Performance

is computed. Table 6.1 shows the error in each set along with threean and standard

deviation for each room.

From the table, it is evident that the prototype performed bally in Room 6 and the hall,

with errors averaging more than 2.5 feet whereas location gsttion for Room 3 and Room 5
had mean errors of about one foot. The bad performance in thalhis accepted considering
its huge size. Also, the hall has numerous small features whicrearot feasible to capture in
the architectural room model. The errors associated with Roof are due to the cluttering

of the room environment as it houses multiple tall storage urstand audio video equipment
leaving the free °oor space almost half of the total area of th@om. The errors for Room 3
and Room 6 are particularly interesting for analysis. Apart fromusual xtures, these rooms
are occupied by lab benches, 12' X 3.5' X 6.5' in size, which beee the main reason for

large error because they are not a part of the architectural npaof the rooms.

Marking the lab benches as walls in the architectural map alswill not result in any im-

provement in the room occupancy estimation. To get a range maarement from a wall in
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Error (Feet)
Setl Set2 Set3 Mean | Std

Room 3 (old) | 1.028 0.57| 0.848 0.39| 0.898 0.46| 0.91 | 0.47

Room 3 (new)| 0.77§ 0.68| 0.54§ 0.41| 0.52§ 0.47| 0.61 |0.52

Room 6 (old) | 2.888 3.45| 2.638 2.70| 2.628 2.72| 2.71 | 2.95

Room 6 (new)| 1.158 0.95| 1.528§ 0.88| 1.548 0.99| 1.40 | 0.94

Table 6.2: Error after adding all re°ective element type to he simulation model

simulation, the sensor should face perpendicular to the wall wiin the beam of the ultrasonic
waves. Most of the sensors at any place in the room are not perpetuar to the benches,
so the simulation does not generate any data for these sensors. Bhese oblique sensors
do produce readings giving the real distance to the lab bencheThis happens because the
benches have multiple lab equipment kept on them and the edgef the equipment di®ract
the ultrasonic waves back to the sensors. Thus these benches do act like any regular
elements of our propagation model, but a new type that can rett the ultrasonic waves

back to the sensor irrespective of the incoming angle of inciden

Thus the simulation model was modi ed to generate a range remd irrespective of the
inclination angle of the wave front to the benches; the resultfdhis modi cation is given in
Table 6.2. By making the lab benches as all re°ective elemanthe quality of match improves
for Room 3 and Room 6 resulting in a drop in the mean errors. The @b is signi cant for
Room 6 but not for Room 3. This is because even though the qualiof match for Room 3
without modi cation is worse than the quality of match with modi cation, the best match
is still the same for most of the user's locations. It should be notdtere that this is not the

case with Room 6.
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Figure 6.9: Quality of match with and without simulation modd modi cation

Because the quality of match is dependent on the size of the rodor which the location
computation is carried out, the quality of the match across &kthe rooms should be normal-
ized. The quality of match is normalized by dividing the objetive function, i.e., weighted
average of the sum of di®erence of simulation and real readirigsthe maximum possible
measurable range in a room. Figure 6.9 shows the quality of mhatéor Room 3 and 6 with
and without modi cation and Figure 6.10 compares the qualjt of match for all the rooms
considered for pose estimation evaluation. Figure 6.10 showstthe quality of match of a
room is isolated from its room size by normalizing. The gure ab shows that the quality of
match is also inversely proportional to the cluttering of the oom environment, i.e., higher

cluttering of the room will result in a poorer match and visa-vesa.
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Figure 6.10: Quality of Match comparison

6.2.2 Sensor Selection and Quanti cation

This section will justify the choice of fteen sensors for the pitotype and why the need for
a magnetic compass was alleviated. To determine the number s#nsors that can reliably
deliver reasonable accuracy, data was collected over a clasuvalk in a room of size 19" X 22"
A circular path was chosen because this kind of walk is considéras the worst case scenario.
In this type of walking pattern, unlike a normal walking pattern there will be translation
and rotation between each sample and to estimate the pose cothgca suxcient number
of sensors will be required. With a sutcient number of sensors andtlout a magnetic
compass, if the system is able to estimate the user's pose correatlghould perform atleast
as well during a normal walk. The prototype was manually mowkone foot and rotated
approximately 10 degrees between each sample collection.eTaces at which the samples
were collected are called checkpoints and the accuracy otthlgorithm will be measured at
each checkpoint. The pose estimation algorithm was initiallgtarted with eight sensors and

the number of sensors was incrementally increased until the desl accuracy was achieved.
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Figure 6.11: Location Error: Circular walk

The result of location estimation for this circular walk is show in Figures 6.11 and 6.12 for

location and orientation, respectively.

The plots show that the results with eight sensors were good onlyntil the user walked
almost parallel to a wall. As soon as the user rotated to take a turrthe error increased
steeply and could never recover. This happens because thergemveot sutcient enough
matching points between the simulated and the real range reig)s. Twelve sensors were
good in estimating the location as well as the orientation ofhie user until the user took
a sharp turn (almost 30 degrees), which resulted in the orientatn estimations becoming
inaccurate. The results with fteen sensors performed reasorghin all of the conditions.
The error in the location estimation results for fteen sensorslso increased at the point
where the user took the same sharp turn but because the orientatioesults maintained
accuracy, the error in location estimate recovered in a coupbf samples. Given that the

magnitude of the orientation error was bounded within 25 deges in the 15 sensor case, it



64

300

= 15 Sensors
® 12 Sensors

¢ 8 Sensors

Error (Degrees)

L L Il A
0 5 10 15 20 25 30 35 40 45 50
Checkpoints

Figure 6.12: Orientation Error: Circular Walk

was determined there was no need to augment the system with a quass or gyroscope.

6.2.3 Weight Selection

This section investigates the e®ect of the weights assigned taethe°ections o® the walls
and o® the corners during the matching process on the accuramfythe system. Results will

be shown suggesting the minimum weight ratio of the re°ections®the walls and o® the

corners.

The weight analysis was done for checkpoint number two from paircular walk data. Fig-
ure 6.13 and Figure 6.14 show the result of the matching of realédsimulated readings with
equal and unequal weights respectively. The location comgtion with equal weight match-
ing returns an error of 2.91 feet, whereas matching with unagl weights gives an error of 0.5

feet. In the case of equal weights, the algorithm attempts to mimize the distance between
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every simulated and real measurements equally. Thus it equalveighted minimizing the
di®erence in distance for sensors 7 and 14 as it does for sensors3 a#d 9. As it is known
that the points 1, 4, 5 and 9 are due to re°ections o® the wallsd because they are less
likely to be specular, they should be given more emphasis for nreshing. The match of the
real and simulated data with unequal weights does exactly theame and returns the user
location with smaller error. Figure 6.14 shows that in an e®otb minimize the di®erence in
distance for wall re°ections, the match for points 7 and 14 haseteriorated, yet returned a

better location estimate.

To further extend this test, sample range readings from two clkkpoints of the circular walk

were taken and the weight con guration was experimented witfor both of the sample check-
points to see how it a®ects accuracy. The weight of the cornex®ections was maintained at
unity while the weight of the wall re°ection was increased gidually. The e®ect of changing

the weights at checkpoints two and nine is shown in Figure 6.1 hese two checkpoints are
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Figure 6.16: Architectural map of test subject rooms

chosen because the e®ect of the weighting system is signi cant heése locations for both

position and orientation.

From the gure it is clearly seen that for these checkpoints, wimethe wall re°ections weight
is equal to the corner re°ection weight, the error is almost sitimes larger compared to when
the wall re°ection weight is twice or more the corner re°ectin weight. The weighting system
will be bene cial when a sensor that was supposed to detect a feadof the room is blocked
by an obstacle. At these times, the weights will ensure that the nbehing does not result in
an erroneous orientation estimate resulting in false locatioestimate too. Thus, the results
from Figure 6.15 suggests that the wall re°ection weight shoulde twice or more that of the

corner/edge weight for acceptable accuracy.
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Figure 6.17: Error plot: Location

6.2.4 Room Occupancy

This section presents the results of the room occupancy test thateasures the accuracy
of the system in predicting the room occupied by the user as he/skalks through various
rooms in a building. For testing purposes, the rooms shown in Fige 6.16 were used. These
rooms are part of the laboratory located on the third °oor of Brgersen Hall, Virginia Tech.
The rooms are moderately to highly cluttered with lab equiprant and xtures. The user
started walking from Room 1, went to Room 4 through Room 2, theto Room 5 through
Room 2 and nally came back to Room 2. The user traveled a totaff &4 feet to cover this

path of traversing between rooms.

The result of this walk on the accuracy of location is shown in Gure 6.17. The table on the
top of the gure displays the real room and the computed room foeach checkpoint. The

“gure shows that the error in location estimation increases sigrantly near the checkpoints



69

o

—

e

Room 11 8

T -

Ao - jf R i

i

T *\': ''''''''''''' -
Room 9

Figure 6.18: Test case for room occupancy algorithm consistingsmilar rooms

numbered 4 (between Room 1 and Room 2), 11 (between Room 2 armubih 4), 25 (between
Room 4 and Room 2), 34 (between Room 2 and Room 5) and 42 (betwd®oom 5 and
Room 2). This happens due to the transition of user between ro@mat these instances.
In proximity to these checkpoints, the room predictions are rteaccurate as not all sensors
measure the distance to obstacles in the same room. Some sensors Huarobstacles in
the current room while others scan the elements of the candigaroom through the door
opening. At the above checkpoints, the candidate as well asetcurrent room matches the
real range scan points equally well. It is only when the user fyltransitions into the next
room that the error drops. Also, when the user is not moving betwaerooms and remains
in Room 4 (between the checkpoints 15 and 24), the error remailow, bounded within 1.5
feet. The tests show that the user is able to transition in the revee path with similar error

characteristics.
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Figure 6.19: Error plot: Location

The room occupancy algorithm was put to a special test environent consisting of two
nearly identical rooms, Room 9 and Room 11, as shown in Figurédl8. These two rooms are
connected together by a long hallway made up of a soft partittand named as Room 10.
The test subject started walking from Room 9 towards the door, w¢ to Room 11 through
Room 10, and then came back to Room 10. The dotted arrow lines the Figure 6.18 show
the path followed by the user and Figure 6.19 shows the error asgded with this walk. The
“gure shows that the room occupancy algorithm was able to lotathe user in the correct
rooms even when they possessed similar structure. Also, the error r@dweristics of this
walk are similar to the previous walk. The error increases nedhne exits of the rooms and

when the user is not in the vicinity of the exit, the error remais low.

When the test setup has similar rooms like used in the test case debed above, there can

be two possible con gurations,
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1. The doors of the two adjoining rooms are close to the commoraly as for Room 9

and Room 11.

2. The doors of the two adjoining rooms are placed away fromehcommon wall.

In the second con guration, the exits of the two rooms will be stciently apart from each
other such that only one of the two rooms will be present in the calidate queue when the
candidates are evaluated for user presence. In this con guiat, if the doors are lesser than
four feet away from each other, it will resemble more like therst con guration. In the rst
con guration, when the doors are close to each other, the snapsltaptured at the entrance
of one room will either be horizontal or vertical mirror imag of the other room. Hence, the

room occupancy algorithm will not confuse the two similar roosn

6.2.5 Failure

In this section, some test cases will be presented where the systeitethto deliver reasonable
results. These test cases will serve as a guideline to improve thedbon awareness system

in terms of both hardware and software.

Case |

The room occupancy test failed to locate the user in the correcboom when an additional
identical room was added to the similar rooms test case as shownFigure 6.20. The gure
also shows the additional path followed by the user composed ofllwag up into Room 12

and nally returning to Room 10.

The error associated with this walk is shown in Figure 6.21. As se&mm the gure, the

room occupancy algorithm locates the user in Room 9 when the use actually present in
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Room 12. This is due to the error in location estimation whilehe user is walking towards
Room 12. Because the hallway, i.e., Room 10, is made of artatpartitions, it has repeating
soft partition and glass structure units and the edges of these stitures act as an edge to
the simulation model. When the user moves up towards Room 12,daeise of the symmetry
of the partitions, the quality of match at the user's real locaibn and the location in front
of Room 9 are comparable. The additional corner and edge sttures in front of Room 9,
however, makes this location the best match and the user appeao be stationary, even
when he/she is walking. This is shown by the increasing locatiarror between checkpoints
36 and 57 (user is walking towards Room 12). When the user reastthe entrance of Room
12, the location estimation algorithm still believes the usera be in front of Room 9 and
makes a transition to Room 9 instead of Room 12 because these ro@resexactly identical,

causing the real readings of both rooms similar.

Case Il

Another undesirable result was the failure of the room occupaydest in an extremely
cluttered environment of Room 3. Besides the normal desks andcks, which are present
in all of the rooms, two 12' X 3.5' X 6.5' lab benches are placed iRoom 3, occupying a
signi cant portion of the free space in the room as shown in Figar6.22. As a result, when
the user moved into Room 3, most of the sensors returned the distano the shelves instead
of the distance to the walls/corners. In the original simulatiormodel, without the addition
of all re®ective environmental elements, the quality of the ratch was always bad for this
room due to these huge obstacles. Moreover, the distance betwdlka rst shelf and the
door wall is approximately ve feet, which is same as the widtbf Room 2. Thus the quality
of match for Room 2 was always better than for Room 3, which caed the room occupancy

algorithm to never compute a transition to Room 3.



18

16 Room 3

14+

101 : Lab Benches

|

Feet

Feet

Figure 6.22: Failure Scenario: Transition to Room 3

10 T T
B Wall Reflections
@ Corner Reflections L X
i 5
| 4 Real Readings ¢ °.l
¢: ¢
‘.% i.a 2
8"
oF B i
¢ 1
- &5
Q LX) i
sl
g ¢ on
10 b R
15 | B 12 ® 14
¢ 12
_20 L L L L L L L
20 15 -10 5 0 5 10 15 20
Feet

Figure 6.23: Match between simulated and real data for Room 3



75

10 T T
®  Wall Reflections
® Corner Reflections ¢
4 Real Readings 45
°r ¢ ¢
LY
¢
7
ok s ]
.m‘ﬂ
= e ¢ 5
O 5 ¢ & u 1
L ‘ 10 ‘ 13
-10 | R
@ 12
-15 | R
¢ 2

-20 I I I I I I
-20 -15 -10 -5 0 5 10 15

Figure 6.24: Match between simulated and real data for Room 2

The result of the match for a checkpoint inside Room 3 for Room 3id Room 2 is shown in
Figure 6.23 and 6.24 respectively. As shown in Figure 6.23, tleeis a huge di®erence in the
simulated and the real range reading for sensor number 14 and answlerable di®erence in
range for sensor number 4. This primarily causes the match for Bm 3 to be worse than for
Room 2, shown in Figure 6.24 where fewer simulation readingseagenerated with a smaller
di®erence in the real and simulated readings. The real rangeadegs from sensors 13, 14,
and 15 are due to the re°ection from the equipment on the lab slves whereas the range

readings from sensors 3, 4, and 5 are due to re°ections o® of thstacles in Room 2.

During the room occupancy test, if Room 3 is never purged froné candidate queue and
the postulated movement of the user for Room 3 is set to the size dfet room, then it is

seen that when the user reaches a point in between the two lab loes, the room occupancy
algorithm transitions the user into Room 3. This happens as th&mulation model, as well as
the real readings now return multiple wall re°ection readigs, making the match for Room

3 better than Room 2. Similar problems with the lab benches oar in another room. The
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room connecting the top of Room 2, i.e., Room 6, is also occupigy lab benches and similar

error characteristics can be found in transitioning to that rom too.

Interestingly, if the simulation model with all re°ective elaments is used for room occupancy
instead of the original model, the quality of match for Room 3 &comes better than for
Room 2 and the user is transitioned into Room 3 within 2 feet of nving into the room.
This strengthens the reason for modifying the simulation modéb add all re°ective elements.
However, such an information about the room might not be avaitlde. Handling such rooms

without prior knowledge of the xtures will remain an area fo further research.

Also, the real readings at the above checkpoint in Room 3 shows soinadequacies of the
propagation model. The range reading of sensor number nine is ditely specular and is
not generated by simulation as expected. The propagation mell however, fails to justify
the reading from sensor number 10. The reading from sensor 10 is tictual distance to the
wall even though the sensor does not face perpendicular to ithik situation arises when the
user or the sensor is close to the wall and the angle of inclinatitm the wall lies between 30

and 60 degrees. A more elaborate propagation model might beleko justify this reading.

Case llI

During the room occupancy tests, an interesting problem was dmeered that caused the
sensors to return false range readings even when they faced paqticular to a wall. The

°uorescent lighting xtures installed in Room 5 use electronidallasts, operating at a fre-
guency of 20kHz and higher to minimize humming and to consumestepower. A sample of
the frequency spectrum of this environment indicated a strongomponent of 47.1kHz when
the lights are turned ON that disappears once the lights are steghed OFF. These electro-
magnetic waves are being picked up by the metal body of the tdisonic sensors, resulting

in a false reading.
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Figure 6.25 shows the 360 degree range scan of Room 5 with theraszent lights ON. The
user is positioned 1.5 feet away from the right wall and facind.i The scan points 1, 14,
and 15 are from the re°ections o® of objects in Room 2 and thuarcbe ignored for our
discussion here. The scan points eight and nine shows range regdaf approximately four
feet, whereas they should have been approximately 15 feet ahd.5 feet respectively. This
happens due to the interference with the °uorescent lights. Wdn the lights are turned OFF
and the range is taken at the same place, the scan looks like aswhan Figure 6.26. The
“gure shows that except scan points 6, 7, 8, and 9, the scan matshthe one with lights
ON. There is a di®erence in the readings for these sensors becabseetis no interference
from the lights and the sensors could measure the farther objectScan reading 9 still shows

about 15 feet instead of 17.5 feet because a television is kepthe alcove.



Chapter 7

Conclusions

The design of a wearable autonomous location awareness systenannindoor environment
was described, including the choice of sensors, number of sensonsl the algorithm used
for calculating location and user orientation. Several choes of type of sensors, number
of sensors, and algorithms are available for a location awarassesystem, but their use in
a wearable system is restricted. The sensors were chosen considetireir usage, cost,
power consumption and wearability. The need to understand theomplex behavior of the
ultrasonic sensors motivated the use of a simulation model that gredict actual sensor
behavior. Also, a feature addition in the existing simulation mdel is proposed that can
enhance the prediction of the sensor readings in a clutteredwemnment. The two-part
location awareness algorithm computes the location and oni&ation within a room as well
as determines the user's movement between rooms. The use of tlegghting system ensures
that the most prominent readings of the sensors are given more phasis than the readings
generated due to xtures or moving people. A simple prototypéhat can collect the sensor
readings was constructed and used to conduct experiments farchtion awareness. The

choice of parameters within the system, such as the number of serssand weight assigned

79
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to the sensor readings, was experimentally justi ed. The perforance of the algorithm was
demonstrated in a series of experiments involving several rosrdemonstrating its etcacy.
The location awareness tests were successful even when the tesirenment consisted of

identical rooms.

In its current form the system has a number of limitations too. Kst, the current simulation
model allows for only straight walls that are perpendicular tatheir intersections. Secondly,
the current system does not postulate user movement between °saf building using stairs
or an elevator. However, both of these limitations can be addssed within the con nes
of the current algorithmic structure. Perhaps a more profouth limitation is the system's
inability to recover from a wrong match. Such errors arise if eoom contains a large number
of objects that are not included in the map. In such a case, the sérved ranges from the
ultrasonic sensors cannot be matched to any location on the mamgdause the map does
not have complete information. Also, the system is unable to distguish similar repeating
features in the environment that can cause the system to computerong matches. This
is evident from the case of three identical rooms where the systecould not identify the
correct location because of the repeated features of the kedly. These limitations can be
addressed by an algorithm operating at a higher level with someuiti-in understanding of
how a person moves through a building. Some accelerometer sess@an also be added to

the system, which can give cues if the person is moving or statigga

7.1 Future Work

The autonomous wearable location awareness system is still in adimentary stage and
further research needs to be done until it matures. The most imrd&ate future work includes

integrating the software onto the prototype belt so that the le@ation computation can be
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performed in real time. The limitations of the current system tcussed in the previous
section needs to be addressed through further e®orts, especiédlyrecover from incorrect
matches. The e®ect of the surroundings on the system needs furtbeploration, such as the
in°uence of the °uorescent light xtures on ultrasonic sensor gings. It is also desirable to
design a version that does not require a blueprint ahead of timbut instead builds the map

as the user moves about without any a priori knowledge of the Bding.
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