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Electronic Textiles for Autonomous Location Awareness

Madhup Chandra

(ABSTRACT)

The mature textile industry coupled with our familiarity andcomfort level with fabrics and

the possibility of seamless integration of electronic components such as sensors, processors,

and power sources in the fabric opens up a new dimension of computing. The electronic tex-

tile presents a suitable substrate over which numerous applications can be developed. Location

awareness is one such application that can reap the bene¯ts of e-textiles such that it can be

widely deployed at a reasonable cost for assisting visually impaired people or to provide nav-

igational help during emergency situations. This thesis describes an autonomous, wearable

location awareness system that will determine a user's location within a building given a map

of that building. The thesis examines the issues, constraints, and challenges concerning the

design of such a system. The two-part location awareness algorithm computes the location

and orientation within a room as well as determines the user'smovement between rooms.

The e±cacy of the proposed system is demonstrated with a wearable prototype.
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Chapter 1

Introduction

1.1 Motivation

The increasing need and demand of ubiquitous computing coupled with a mature textile

industry calls for a new perspective to look at the textiles of the future. The highly spe-

cialized, precision, low cost, and automated textile manufacturing process when integrated

with electronics components serves as a new host platform for several computing applica-

tions. With the change in computing paradigm from stand-aloneprocessing to distributed

and ubiquitous computing, e®orts have been made to look for new techniques and technolo-

gies that can meet these computing demands. The familiarity with fabrics and textiles for

decades and the omnipresence of textiles, ranging from clothing and carpets to upholstery

makes them a suitable candidate to serve as a host to electronic components such as sensors,

processors, and power sources. Also, because the electronics is embedded into the textiles

seamlessly, they have a comfortable form factor which does not get snagged by moving parts

of the human body. This new promising ¯eld of computing has been named \E-Textiles."

Some early work done in e-textiles [1] [2] proves the feasibility and the bene¯ts of embedding

1
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electronics into textiles.

User location awareness is one of the many application topics that are needed in a ubiquitous

computing environment. Many applications arising in the ¯eld of wearable computing require

some knowledge of the location and orientation of the user [3] [4] [5]. This information can

allow appropriate cues to be given to a wearer with impaired sight, help tracking people

within a closed environment, or help in designing a mobile augmented reality system. This

problem of location awareness is seen in a variety of forms and applications [6] [7] [8] [9]

helping the user maintain a large and complex industrial environment, inform the emergency

services in the case of casualty, or even help ¯re-¯ghters in a rescue operation. In most

open, outdoor settings, location awareness can often be satisfactorily determined using a

combination of a Global Positioning System (GPS) unit and a digital magnetic compass. In

most large buildings, however, the GPS signal is typically unavailable and the readings from

a digital compass are distorted. To address this limitation, systems have been proposed that

include an infrastructure installed in the building to assist in determining the location of a

given user [10] [11] [12] [13].

On the other hand, autonomous location systems are desirable because they do not require

the extra cost of installing the infrastructure and the securityof location information is

maintained. Systems that are not autonomous have to trust the infrastructure to maintain

location privacy, which might not be acceptable to some users. This thesis presents an

autonomous wearable system for location awareness within a building that does not rely on

an installed infrastructure.
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1.2 Contributions

This thesis presents the design and implementation of a ¯rst evertime-of-°ight sensor based

autonomous wearable location awareness system that does not rely on any installed in-

frastructure. The fundamental issues, constraints and limitations involved in designing a

wearable location awareness system are addressed. The thesis proposes a novel algorithm

that combines the simulation needed to interpret complex sensor data with the real world

data to determine user's location. A new class of re°ecting elements is added in the simu-

lation model of the sensors, which improves predicting the sensorbehavior in a real world.

To demonstrate the e±cacy of the proposed algorithm, a wearable belt-based prototype has

been constructed, that is capable of collecting the data necessary for location awareness.

Thus, the thesis presents an entire framework for designing and constructing an autonomous

wearable location awareness system.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 lays out the background of e-textiles and

location awareness systems by discussing the various related workin their ¯elds. Chapter 3

presents the various issues and constraints in the design of an autonomous wearable system

for location awareness. The simulation model used for ultrasonicpropagation in the proposed

system is described in Chapter 4. The algorithm proposed for the location awareness system

to locate the user within a building is given in Chapter 5. Finally, experimental results are

presented in Chapter 6 and the concluding remarks are given inChapter 7.



Chapter 2

Background

The ¯rst section of this chapter gives an overview of wearable computing and e-textile ap-

plications. The second section presents previous work related to location awareness and

discusses them in the context of wearable e-textiles.

2.1 Electronic Textiles and Wearable Computing

The world of ubiquitous and pervasive computing spread wings after Weiser presented his

vision in the early nineties [14]. The integration of low power and inexpensive electron-

ics, network framework to communicate between distributed computational elements, and

a supported software architecture is essential for a successful ubiquitous application. Sev-

eral technique, methodologies and computational architectures have developed since then to

enable ubiquitous and pervasive computing. Electronic textiles (e-textiles) provide another

means to provide the computational power ubiquitously.

Omnipresence of fabrics and the mature process of weaving fabric presents an excellent

4
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Figure 2.1: E-textile pants for context recognition and gait analysis

opportunity to serve as an underlying platform for ubiquitous computing. The conceptual

interpretation of e-textiles varies from seamless integration of the interconnection ¯bers and

electronic components to the fabric to a fabric woven with conductive ¯bers.

Numerous wearable computing applications for e-textiles have been developed in the past

decade spanning the diverse areas of medical monitoring, entertainment, user interfaces,

context awareness, and assistance to people. An early initiative in e-textiles was taken by

the MIT Media Lab [15], where they utilized embroidery and capacitive sensing to develop

applications such as the fabric musical instrument and the ¯re°y dress, made of a two layers

of conducting fabric separated by non conductive ¯bers. The class of applications, such as a

musical jacket, a ball, and a tablecloth made use of the capacitive properties of fabrics that

when pressed, activated the embroider circuitry. They demonstrated the visual, tactile, and

mechanical potential of sewing circuitry into textiles.

Wearable applications that are not e-textiles have been developed to recognize the user

context. Starlab Research [16] recognizes the user motion, such as walking or running by

attaching accelerometers to the pants of the user. The data from these accelerometers was
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organized and ordered using Kohenen Self Organizing Maps with a probabilistic ¯nite state

machine to transition between the states. Alternate rounds of training and testing ensured

that the pants recognize the user's context. Another context sensing application, developed

by Clarkson [17], uses only a wearable camera and microphone toregister high level user

contexts such as leaving/entering an o±ce, sitting on the grass,entering the subway etc. The

classes of user context were modeled and trained with Hidden Markov Models and was used

to predict context on maximum likelihood criteria. The sensorbadge and jacket [18] uses

accelerometers and °exible fabric sensors to classify user context by di®erentiating the voltage

generated in di®erent classes of activities. The simulation environment for motion analysis is

described in [19]. It demonstrates the use of simulation via a prototype pair of pants shown

in Figure 2.1, which embeds accelerometers, piezo-electricstrips and temperature sensor

among other sensors for user context recognition and gait analysis. The design framework

towards the development of e-textiles is presented in [20].

In the ¯eld of medical monitoring and care, the Wearable Motherboard project [21] demon-

strated the possibility of integrating di®erent types of sensors,communication, and compu-

tational elements into the fabric. This motherboard was designed to be used as an assistive

tool for monitoring the gun wounds for injured soldiers in a combat situation by detecting

discontinuity in the optical ¯ber. The sensate liner project [22] materializes as a form ¯tting

garment used for monitoring the medical conditions of soldiers. The garment has biological

and physical sensors integrated into an elastic fabric supportedby an intra-sensor data fusion

network that analyzes the casualty status of the soldier.

Acoustic applications such as speech processing and source separation [23] and large-scale

beamforming applications [24] add another dimension to the applications possible on an

electronic fabric. The large-scale beamforming application, shown in Figure 2.2, was one of

the ¯rst applications to deploy sensors and computational elements in a fabric. The data

from the acoustic sensors was used for computing a vehicle's direction of arrival (DOA).
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Figure 2.2: Large scale beamforming prototype

Wearable computers have been put to use for helping visually challenged people. The people

sensor project [3] is one of these, where the distance between theuser and an obstacle is

conveyed to the user via a vibrotactile feedback. The projectuses pyroelectric and ultrasonic

sensors to di®erentiate between animate and inanimate objects and to measure distances to

an obstacle respectively. Similar to this is the VibraVest [25],which conveys the velocity

of an object moving towards the user through vibrotactile feedback. Wearables also help

people in their day to day life as the shopping jacket [26]. It encompasses a pinger, which

is used to signal the presence of a shop and its website and a GPS unit, which speci¯es the

particular branch of the shop. The wearable uses these information to determine if the user

needs to be reminded for any shopping or not.

Electronic computers are ¯nding uses in entertainment and augmented reality. Context

Compass [27], Touring Machine [28], and Augmentable Reality [29] are some of the work

related to augmented reality. The applications augment meta-data about the environment
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over the user's head mounted display so that the user has a better knowledge of the physical

space in which he is currently present. A spatial conferencing space [30] makes it possible

for the user to interact with his/her colleagues in cyberspace.

Various I/O mechanisms have also been constructed using wearable electronic textiles. The

lightglove [31] is a watch-sized virtual typing device worn underneath the wrist. The light

beams in the glove sense the movement of hand and ¯ngertips to enable typing on a virtual

keyboard. Use of piezoelectric sensors as an input mechanism was demonstrated in [2] where

the movement and tapping of ¯ngers was detected by the piezoelectric sensors embedded in

a glove. Interaction of the wearable e-textile with the user was demonstrated in [32] with

the use of a tactile display, which stimulates the perceptual nerves of the skin.

The issues involved in all the above applications include the type, quantity, and placement

of sensors, power consumption, software, and network architecture enabling communication

and the comfort assessment of the user wearing a electronic textile.

2.2 Location Awareness

This section describes the related work in the area of indoor location awareness systems

using ultrasonic time-of-°ight based systems, with a focus on issuessuch as number/other

type of sensors required and processing/storage requirements. Location aware systems can

be broadly classi¯ed into two categories, those that require an installed infrastructure and

those that are autonomous.

Most of the personal indoor location aware systems to date have required an infrastructure,

including Active Badge [10], Active BAT [11] [12], Cricket [13], and RADAR [33]. Active

Badge uses di®use infrared (IR) technology with a transmitter located on a user. The
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transmitter emits an IR beam, which is received by the sensors installed throughout the

building and sent to a central server that computes the user's location. A similar concept

is implemented in another system [34], where along with computing the location of the

user, the system identi¯es the user as well. The IR transmitter blinks the user code, like

an IP address, which is picked up by the cameras and the user is identi¯ed. Active BAT

is similar to the Active Badge system except that it uses ultrasonictransmitters/receivers

rather than IR. The receivers, which are embedded in the environment, compute the time

of °ight to determine their distance from the user and forward this information on to a

central computer to ¯nd the location of the wearer. The users of both these systems do

not know their own location, but locations are known by a central monitoring server. The

Cricket system reverses this con¯guration by installing the transmitters in the environment

and placing the receiver with the user. Each user's system can independently determine their

location given knowledge of transmitter locations. The RADAR system takes advantage of

an existing wireless network infrastructure to compute user location based on information

such as signal strength and signal-to-noise ratio. A pre-determined table of signal strength

and signal-to-noise ratio data is computed and kept in the database. As the user walks

through the building, the real time data is matched with the entries in the table and the

best ¯t is declared as the user's present location.

In the world of robotics, ¯nding the 2-D location as well as theorientation of the robot

is known as \pose estimation." Most autonomous location and poseestimation systems for

robotics have been designed for the purpose of either navigating through a building or con-

structing a map of a building as the robot moves through it. Elfes [35] uses a probabilistic

pro¯ling method to generate the map of the environment, described by occupancy grids,

marked by empty and occupied regions. Elfes acknowledges thewave spreading characteris-

tics of the ultrasonics and uses this knowledge to calculate the occupied and empty region

probability. The maps generated at two di®erent positions are then correlated to compute
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the location of the robot. This algorithm has large computational and storage requirements,

making it problematic for wearable applications, and provides more functionality than is re-

quired for simple navigation. Finally, experimental resultsin [35] indicate that twenty-four

or more sensors are required for adequate functionality. Crowley [36] described a navigation

system for a known environment that continuously updates a model of the environment.

This model is used for comparison with the latest ultrasonic sensorreadings to estimate the

location. This system has the drawback that it builds up the network of places in a special

active learning mode, with the learning phase preceding the navigation phase. Also, it needs

up to 120 sensor readings per 360 degree scan, which, for stationary body-mounted sensors

would be prohibitively expensive in cost and area; the robot for this system uses a rotary

sensor, which would not be wearable.

Sha®er [37] and Rencken [38] give algorithms for feature-based pose estimation in which

thousands of scan points are collected from the environment and features are extracted out

of those scan points. These features are then matched with the predicted features in the real

environment and the pose giving the best correlation is assumed to be the current location

and orientation. The range sensor used in this system can be eitherlaser or ultrasonic, but

the underlying principle of matching extracted features and predicted features is the same.

Gonzalez [39] uses a technique called iconic pose estimation, where matching is carried out

between the current range scan points and a map consisting of line segments connecting the

range points from previous scans. Each point is tested as a matchwith the line segments in

the map. The pose is computed by minimizing the error in distance between the map's line

segments and the current range scan points. These methods use rotary ultrasonic sensors to

provide thousands of sample points. A comparison of these two pose estimation techniques

is presented in [40].

There have been a few wearable autonomous location and navigation systems. The problem

of location recognition is tied to the problem of context awareness in [41] [42]. The system
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recognizes the user motion using accelerometers, which is thenused to determine the user's

location via integration of incremental motions. When the system detects a walking behavior,

the location recognition method updates the current location using dead reckoning. The

system uses fuzzy logic-based inferences to recognize the user motion and tries to match the

walking pattern stored in a pre-computed location transitiontable to the current walking

pattern to compute location. The location transition table also contains the orientation of

the user captured through a digital compass in the training phase. The system can recognize

the user's motion of walking on a ground level, going up the stairs, and going down the stairs.

Once, the unit has been trained on a sequence of unit motions transitioning from one place

to another, these recorded sequences (location and orientation) are converted to fuzzy logic

rules for matching with the real sequence during the testing phase. During the testing phase,

the unit tries to match the unit motion of walking with the dat abase created during training.

Once a match is found, the current location of the user is updated.

By analyzing the environment's characteristics and combining it with the pattern of human

motion, a user can navigate within a closed environment as demonstrated in [43]. This system

uses a 3-D magnetometer, °uorescent light detector, and temperature sensor to capture the

environment's characteristics at a particular location. The human motion pattern is detected

using accelerometers. The system learns the model of the environment during a training

phase and uses this model to infer the user's location at run time. The training phase

creates a Gaussian distribution of the sensor readings at a location and these readings are

used to update the probability distribution function of beingat a location during run time.

The probability distribution function is updated again with the dead reckoning data that is

collected through the accelerometers.

The other methods of location recognition in wearables makes use of image pattern matching.

Finding a user's location based on image-based registration between video frames and set of

images taken beforehand is described in [44]. The system acquires panoramic images of the
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environment and augments those images with information about them and their relationship

to the neighboring images. The video frames are transformed toa cylindrical surface using

multiple assumptions corresponding to the angle of view. Then these transformed images

are matched with the recorded panoramas. The location givingthe best cross-correlation

between the image and panorama is the user's location. It also minimizes the e®ect of

ambient light by taking the weighted sum of the absolute di®erence of brightness and it's

gradient between frames. Similar to this method is one that uses chromatic histograms for

location recognition [45]. During the training phase, the user moves around the environment,

with the system computing and storing the chromatic histogram for each frame. At run time,

when the user is moving in the same environment, the chromatic histograms for the current

frames are matched with the ones in the database. The best matchbetween the recorded

and current histogram gives the user's location.

In all of the location awareness systems that were reviewed, either the system needed an

installed infrastructure or even when they were autonomous, the number of data samples

needed for a successful location estimate was beyond the reach ofa wearable computer. For

wearable location awareness/recognition systems, the unit had to be trained ¯rst before they

could actually be put to use. Also, for many of them, once the systemswitched users, the

training phase had to be repeated again as these systems dependedon the individual user's

motion.



Chapter 3

Design

This chapter addresses the various issues and constraints in designing an autonomous location

awareness system. Deciding the design variables in the early stages of the development life

cycle of a product helps in reducing the time and e®ort required. Changing the design

variables often during the development phase might lead to unpredictable and unwanted

results, which complicates the design process further. The outcome of the design process

should be a set of hardware-software solutions that can deliver the required result with an

acceptable accuracy and cost.

The ¯rst section of this chapter enumerates the design variables involved in the design of

a wearable autonomous location system. The subsequent sections discusses each of these

design variables in detail.

13
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3.1 Design Variables

The design variables for a wearable autonomous location awareness system span multiple

domains including the physical environment to be sensed, the motion of the human body,

tolerance to the motion and the software architecture of the system. The design variables to

be explored for such a system are the following.

² What types of sensors are required?

² How many sensors of each type are required?

² What is the optimum placement of sensors on the human body?

² What algorithms provide the accuracy necessary for analyzingthe sensor data?

² What processing targets are available to compute the locationawareness algorithms?

² How should information be reported to the wearer?

The answers to the ¯rst four questions are interrelated, with the choice in one area a®ecting

the choices made in the other areas. For example, limiting thenumber of sensors chosen

will eliminate from consideration some of the pose estimation algorithms that requires many

sensor readings. Also, the type and variety of sensors used will help determine the software

algorithm for the system. Thus an eigen-set is desired, partitioning the solution optimally

into hardware and software.
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3.2 Choice of Sensors

Sensors can be referred to as the windows of the engineering system. Sensors act as an

interface to the physical environment providing their characteristics. The sensors should

also be able to accurately sense the information and provide it to the system in a timely

fashion. The di®erent kinds of sensors used in a typical locationawareness system consist of

the range sensor, the orientation sensor, and the user motion sensor.

3.2.1 Range Sensors

The heart of the location awareness system lies in the range measurement sensor. Range

sensors provide the distance to the nearest obstacle in the sensor'sline of sight. A 360 degree

set of these range readings will be used to calculate the wearer's location within the environ-

ment. Possible options available to measure distance to an obstacle in air include ultrasound,

laser and infrared (IR). These sensors are evaluated in terms of power consumption, cost,

size, accuracy, maximum range, and comfort level.

Laser Range Sensor

The laser range sensors are known to be extremely coherent, directional, inert to environmen-

tal conditions and accurate in measuring the distance to an obstacle in their line of sight. The

laser range sensors have some drawbacks as well. Outdoor laser range¯nders [46] [47] [48] [49]

have the limitation that the minimum distance they can measureis in excess of nine meters.

The high-end, sophisticated laser range¯nders from SICK and AIS[50] [51] [52] have no

minimum distance constraint and can measure distances up to than75m. However, these

sensors are expensive, consume signi¯cant power (about 32watts),and are bulky, weigh-



16

ing approximately 3.2kgs. There are smaller and lighter laser range sensors available from

Micro-Epsilon [53], that are low power and comparatively light weight but they have a lim-

ited range, measuring about 400mm. The cost, weight, and powerconsumption of these

laser range sensors makes them unusable for a wearable application.

Infrared Range Sensor

Infrared sensors are inexpensive, small, light-weight, and power-e±cient, but in its native

form can be highly susceptible to levels of background, °uorescent light and IR re°ectance.

The most commonly available IR range sensing kit is available from Sharp [54] in both

analog and digital versions. The analog sensors have a non-linear voltage response to the

measured distance. The distance corresponding to this voltage can be either curve ¯tted or

approximated, which sometimes falls beyond the capabilities of a small micro-controller. The

maximum distance that can be measured by commonly used IR sensors is 30cm. There are

high-end digital versions available for the same sensor, but they too are incapable of detecting

any object greater than 80cm away in the best environmental conditions. The in°uence of

environmental conditions on the distance measured and the maximum measurable range

discourage their use in an autonomous wearable location awareness system.

Ultrasonic Range Sensor

Ultrasound refers to any sound whose frequency is above the audible range, i.e. above 20kHz.

Ultrasonic range sensors receive or radiate ultrasonic energy inthe range of 20kHz-60kHz.

Ultrasonic sensors provide a nice compromise choice between IR and lasers because, while

they sacri¯ce the high directionality of lasers, they are accurate, light weight, low power, not

highly susceptible to background noise, and relatively inexpensive. Typical ultrasonic range

sensors are commercially distributed by Devantech and Polaroid [55] [56]. The Devantech
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Table 3.1: Design Space for Range Sensors

Accuracy Cost Range Pros Cons

Ultra

sound

1% of the

range

Low 10m Low cost, low power,

light weight, small,

easy to operate and

accurate.

Temperature and humid-

ity of the environment af-

fects the speed and the

attenuation.

Laser 2mm Very

High

100m Almost inert to envi-

ronment conditions.

Highly accurate, di-

rectional and long

range

Very expensive, intrusive,

bulky and power hungry.

IR 3cm Low 80cm Low cost, small, light

weight and power ef-

¯cient

Limited range, accu-

racy dependent on

background, °uores-

cent lighting and IR

re°ectance of obstacle.

range units have a separate transmitter and receiver and can measure distances up to ten

feet whereas the Polaroid transceivers have both the transmitter and the receiver embedded

into a single unit and can measure up to thirty ¯ve feet with an error of less than one percent.

Table 3.1 compares the three classes of range sensors with respectto accuracy, cost, range,

and other environmental conditions.

Polaroid sensors provide su±cient merits over the other range sensors and hence could be used

successfully in a wearable location awareness system. Table 3.2 lists the various commercially

available Polaroid range sensors along with their characteristics. For a wearable system, use

of a transceiver (integrated transmitter and receiver) is preferable to a separate transmitter
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Table 3.2: Polaroid Range Sensors

Series Model Features Beam

Angle

(Deg)

Freq Size

Electrostatic

Transceivers

Series 600

and 700

Transceiver, Range: 6' to

35", 1% accuracy, weights

8.2gm, excellent Receive

sensitivity, suitable in harsh

environment

15-17 50kHz Diameter:

1.69inch

Piezo-electric

Sensors

Series 900 Transceiver, very rugged,

resistance to mechanical

shocks and chemicals

17 X 35 45kHz 1.44in X

1.04in

K-Series 40KT/R

XX

Separate transmitter and re-

ceiver, closed face and envi-

ronmentally rugged

30 - 125 40kHz Diameter:

9.1 - 25mm

K-Series High

Frequency

Transceiver

120KHF25,

200KHF18

Transceiver, closed face and

environmentally rugged,

optimum e±ciency and

impedance matching in air

10 120-210kHz Diameter:

18 - 25mm

L-Series 40LT/R

XX

Separate transmitter and re-

ceiver, open face, reduced

ringing and increased sensi-

tivity

55 - 85 40kHz Diameter:

9.7-

16.2mm

L-Series

Transceiver

40LPT16 Transceiver, open face, re-

duced ringing and increased

sensitivity

55 40kHz Diameter:

16.2mm
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Figure 3.1: Polaroid Electrostatic Environment Grade Sensor

and receiver because of the space bene¯ts of a transceiver. Also, asensor with narrow

beam angle should be chosen as a wide beam angle leads to increased specular re°ections

as explained in Chapter 4. These criteria narrow the list to theelectrostatic sensors or the

high frequency K-Series sensors. It is known from the laws of physics that low frequency

waves travel farther than the high frequency waves, but the directivity of a high frequency

ultrasound is better than that of a low frequency ultrasound. Because the beam angle of

these two types of sensors do not di®er much, one does not o®er signi¯cant advantages over

the other in terms of directivity. The electrostatic sensor shown in Figure 3.1, operates at

a lower frequency, measuring larger distances, and because of its ease of integration, it is

suitable to be used in a wearable system.
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3.2.2 Orientation Sensor

To address the pose estimation problem, information on the user's orientation is required.

Two candidate sensor types are digital magnetic compasses and gyrocompass.

Magnetic Compass

A magnetic compass displays the direction of the horizontal component of the earth's mag-

netic ¯eld at the point of observation. In simpler words, a magnetic compass will always

point towards the earth's magnetic north. A magnetic compassis always associated with

two kinds of error: variation and deviation [57]. Variationis measured in angles and is the

di®erence between the north pointed by the compass and the magnetic north. The variation

error of a compass is due to the earth's magnetic ¯eld being uneven. Though this kind of

error will not a®ect adversely its use in a location awareness system, the other source of error

has a signi¯cant e®ect on the accuracy of the compass. Deviationis the e®ect of the imme-

diate environment on the accuracy of the compass. A digital magnetic compass is a®ected

by magnetic ¯elds in the environment such as those associated with large metal reinforcing

structures in buildings or due to electrical equipment kept in the vicinity of the compass;

errors of up to 80 degrees have been observed in our laboratoryfor Honeywell HMR3000

magnetic compass [58]. Further, a digital compass also needs stabilizing time on the order

of seconds before a reliable reading can be obtained, limiting its utility for some applications

and algorithms.

Gyrocompass

A gyrocompass is a heading sensor based on the principle of a gyroscope, which ¯nds the

true north of earth using an electric spinning wheel. A gyroscope is capable of more reliable
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directional information and is not in°uenced by the environment like a magnetic compass,

but is very sensitive to power supply °uctuations, requires frequent calibration, and its

accuracy is dependent on the motion and speed of the user while walking [59]. Because of

these complexities, no sensor for directly determining user orientation is selected. Instead,

this information will be computed indirectly based on ultrasonic sensor readings in a fashion

similar to that used in the pose estimation algorithms reviewed in Chapter 2.

3.3 Sensor Quantity

The next design issue to be addressed is the choice of the appropriate number of ultrasonic

range sensors to achieve acceptable accuracy at a reasonable cost and wearability. From

the perspective of the cost of the system, as few sensors as possible are desired, but fewer

sensors may lead to insu±cient data and inaccurate results. The accuracy of the system is

typically a function of the number of sensors used and the sampling rate. Moreover, there

is also a relationship between the sampling rate and the number of sensors as interference

between the transceivers should be avoided, i.e., the ultrasonic signal from one sensor should

not be confused with that of another sensor. This calls for a timeseparation between each

successive ¯ring of the sensor a®ecting the sampling rate.

Some increase in sampling rate could be achieved by using transceivers that operate at

di®erent frequencies. In this con¯guration, multiple sensorscan be ¯red at the same time

without interfering with each other and the sampling rate canbe increased by a factor

of number of di®erent frequencies used. Unfortunately, this is not an option available in

inexpensive, commercially available systems. Increasing the number of sensors also after

a certain limit will not improve the accuracy of the system signi¯cantly because of data

saturation. Chapter 6 discusses the experimental results exploring the optimum number of
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(a) (b) (c)

Figure 3.2: Possible con¯gurations for Sensor Placement

sensors that should be used in the system to deliver an acceptable accuracy with a reasonable

cost.

3.4 Sensor Placement

Sensor placement on the human body is tightly coupled with thenumber of sensors being

used in the system and the application in hand. The application might require locating

nearby or distant obstacles based on whether the application isdynamically updating the

map of the environment or computing location information ofthe wearer. If the application

needs to locate nearby obstacles, then the sensors will have to beplaced over the entire

body. This will facilitate the capture of every feature of the environment. For the purpose

of location awareness, obstacles are typically more distant, allowing the cone associated with

the ultrasonic signal to spread, making the upper half of the body more desirable. Figure 3.2

shows some possible con¯gurations of the sensors on the upper fronthalf of the body. A

similar placement is required on the back for 360-degree coverage. For all of the location

awareness algorithms, a 360-degree scan of the environment is required, forcing a similar

requirement for sensor placement.

The two aspects of the human body that need consideration when determining sensor place-



23

ment are size and motion. While the size of the body will determine the spacing between

each sensor, human motion is a much more complex aspect to handle. The system must take

into account the wide range of motion that is associated with sensor placement, e.g., on the

arms and legs and the obstructing e®ect of the motion on the range measurement. A fault

tolerant system should contain some redundant sensors placed appropriately such that when

some sensors are blocked by swinging arms and legs, the redundant sensors can provide the

range readings. Due to the prototyping constraints, the simple belt prototype discussed in

Chapter 6 places all sensors in a single plane equally spaced around the waist of the user

with no fault tolerant architecture, but further explorati on of this design space is desirable.

3.5 Software Algorithms

The design of the application software is crucial to the success of the system. The software

includes the low-level software communicating with the underlying hardware in the system

and the high-level software computing the location awarenessinformation based on the

data generated by the low-level software. This low-level software is hardware dependent,

which needs to be reworked if the hardware is modi¯ed whereasthe high-level software is

independent of the underlying hardware.

The low-level software has to excite the sensors, poll the data from the sensor, preprocess

that data and integrate it in a fashion that it can be meaningfully acted upon to compute

the location of the user. The high level software (the locationawareness algorithm) has

to be chosen from a class of algorithms that are compatible withthe number and type of

sensors chosen, taking into account the accuracy, reliability, range, and sampling rate of those

sensors. This high level software should also be fault tolerant, i.e., if some of the sensors fail

to give a reading, it should gracefully handle the missing data.A detailed description of the
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properties of ultrasonic transceivers and a model for the propagation of ultrasonic signals

in buildings is described in the following chapter. This model is used as the basis for the

location awareness algorithm that is described in Chapter 5.

3.6 Processing Target

There are various targets where the location awareness algorithm can be computed including

² on a desktop computer or a handheld computer,

² on reprogrammable logic, or

² on an embedded microprocessor.

The underlying hardware in the system can transfer the raw data to a high-speed, high-

performance desktop computer or a handheld computer. Using a desktop in the system will

make the system unwearable and hinder the mobility of the user. The system can still be

wearable by using a handheld computer, but handheld computers su®er from the fact that

most of them do not have °oating point processing capabilities. Also, any general purpose

computer will have far more functinality than required for computing location awareness

algorithms, increasing the cost.

Programmable logic is another kind of processing device used ina digital hardware system.

The discussion of programmable logic in this thesis will be limited to an FPGA. An FPGA

is a regular structure of logic cells and interconnect under the control of the user, which the

user can design and program to implement any function that the system has to perform [60].

The internal structure of an FPGA composed of logic cells, programmable interconnect,

control muxes, memory, and I/O blocks is shown in Figure 3.3. The logic cells are made up
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Figure 3.3: Internal structure of an FPGA

of look up tables that can be used to implements combinationallogic, synchronous RAM or

a shift register. The control muxes are in turn used to control the operation of these lookup

tables. The FPGA is classi¯ed either as SRAM based or anti-fuse baseddepending on the

mechanism used to make connections in the device.

An FPGA su®ers from multiple drawbacks that prevent its use in a wearable location aware-

ness system. Firstly, the location awareness algorithm is typically written in a high level

language like C/C++, which cannot be directly mapped into anFPGA. There are no readily

available reliable commercial tools that can compile and synthesize these designs written in

high level language into e±cient bit streams running in an FPGA. The current commer-

cial tools generate the bit streams from a hardware description language such as VHDL or

Verilog, which are the expertise of a hardware engineer as opposed to a software designer

implementing the high level location awareness algorithms. Thus, the absence of a C to

HDL to bit stream compiler is the biggest obstruction in the way ofusing FPGA in the

system. Secondly, FPGA's are priced signi¯cantly higher than a micro-controller rendering

it uneconomical to use in large scale.
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Using embedded microprocessors/DSP's can solve most of the limitations of an FPGA but

not all. While there is no dearth of simulators and debuggers available for microprocessors,

and the user code can be directly programmed into the program memory of the micropro-

cessor, the microprocessors have limited data memory. The low-cost, low-power, low-e®ort

option provided by embedded micro-controllers seems to be a suitable candidate as the pro-

cessing target for the location awareness algorithm. However, the processing capabilities of

the current micro-controllers is not su±cient to execute a complex location awareness algo-

rithm in real-time. The Moore's law states that the number of transistors per square inch on

an integrated circuit will double every 18 months, indicating an increase in the processing

power available per square inch. Thus, the location awareness algorithm is expected to be

used on a low-power processor within a few years. For the prototype described in Chapter 6

a desktop computer is used for computing the high level location awareness algorithm.

3.7 Information Reporting

Information reporting refers to the interface mechanism, extent and timeliness of the pose

estimation information that should be conveyed to the wearer.This design issue of infor-

mation reporting falls in the domain of Human-Computer Interaction, which o®ers several

service models for usage. Based on the needs of the user and the application, the user can

interact with the system within the speci¯cs of an appropriate service model.

The ¯rst design exploration for information reporting is the issue of the user interface to

the system. The information ready for presentation to the user can be conveyed through

a graphical user interface (GUI) on a handheld, through text ona terminal or on a Head

Mounted Display (HMD) [61]. The issue of user interface is tightlycoupled to another design

issue concerning where the location is calculated, either locally or remotely. The possible
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Figure 3.4: Application Scenario 1: Fireman navigating in a crisis situation

options to this design issue are dependent on the needs of the application. If security and

data privacy is crucial to the application, the location processing should be done locally

and one of the above display methods can be used to convey the information as shown in

Figure 3.4. Alternatively, if the motion of users has to be tracked in a building, the location

information can be processed at a remote location with the wearer having no knowledge of

it's current location as shown in Figure 3.5. In this case, nothing is being reported to the

wearer of the system. Another service issue to be explored relates to the time instant at

which the location information should be displayed to the user.In one service, the system

continuously reports the pose estimation information to the user, whereas another service

model displays the pose estimation only when the user requests it.The prototype used in

this research processes the location information locally and continuously updates the user.

More thorough research in this area is desirable.
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Figure 3.5: Application Scenario 2: People Location Monitoring



Chapter 4

Ultrasonic Signal Characterization

and Simulation Model

This chapter describes the behavior and properties of ultrasonic wave propagation as they

travel, re°ect and di®ract in a medium. This understanding will be helpful in building a

simulation model, which will in turn be used to predict the range measurement returned by

the ultrasonic sensors.

This ¯rst section of this chapter discusses the principle of time-of-°ight (TOF) based range

measurement systems. The second section describes the physical characteristics of an ultra-

sonic wave propagation in a real environment and suggests a technique to employ this theory

of propagation into a simulation model. The last section compares and discusses another

simulation model used for range estimation.

29
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Sensor

Obstacle

Distance = d

Amplitude

Threshold Level

time

t = (2 * d)/c

(a)

(b)

0

Figure 4.1: Principle of Time of °ight ranging system; (a) Sensor and obstacle con¯guration,

(b) Waveform detected at the face of the sensor

4.1 Time of Flight System

Many of the acoustic range measurement devices available Somesystems consist of a sep-

arate transmitter and receiver units whereas some have both the transmitter and receiver

embedded into one.

Figure 4.1 shows the principle involved in a TOF based ranging system. Part (a) of the ¯gure

shows the physical con¯guration of the environment with sensor and the obstacle placedd

units apart. Part (b) of the ¯gure shows the impulsive voltage excitation of the sensor. At

time t = 0, the sensors emits a burst of ultrasonic wave towards the obstacle, which re°ects
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the wave back to the sensor. The range measurement is achieved bycomputing the time, t,

that it takes for an ultrasonic signal to travel from a transceiver to an obstacle and return

to the transceiver.

The ¯rst echo whose amplitude exceeds a threshold is taken to be avalid echo for time

measurements and any further echo received is ignored. The range measurement is thus

calculated asd = c £ t=2, wherec = speed of sound in air. For simplicity, the possibilities

of echos from the roof or the °oor of the space is ignored, as we are concerned with a two-

dimensional scan of the environment. To generate a reading, a TOF reading is placed at

this range along the sensor's line of sight. This process is repeated, sequentially, for every

sensor in the system to form a 360-degree representation of the surroundings.

Apart from ignoring multiple echoes, the system also ignores the absence of an echo. If

the sensor does not detect an echo within a certain time frame, the absence of an obstacle

is inferred in that orientation and a large range reading (twice the maximum range that

the sensor can measure) is produced. This large reading is eliminated while processing the

location information.

4.2 Ultrasonic Wave Propagation

Unfortunately, propagation and interpretation of the ultrasonic signals is not simple and

needs further examination. The wave transmitted from an o®-the-shelf ultrasonic transmitter

is not an in¯nitely narrow beam with strong directionality. T he ultrasonic wave interacts

with elements of the environment in a complex way such that theecho received by the

receiver is not necessarily due to re°ection from an obstacle inthe transmitter's line-of-

sight. The echo can be received after multiple re°ections, re°ection from any obstacle in

the beam, or after di®raction from the obstacle as shown in Figure 4.2. The sensor in the
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Figure 4.2: Multiple sources of re°ection

¯gure emits an ultrasonic signal towards the cornerC, but after leaving the transmitter

the wave spreads in the shape of a cone and gets re°ected byA, B and D. This signal also

experiences multiple re°ections atE and F before it reaches the receiver. The re°ection that

produces a range reading is dependent on the angle of inclination of the ultrasonic wave front

to the re°ecting object, distance to the obstacle, radius of the sensor, beam width, and the

operating frequency of ultrasonic sensors used. Therefore, we need a simple yet explanatory

model depicting the physical characteristics and behavior ofthe ultrasonic waves and the

way it interacts with the structures in the environment. This model will be used in the

construction of the algorithm in the next chapter.

The ultrasonic model that we used in our system is a model describedby Kuc and Seigel [62].

This model uses the principles of linear systems theory, acoustics, and digital signal process-

ing to derive a impulse-response model for acoustic waves.

The model separates the transmitter and receiver and breaks them into small elements for
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analysis based on Huygen's Principle. The model follows a impulsive response approach in

which the impulse is provided by the ultrasonic signal producedby the transmitter and the

response is the echo received at the receiver after re°ection by an obstacle. The convolution of

this impulse-response and the original ultrasonic pulse waveform produces the signal observed

by an element of the sensor. The impulse response of each small element is integrated to

derive the impulse-response of the whole sensor. For simplicity, the model makes some

assumptions without sacri¯cing much accuracy. It is assumed thatthe re°ecting surface is in

the far ¯eld of the sensor such that the spherical wave front originating from the transmitter

can be taken as a planar wave front by the time it hits the obstacle. Another simplifying

assumption made in this model is that re°ections are lossless. The last assumption made is

that intersecting walls are perpendicular to one another.

Because the receiver membrane is sensitive to only the normallyincident waves, an atten-

uation factor of cos®is applied to the output of each element of the sensor if the sensoris

inclined at an angle of® to the wave. Kuc derives the impulse-response of the transmitter-

receiver pair as

hT=R =
Z 2z+ a sin ®=c

2z¡ a sin ®=c
hR(¿; z; a; ®):hR(t ¡ ¿; z; a; ®) d¿ (4.1)

hR(t; z; a; ®) =
2ccos®
¦ asin®

µ
1 ¡

c2(t ¡ 2z=c)2

a2 sin2 ®

¶ 1=2

(4.2)

when 2z¡ a sin ®
c · t · 2z+ a sin ®

c and 0< j ® j< Beam width of the sensor,

hR(t; z; a; ®) = ±(t ¡ 2z=c); (4.3)

when ® = 0, and

hR(t; z; a; ®) = 0 ; (4.4)

for other values oft; ®, wherea is the sensor radius,® is the angle of inclination of the sensor

to the re°ecting element, andz is the distance to the obstacle.



34

wall corner edge

Figure 4.3: Wall, corner, and an edge

In the process of detecting echoes, if the sensor is normal to the wave front, the wave plane

traveling towards the receiver is swept across the face of the sensor instantaneously. But, if

the sensor is inclined to the wave front at an angle, there is a ¯nite time for the wave plane

to travel across the receiver. This time is directly proportional to the angle of incidence and

accounts for the limits of the convolution. By reciprocity,the transmitter, when excited by

an impulse, will also have the same impulse-response as that of the receiver in the detection

process. Thus, when the wave front is perpendicular to the sensor the amplitude of the

impulse-response is maximum. The amplitude decreases and the duration of the impulse

response increases with increasing inclination angle. From theimpulse-response equations,

it is clear that a range reading will be produced only when theangle of incidence of the

ultrasonic wave front to an obstacle is within the beam width ofthe sensor.

Kuc applies these propagation fundamentals to deduce the range readings produced by the

sensor in a real world. The simulation model of Kuc classi¯es the physical environment

into walls, corners (concave right angles between walls), andedges (convex right angle be-

tween walls) as shown in Figure 4.3. The waveform detected at the receiver after re°ec-

tion/di®raction from walls, corners, or edges can be represented as

r (t) =
Z + 1

¡1
p(¿) £ hT=R(t ¡ ¿) d¿; (4.5)

where p(¿) is the pulse waveform. The ¯rst echo received at the receiver with a signal
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strength greater than a certain threshold will give the range reading.

An important point is that the walls and corners cause acoustic waves to re°ect whereas

an edge will di®ract waves, with the edge as the point source forthe di®racted waves. The

di®raction will attenuate the signal by a factor of
³

2¦
p

z=¸
´ ¡ 1

, where¸ is the wavelength

of the ultrasonic waves. Corners will also di®ract ultrasonic waves but the magnitude of the

di®racted signal is much smaller than the magnitude of the re°ected signal. Therefore the

di®racted part of the signal for a corner is ignored.

4.3 Another simulation model

The previous section presented a simple propagation model for ultrasonic waves along with

a simulation model to predict the range measurement. The accuracy of a sonar model is

directly proportional to the details of propagation characteristics represented. A detailed

representation will increase the model complexity requiringhigh computational power and

time. The simulation model described in the previous section has acceptable accuracy and

processing requirements for a system such as location awareness. There are much more

sophisticated ultrasonic models available such as the model described by Dudek [63] that

predicts the sonar reading better. This model is studied brie°y to decide if it can be used

e±ciently in the location awareness system.

This model utilizes the same underlying propagation concepts but di®ers in the way these

concepts are implemented in the simulation model. Rather than accounting for only a

single re°ection, this model goes a step further by modeling multiple specular re°ections.

A real environment is seldom composed of a single re°ecting surface but multiple re°ecting

surfaces that account for multiple re°ections. They use a method similar to a ray tracing

algorithm following the path taken by the pulse as it interacts with di®erent structures in
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the environment. This algorithm works by generating a fan ofrays from the transmitter,

and if the intersection of these rays with the closest obstacle is not within the ray spacing of

a corner or is not perpendicular to the wall, then the re°ected ray is generated and stored in

a queue. The signal strength of the ray is attenuated after eachre°ection. The next closest

obstacle is then checked, and the process is repeated until theray reaches the receiver or is

su±ciently attenuated.

This process requires high computational power and time that, given the imprecise knowledge

of our environment, is not warranted in our application. This imprecise knowledge arises

because, while we have a map of the building, we do not know the location and re°ective

nature of every object within the rooms of that building. These objects include stationary

furniture such as desks, movable furniture such as chairs, books on bookshelves, doors that

may be open or closed, and people moving throughout the building.



Chapter 5

Description of the Algorithm

Having familiarized ourselves with the model of propagation of ultrasonic waves, we are now

ready to explore the location awareness algorithm in detail.This chapter will describe a

new algorithm for computing a user's location and orientation given readings from a set of

ultrasonic sensors and a map of a building. The location awareness algorithm described in

this chapter can be subdivided into two parts, pose estimation and room occupancy. The ¯rst

section describes pose estimation, which refers to the knowledge of location and orientation

of the user within a room. The next section describes the room occupancy algorithm, which

refers to the knowledge of the room in which the user is currently located.

5.1 Pose Estimation

The ¯rst task of the location awareness system is to determine a user's position in a two di-

mensional co-ordinate frame along with the torso orientation. The pose estimation algorithm

is an e®ort towards achieving this goal in an environment with no supporting infrastructure.

37
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Figure 5.1: Sample Room

Pose estimation is a phrase widely used in the world of robotics and numerous algorithms

have been designed to estimate the pose of robots. But while these algorithms are acceptable

for use on machines, they are not acceptable for wearable computing as they use rotatory,

bulky, intrusive, and unwearable sensors. Poor wearability andlow comfort level in using

these machine-based systems on humans has motivated the development of new algorithms

speci¯cally to be used on wearable computers. The algorithm forpose estimation for wearable

computing uses range measurements that come from an array of ultrasonic transceivers,

much fewer in number than used in robotics, placed on a single plane of the user's body,

and positioned to produce a 360-degree scan of the surroundings.The algorithm attempts

to match these readings to simulated measurements computed from an implementation of

the model in the preceding chapter. The matches are attempted against a set of postulated

locations and orientations for the user, and the best match is selected as the user's current

location and orientation.
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This algorithm takes as initial input an architectural map (in a text format) and an initial

estimate of the user's location and orientation. The architectural map of a building is

partitioned into rooms and each room is then converted into text format. The architectural

map of a room is converted to text format by classifying the features of the room into walls,

corners and edges. The walls are marked by its end points, whereas corners or edges are

marked by the intersection point of the two walls forming them. The architectural map of a

sample room shown in Figure 5.1 can be converted to text format as shown in Table 5.2.

The ¯rst row of the table lists the number of walls, corners and edges in the map and the

following rows describe them. The syntax to describe a wall is

f 1g f x1g f y1g f x2g f y2g

where (x1; y1) and (x2; y2) are the end points of the wall. The syntax for the description of

the corners is

f 2g f xg f yg

and for an edge is

f 3g f xg f yg

where (x; y) is the intersection point of the walls forming the corners/edges.

The last set of rows in the table correspond to the two edges of theendpoints of the door of

the sample room. The frame of the door mounted in the walls di®racts the ultrasonic waves

and acts like an edge of the ultrasonic propagation model. In the absence of these edges

in the text based architectural map of a room, error in estimating the pose increases as a

user approaches the exit. Because the location of the exits in all the rooms are known from

the blueprint, these artifacts are added to the text based architectural map to improve the

accuracy of pose estimation.
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Figure 5.2: Architectural map in text format

10 7 5

1 0 0 0 6.45

1 0 6.45 4 6.45

1 4 6.45 4 7.5

1 4 7.5 0 7.5

1 0 7.5 0 20

1 0 20 4 20

1 4 20 4 22

1 4 22 19 22

1 19 22 19 0

1 19 0 0 0

2 0 0

2 0 6.45

2 0 7.5

2 0 20

2 4 22

2 19 22

2 19 0

3 4 6.45

3 4 7.5

3 4 20

3 19 15

3 19 19
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After the architectural maps of each room are converted to their text format, higher-level

information about the position of the rooms in the building isneeded. This information

is stored in a con¯guration ¯le, which stores the door position in all of the rooms. This

door information is augmented by the details of the room to which this door opens. A

con¯guration ¯le will have the format

f CurrentRoomg f x1g f y1g f OpeningRoomg f x2g f y2g

where (x1; y1) is the door position in the current room and (x2; y2) is the same door's position

in the opening room. Each door in the architectural map of thebuilding will have an entry in

the con¯guration ¯le. Thus, a combination of the text-based map ¯les and the con¯guration

¯le will convey all of the information needed from a blueprint of the building.

The algorithm starts with the approximate initial user pose andestimates the user's pose

thereafter. For example, a user should note which entrance wasbeing used when ¯rst entering

the building. Once the algorithm begins execution, the systemtakes range readings from all

of the sensors, making two passes and averaging them to mitigate the e®ect of noisy data.

This gives the average distance to a perceived obstacle in eachsensor's line of sight. Because

the echo received at the receiver can be due to specular re°ections, and may not represent

the actual distance to an obstacle, spurious points due to specular re°ections should be

eliminated. We use the knowledge that, due to specular re°ections, the distance returned

by the sensor will be substantially greater than the actual distance, to eliminate outliers in

the set of readings.

Speci¯cally, the data samples in the set outside of the range of the mean plus twice the

standard deviations,mean + 2 £ std will be treated as outliers and ignored. This ensures

that only the scan points that are very distant from the rest of the points are ignored. A

set of scan points in a room is shown in Figure 5.3. The scan points three and four are very

distant from the rest of the population and are eliminated fromthe scan set.
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Figure 5.3: Outliers due to specular re°ections

In order to match the simulated measurements with the real measurements, the algorithm

postulates the user movement between successive scans. The postulated user movement

between sensors readings (approximately one second per scan in the implementation) is

bounded by how far a person is expected to move during one secondof normal movement.

Results from the Motion Capture Library of CMU [64] indicate that a person normally walks

at approximately 1.65 feet/second. The postulated movement for location computation

is slightly expanded over 1.65 feet to compensate for potential errors in the position and

orientation computation. We have bounded the postulated usermotion to within a circle

of radius ¯ve feet. Further, the results from the Motion Capture Library of CMU indicate

that a person rotates a maximum of 30 degrees/second when veering left or right during

walking and it takes about two seconds to veer. Thus the user rotation is about 15 degrees

per second. The postulated user motion is constrained to§ 20 degrees between samples in

the implementation.
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Postulated LocationsUser

5 feet

1 degree20 degrees

Figure 5.4: Set of postulated positions and orientations to test for location

Given these bounds, a discrete set of points and orientations is generated that represent

candidates for the user's position and orientation within those bounds as shown in Figure 5.4 .

Prior to matching a candidate point against the real data, thepoint is ¯rst tested for inclusion

to make sure that point is indeed within the room being checked. The inclusion test begins

by drawing a horizontal line through the candidate point andcounting the number of times

it intersects with the walls of the room. If it intersects the walls of the room an even number

of times, then the point is outside the room, whereas if the lineintersects the walls an odd

number of times, then the point is de¯nitely within the room and can be matched with the

real ultrasonic data. Figure 5.5 shows a scenario with a hypothetical room in which a line

through points A, B, and D intersects the room boundary an even number of times and

the line through point C intersects the room wall only once. Thus, points A, B, and D are

outside the room and will not be included for matching, whereas simulated measurements

will be generated for the point C and will be matched with the real set of measurements.
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Figure 5.5: Candidate points within and outside the room

Then, for each candidate location/orientation, the set of ranges that would be expected to

be read from the sensors is computed using the simulation model. This expected set of

readings is matched against the actual data with the best matchbeing chosen. Speci¯cally,

the matching process selects the candidate location/orientation that minimizes the weighted

sum of di®erence of the real points and simulated points. In the weighting system, the

re°ections from walls are given more weight than the re°ections from corners or edges, based

on the observation that single re°ections from the walls received at the sensor will not be

specular, and thus should be given more weight than others. Thus,the matching process

with unequal weights will try harder to match the range measurements from wall re°ections

rather than from corner/edge re°ections. As will be shown experimentally in Chapter 6, the

best results are achieved when the wall weighting,w1, is twice or more than the corner/edge

weighting, w2.

The objective function to be minimized is the function
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Figure 5.6: Insu±cient match points

P
w1(real ¡ simulated)w +

P
w2(real ¡ simulated)c

w1n + w2m
; (5.1)

wheren is the number of wall readings andm is the number of corner/edge readings.

Further, if the number of potential matching points falls below a threshold value (four

matches in the implementation), then the candidate location is discarded. The simulation

always returns the range readings for fewer number of sensors than used in the system as some

sensors are not oriented to the re°ecting elements within the beam width of ultrasonic waves.

For an erroneous orientation, the range readings returned by the simulation may be even less.

If for some of the sensors for which the simulation returned a range reading, the real data is

ignored because of the outlier elimination process, the corresponding matching points may

fall below the threshold, causing the candidate location to bediscarded. Figure 5.6 shows the

simulated range measurements for eight sensors at an erroneous location. Only three range

readings were generated from simulation, providing reasonable grounds for discarding the

candidate point due to insu±cient matching points. Furthermore, for one of the simulated
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sensors, sensor number eleven, the real reading is expunged in theoutlier elimination process,

leading to only two matches for this candidate location. Therefore, this candidate location

will not be considered for matching.

5.2 Room Occupancy

The preceding section described an algorithm for determininguser location within a single

room. But for an e®ective location awareness system, it should also be able to provide

higher level location information to the user. This higher level information includes, but is

not limited to the knowledge of the occupant °oor level, hallway, or room in the building.

This section describes an algorithm that works with the algorithm for location within in a

room to determine which room a user moves to when leaving a room. In addition to testing

a set of hypothetical positions within a room, the algorithm also tests adjacent rooms as

candidates for the user's location when the user moves near an exit from the current room.

A °owchart for the overall location awareness algorithm is given in Figure 5.7.

The speci¯cs of the room occupancy algorithm are as follows. Ifthe current position is close

(within four feet in the implementation) to the exit of the current room, the set of sensor

readings collected at this position are matched with the current as well as the adjoining

rooms. These adjoining rooms are called \candidate rooms," anda queue is maintained to

hold the candidate rooms along with the likelihood of the userbeing in that room (likelihood

is based on the quality of the match). The likelihood of the candidate rooms are updated

after each match and is directly dependent on the quality of the match of the current room

versus the candidate room.

The following algorithm is used to compute these likelihood values. The current room is
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Figure 5.7: Flowchart: Location Aware Algorithm



48

denoted asCR and the next candidate room asNR in the next set of equations. If the

match of the set of sensor readings with the current room is better than the match with

the candidate room,matchCR < match NR , then the likelihood of being in the new room is

updated as

P(NR) =
µ

P(NR) +
matchCR

matchNR + matchCR

¶
=2; (5.2)

otherwise, if the match with the candidate room is better thanthe match with the current

room,

pNew =
matchCR

matchCR + matchNR
(5.3)

P(NR) = P(NR) + pNew¡ (pNew£ P(NR)): (5.4)

If the probability of the user being in the candidate room exceeds a threshold (80% is used

in the implementation), then the candidate room is assumed to be the new current room.

In the event of a candidate room being declared as the currentroom, the candidate queue is

°ushed and is populated again based on the criteria listed above. Likewise, if the probability

of the candidate room falls below a threshold (10% in the implementation), then the room

is purged from the candidate queue. In this scenario, the candidate queue is updated by

shifting the candidate rooms after the deleted room one position up.

When a match is computed with each of the candidate rooms, the bounds on the postulated

movement and the rotation of the user are increased by a factor of two. This is done because

as the user approaches the exit of the current room, the obstacles in the adjoining room start

becoming visible to some of the sensors, while the other sensors stillmeasure the distance

to obstacles in the current room. This deteriorates the quality of the match near the exit

and increases the error in estimating pose during transitioningrooms as none of the rooms

can match the real scan points well. Once the room occupancy algorithm computes the

candidate room as the current room, error begins to drop. Alternatively, if the user moves

su±ciently away from the exit of the current room, the sensors stop seeing the elements of
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the adjoining room because the ultrasonic waves traveling in that direction are obstructed

by the frame of the exit door, resulting in the error drop again.



Chapter 6

Results

This chapter veri¯es and validates the correctness of the poseestimation as well as the room

occupancy algorithm presented in Chapter 5. The ¯rst section ofthis chapter discusses in

detail the prototype used for conducting the location awareness tests. The rest of the chapter

discusses and analyzes the results of the location awareness testsin a variety of situations.

6.1 The Prototype

To validate the correctness of the algorithm describe in Chapter 5, a prototype that can

perform a 360 degree range scan of the environment is required. This prototype is critical to

the validation process as the real range readings needed by the algorithm will be provided

by it. As discussed in Chapters 3 and 4, only ultrasonic range sensorswill be used as the

sensing elements for the prototype. Also, a feedback system displaying the user's current

pose and room information in the form of a graphical user interface or a text based display

will be integrated.

50
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Figure 6.1: Polaroid 6500 Series Sonar Ranging Module

For the experimentation and prototyping purposes, Senscomp 6500 Series Sonar Ranging

Modules [65] were used. This kit drives a 49.4 kHz Polaroid ultrasonic transducer that can

sense obstacles from 6 inches to 35 feet with a typical absolute accuracy § 1% of the reading

over the entire range. The Polaroid Electrostatic transducerused in the prototype has a

beam width of 15 degrees and the assembly comes with a perforated protective covering for

increased durability.

The sonar ranging module is capable of operating in single echomode as well as multiple

echo mode with an ability to di®erentiate objects three inches apart.The module is TTL

compatible and has an accurate clock output for external use.The ampli¯cation factor of

the receiver is a function of time with the ampli¯cation reaching its maximum 38ms after

emission of the acoustic waves. This is done to compensate for the attenuation of the signal

with increasing distance. Due to the selective echo exclusion capabilities of the ranging
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Figure 6.2: Prototype

module, the user can control the minimum distance measured.

The current prototype is in the form of a wearable belt with anarray of 15 Polaroid ultrasonic

range sensors placed approximately 24 degrees apart as shown inFigure 6.2. The reason

for a particular number of sensors, and angular separation between sensors is explained in

Section 6.2.2. This ensures a full 360 degree scan of the environment. Due to the prototyping

constraints, the ultrasonic sensors are placed in a single plane and no mechanism has been

deployed to mitigate the e®ect of obstructing arms movement.

The commercial Polaroid Sonar Ranging module is designed to interface to a single elec-

trostatic transducer only. Driving 15 of these transducers in the naive way will require 15

ranging modules, which will increase the cost and the e®ort to attach them to the belt. A

smarter solution to the problem is to drive these multiple sensorswith one ranging module.

To do this, an interfacing circuit is required that can share the control signals from the

ranging module between the sensors. To achieve this, a custom interface board was designed

that controls up to 16 sensors. This board contains a Microchip PIC 18F242 [66] processor

that multiplexes the ¯ring signal from the ranging module to the sensors on the belt via

solid-state relays and a multiplexer. Figures 6.3 and 6.4 show the front and the back of the
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Figure 6.3: Front Side of the interfacing board

interfacing board, respectively.

The PIC ¯res each sensor in a circular fashion with the time delaybetween two ¯rings

corresponding to the twice the maximum range measured by the sensors. This is essential to

minimize the interference between di®erent sensor ¯rings. If asensor ¯res while the acoustic

waves from previous ¯rings are still bouncing in the environment, the ranging module can

incorrectly interpret those waves because of the current ¯ring and can result in a false

range reading. Therefore, spacing the ¯rings su±ciently apart in time will ensure minimum

interference.

The PIC on the interface board is responsible for measuring the TOF for each sensor, com-

puting the distance to the obstacle and transferring this data over UART to an HP iPaq

1945 running Pocket PC 2003 [67]. The iPaq was used for displaying the estimated user's

location within the building.
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Figure 6.4: Back side of the interfacing board

6.2 Location Awareness Tests

With this prototype, results are presented in a variety of situations to demonstrate the

location awareness algorithm within a single room, justify thetype and the number of sensors

used, illustrate the e®ect of weights on the matching process, demonstrate the performance

of the room occupancy algorithm, and enumerate a few failurecases. The tests for the

autonomous location awareness were run using our prototype and in a moderately to highly

cluttered laboratory environment. The algorithm ran on an Intel PIII 1.1GHz machine

with 1GB SDRAM running Linux v2.4.18 operating system. The matching algorithm is

implemented in MATLAB while the simulation model and the inclusion test is implemented

in C. The C routines were converted to mex ¯les so that they can be invoked through

MATLAB. A single matching process for one room takes approximately forty seconds to

run. The matching algorithm employs loops to test each candidate position. Because loops
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Figure 6.5: Match between simulated and real data

have to be interpreted each time they are executed [68], the execution of the matching

algorithm is slowed. It is believed that the performance willbe much faster if implemented

fully in C/C++.

6.2.1 Single Room Performance

This section will validate the sanity of the pose estimation algorithm by showing it's perfor-

mance in a single room. The results of a match between the simulated and the real range

readings are shown and the correctness of the algorithm is veri¯ed.

The performance of the location awareness algorithm in a single room was tested by taking

range scan samples from 15 sensors at a randomly chosen location then attempting to match

against all postulated locations and orientations. The best match of real to simulated data

is shown in Figure 6.5. This match corresponds to correct location and orientation of the
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Figure 6.6: Surface Plot of the Error

user. The diamond shaped markers are the range measurements as returned by the ultrasonic

sensors and the circular as well as the square markers are generated by the simulation model.

The square markers are the range readings generated due to single re°ection o® a wall whereas

the circular markers are generated due to re°ection from a corner or an edge. The ¯gure

shows an inconsistency in the real and the simulated readings forthe sensor number two, ¯ve

and six. That is attributed to the shelves that are located in those corners. These shelves

act as an obstacle to the ultrasonic waves and re°ect them. Evenwith these inconsistent

readings, the pose estimation algorithm matches the real and the simulated range readings

giving the correct pose for the user.

To give further insight, error as a function of postulated user position within the room

(given the correct orientation) is plotted in Figure 6.6. The surface plot clearly shows

a valley indicating that the error of the match increases as the postulated location moves

farther from the actual location and that there is only one minima for this matching function.

Presence of a single minima indicates that there is only one position for which there is a best

match and that position with the corresponding orientation isthe correct pose of the user.
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Figure 6.7: Match for a di®erent room

However, there is no guarantee that there will be only one minima. This particular case is

shown in Section 6.2.5.

The match between the real and the simulated data for a di®erent room of much larger size,

19' X 22', is shown in Figure 6.7. The quality of the match for this room is better than that

of the previous room because the real sensor readings in this room almost superimpose the

simulated readings.

Performance evaluation

To prove the correctness and evaluate the performance of the algorithm, the pose estimation

test was carried out in rooms of di®erent sizes as shown in Figure6.8. Three sets of tests

were performed in each room and the error statistics were calculated from the computed

location. Each set consists of ten locations at which the data isrecorded and location error
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Figure 6.8: Room con¯guration
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Error (Feet)

Set1 Set2 Set3 Mean Std

Room 1 0.61§ 0.62 0.45§ 0.28 0.47§ 0.31 0.51 0.40

Room 4 0.55§ 0.39 0.30§ 0.25 0.35§ 0.3 0.41 0.31

Room 5 1.20§ 1.01 1.23§ 0.93 1.03§ 1.12 1.15 1.02

Room 3 1.02§ 0.57 0.84§ 0.39 0.89§ 0.46 0.91 0.47

Room 6 2.88§ 3.45 2.63§ 2.70 2.62§ 2.72 2.71 2.95

Hall 2.77§ 1.44 2.53§ 1.22 2.59§ 1.07 2.63 1.24

Table 6.1: Single Room Performance

is computed. Table 6.1 shows the error in each set along with themean and standard

deviation for each room.

From the table, it is evident that the prototype performed badly in Room 6 and the hall,

with errors averaging more than 2.5 feet whereas location estimation for Room 3 and Room 5

had mean errors of about one foot. The bad performance in the hall is accepted considering

its huge size. Also, the hall has numerous small features which are not feasible to capture in

the architectural room model. The errors associated with Room5 are due to the cluttering

of the room environment as it houses multiple tall storage units and audio video equipment

leaving the free °oor space almost half of the total area of the room. The errors for Room 3

and Room 6 are particularly interesting for analysis. Apart fromusual ¯xtures, these rooms

are occupied by lab benches, 12' X 3.5' X 6.5' in size, which become the main reason for

large error because they are not a part of the architectural map of the rooms.

Marking the lab benches as walls in the architectural map alsowill not result in any im-

provement in the room occupancy estimation. To get a range measurement from a wall in
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Error (Feet)

Set1 Set2 Set3 Mean Std

Room 3 (old) 1.02§ 0.57 0.84§ 0.39 0.89§ 0.46 0.91 0.47

Room 3 (new) 0.77§ 0.68 0.54§ 0.41 0.52§ 0.47 0.61 0.52

Room 6 (old) 2.88§ 3.45 2.63§ 2.70 2.62§ 2.72 2.71 2.95

Room 6 (new) 1.15§ 0.95 1.52§ 0.88 1.54§ 0.99 1.40 0.94

Table 6.2: Error after adding all re°ective element type to the simulation model

simulation, the sensor should face perpendicular to the wall within the beam of the ultrasonic

waves. Most of the sensors at any place in the room are not perpendicular to the benches,

so the simulation does not generate any data for these sensors. But these oblique sensors

do produce readings giving the real distance to the lab benches. This happens because the

benches have multiple lab equipment kept on them and the edges of the equipment di®ract

the ultrasonic waves back to the sensors. Thus these benches do notact like any regular

elements of our propagation model, but a new type that can re°ect the ultrasonic waves

back to the sensor irrespective of the incoming angle of incidence.

Thus the simulation model was modi¯ed to generate a range reading irrespective of the

inclination angle of the wave front to the benches; the result of this modi¯cation is given in

Table 6.2. By making the lab benches as all re°ective elements, the quality of match improves

for Room 3 and Room 6 resulting in a drop in the mean errors. The drop is signi¯cant for

Room 6 but not for Room 3. This is because even though the quality of match for Room 3

without modi¯cation is worse than the quality of match with modi¯cation, the best match

is still the same for most of the user's locations. It should be notedhere that this is not the

case with Room 6.
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Figure 6.9: Quality of match with and without simulation model modi¯cation

Because the quality of match is dependent on the size of the roomfor which the location

computation is carried out, the quality of the match across all the rooms should be normal-

ized. The quality of match is normalized by dividing the objective function, i.e., weighted

average of the sum of di®erence of simulation and real readingsby the maximum possible

measurable range in a room. Figure 6.9 shows the quality of match for Room 3 and 6 with

and without modi¯cation and Figure 6.10 compares the quality of match for all the rooms

considered for pose estimation evaluation. Figure 6.10 shows that the quality of match of a

room is isolated from its room size by normalizing. The ¯gure also shows that the quality of

match is also inversely proportional to the cluttering of the room environment, i.e., higher

cluttering of the room will result in a poorer match and visa-versa.
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Figure 6.10: Quality of Match comparison

6.2.2 Sensor Selection and Quanti¯cation

This section will justify the choice of ¯fteen sensors for the prototype and why the need for

a magnetic compass was alleviated. To determine the number ofsensors that can reliably

deliver reasonable accuracy, data was collected over a circular walk in a room of size 19' X 22'.

A circular path was chosen because this kind of walk is considered as the worst case scenario.

In this type of walking pattern, unlike a normal walking pattern there will be translation

and rotation between each sample and to estimate the pose correctly, a su±cient number

of sensors will be required. With a su±cient number of sensors and without a magnetic

compass, if the system is able to estimate the user's pose correctly,it should perform atleast

as well during a normal walk. The prototype was manually moved one foot and rotated

approximately 10 degrees between each sample collection. The places at which the samples

were collected are called checkpoints and the accuracy of the algorithm will be measured at

each checkpoint. The pose estimation algorithm was initiallystarted with eight sensors and

the number of sensors was incrementally increased until the desired accuracy was achieved.
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Figure 6.11: Location Error: Circular walk

The result of location estimation for this circular walk is shown in Figures 6.11 and 6.12 for

location and orientation, respectively.

The plots show that the results with eight sensors were good only until the user walked

almost parallel to a wall. As soon as the user rotated to take a turn, the error increased

steeply and could never recover. This happens because there were not su±cient enough

matching points between the simulated and the real range readings. Twelve sensors were

good in estimating the location as well as the orientation of the user until the user took

a sharp turn (almost 30 degrees), which resulted in the orientation estimations becoming

inaccurate. The results with ¯fteen sensors performed reasonably in all of the conditions.

The error in the location estimation results for ¯fteen sensors also increased at the point

where the user took the same sharp turn but because the orientation results maintained

accuracy, the error in location estimate recovered in a couple of samples. Given that the

magnitude of the orientation error was bounded within 25 degrees in the 15 sensor case, it
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Figure 6.12: Orientation Error: Circular Walk

was determined there was no need to augment the system with a compass or gyroscope.

6.2.3 Weight Selection

This section investigates the e®ect of the weights assigned to the re°ections o® the walls

and o® the corners during the matching process on the accuracyof the system. Results will

be shown suggesting the minimum weight ratio of the re°ections o® the walls and o® the

corners.

The weight analysis was done for checkpoint number two from our circular walk data. Fig-

ure 6.13 and Figure 6.14 show the result of the matching of real and simulated readings with

equal and unequal weights respectively. The location computation with equal weight match-

ing returns an error of 2.91 feet, whereas matching with unequal weights gives an error of 0.5

feet. In the case of equal weights, the algorithm attempts to minimize the distance between
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Figure 6.13: Match with equal weights
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Figure 6.15: E®ect of weights on error

every simulated and real measurements equally. Thus it equally weighted minimizing the

di®erence in distance for sensors 7 and 14 as it does for sensors 1, 4, 5 and 9. As it is known

that the points 1, 4, 5 and 9 are due to re°ections o® the walls and because they are less

likely to be specular, they should be given more emphasis for matching. The match of the

real and simulated data with unequal weights does exactly thesame and returns the user

location with smaller error. Figure 6.14 shows that in an e®ortto minimize the di®erence in

distance for wall re°ections, the match for points 7 and 14 has deteriorated, yet returned a

better location estimate.

To further extend this test, sample range readings from two checkpoints of the circular walk

were taken and the weight con¯guration was experimented with for both of the sample check-

points to see how it a®ects accuracy. The weight of the corner re°ections was maintained at

unity while the weight of the wall re°ection was increased gradually. The e®ect of changing

the weights at checkpoints two and nine is shown in Figure 6.15. These two checkpoints are
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Figure 6.16: Architectural map of test subject rooms

chosen because the e®ect of the weighting system is signi¯cant at these locations for both

position and orientation.

From the ¯gure it is clearly seen that for these checkpoints, when the wall re°ections weight

is equal to the corner re°ection weight, the error is almost sixtimes larger compared to when

the wall re°ection weight is twice or more the corner re°ection weight. The weighting system

will be bene¯cial when a sensor that was supposed to detect a feature of the room is blocked

by an obstacle. At these times, the weights will ensure that the matching does not result in

an erroneous orientation estimate resulting in false locationestimate too. Thus, the results

from Figure 6.15 suggests that the wall re°ection weight shouldbe twice or more that of the

corner/edge weight for acceptable accuracy.
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Figure 6.17: Error plot: Location

6.2.4 Room Occupancy

This section presents the results of the room occupancy test thatmeasures the accuracy

of the system in predicting the room occupied by the user as he/shewalks through various

rooms in a building. For testing purposes, the rooms shown in Figure 6.16 were used. These

rooms are part of the laboratory located on the third °oor of Torgersen Hall, Virginia Tech.

The rooms are moderately to highly cluttered with lab equipment and ¯xtures. The user

started walking from Room 1, went to Room 4 through Room 2, thento Room 5 through

Room 2 and ¯nally came back to Room 2. The user traveled a total of 54 feet to cover this

path of traversing between rooms.

The result of this walk on the accuracy of location is shown in Figure 6.17. The table on the

top of the ¯gure displays the real room and the computed room for each checkpoint. The

¯gure shows that the error in location estimation increases signi¯cantly near the checkpoints
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numbered 4 (between Room 1 and Room 2), 11 (between Room 2 and Room 4), 25 (between

Room 4 and Room 2), 34 (between Room 2 and Room 5) and 42 (between Room 5 and

Room 2). This happens due to the transition of user between rooms at these instances.

In proximity to these checkpoints, the room predictions are not accurate as not all sensors

measure the distance to obstacles in the same room. Some sensors scanthe obstacles in

the current room while others scan the elements of the candidate room through the door

opening. At the above checkpoints, the candidate as well as the current room matches the

real range scan points equally well. It is only when the user fully transitions into the next

room that the error drops. Also, when the user is not moving between rooms and remains

in Room 4 (between the checkpoints 15 and 24), the error remains low, bounded within 1.5

feet. The tests show that the user is able to transition in the reverse path with similar error

characteristics.



70

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Checkpoints

E
rr

or
 (F

ee
t)

C

R

R = Real Room
C = Computed Room

9 10 11 10

9 10 11 10

109

Figure 6.19: Error plot: Location

The room occupancy algorithm was put to a special test environment consisting of two

nearly identical rooms, Room 9 and Room 11, as shown in Figure 6.18. These two rooms are

connected together by a long hallway made up of a soft partition and named as Room 10.

The test subject started walking from Room 9 towards the door, went to Room 11 through

Room 10, and then came back to Room 10. The dotted arrow lines in the Figure 6.18 show

the path followed by the user and Figure 6.19 shows the error associated with this walk. The

¯gure shows that the room occupancy algorithm was able to locate the user in the correct

rooms even when they possessed similar structure. Also, the error characteristics of this

walk are similar to the previous walk. The error increases nearthe exits of the rooms and

when the user is not in the vicinity of the exit, the error remains low.

When the test setup has similar rooms like used in the test case described above, there can

be two possible con¯gurations,
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1. The doors of the two adjoining rooms are close to the common wall, as for Room 9

and Room 11.

2. The doors of the two adjoining rooms are placed away from the common wall.

In the second con¯guration, the exits of the two rooms will be su±ciently apart from each

other such that only one of the two rooms will be present in the candidate queue when the

candidates are evaluated for user presence. In this con¯guration, if the doors are lesser than

four feet away from each other, it will resemble more like the ¯rst con¯guration. In the ¯rst

con¯guration, when the doors are close to each other, the snapshot captured at the entrance

of one room will either be horizontal or vertical mirror image of the other room. Hence, the

room occupancy algorithm will not confuse the two similar rooms.

6.2.5 Failure

In this section, some test cases will be presented where the system failed to deliver reasonable

results. These test cases will serve as a guideline to improve the location awareness system

in terms of both hardware and software.

Case I

The room occupancy test failed to locate the user in the correctroom when an additional

identical room was added to the similar rooms test case as shown inFigure 6.20. The ¯gure

also shows the additional path followed by the user composed of walking up into Room 12

and ¯nally returning to Room 10.

The error associated with this walk is shown in Figure 6.21. As seenfrom the ¯gure, the

room occupancy algorithm locates the user in Room 9 when the user is actually present in
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Room 12. This is due to the error in location estimation while the user is walking towards

Room 12. Because the hallway, i.e., Room 10, is made of arti¯cial partitions, it has repeating

soft partition and glass structure units and the edges of these structures act as an edge to

the simulation model. When the user moves up towards Room 12, because of the symmetry

of the partitions, the quality of match at the user's real location and the location in front

of Room 9 are comparable. The additional corner and edge structures in front of Room 9,

however, makes this location the best match and the user appears to be stationary, even

when he/she is walking. This is shown by the increasing locationerror between checkpoints

36 and 57 (user is walking towards Room 12). When the user reaches the entrance of Room

12, the location estimation algorithm still believes the user to be in front of Room 9 and

makes a transition to Room 9 instead of Room 12 because these roomsare exactly identical,

causing the real readings of both rooms similar.

Case II

Another undesirable result was the failure of the room occupancy test in an extremely

cluttered environment of Room 3. Besides the normal desks and racks, which are present

in all of the rooms, two 12' X 3.5' X 6.5' lab benches are placed in Room 3, occupying a

signi¯cant portion of the free space in the room as shown in Figure 6.22. As a result, when

the user moved into Room 3, most of the sensors returned the distance to the shelves instead

of the distance to the walls/corners. In the original simulationmodel, without the addition

of all re°ective environmental elements, the quality of the match was always bad for this

room due to these huge obstacles. Moreover, the distance betweenthe ¯rst shelf and the

door wall is approximately ¯ve feet, which is same as the widthof Room 2. Thus the quality

of match for Room 2 was always better than for Room 3, which caused the room occupancy

algorithm to never compute a transition to Room 3.
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Figure 6.24: Match between simulated and real data for Room 2

The result of the match for a checkpoint inside Room 3 for Room 3 and Room 2 is shown in

Figure 6.23 and 6.24 respectively. As shown in Figure 6.23, there is a huge di®erence in the

simulated and the real range reading for sensor number 14 and a considerable di®erence in

range for sensor number 4. This primarily causes the match for Room 3 to be worse than for

Room 2, shown in Figure 6.24 where fewer simulation readings are generated with a smaller

di®erence in the real and simulated readings. The real range readings from sensors 13, 14,

and 15 are due to the re°ection from the equipment on the lab shelves whereas the range

readings from sensors 3, 4, and 5 are due to re°ections o® of the obstacles in Room 2.

During the room occupancy test, if Room 3 is never purged from the candidate queue and

the postulated movement of the user for Room 3 is set to the size of the room, then it is

seen that when the user reaches a point in between the two lab benches, the room occupancy

algorithm transitions the user into Room 3. This happens as thesimulation model, as well as

the real readings now return multiple wall re°ection readings, making the match for Room

3 better than Room 2. Similar problems with the lab benches occur in another room. The
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room connecting the top of Room 2, i.e., Room 6, is also occupied by lab benches and similar

error characteristics can be found in transitioning to that room too.

Interestingly, if the simulation model with all re°ective elements is used for room occupancy

instead of the original model, the quality of match for Room 3 becomes better than for

Room 2 and the user is transitioned into Room 3 within 2 feet of moving into the room.

This strengthens the reason for modifying the simulation modelto add all re°ective elements.

However, such an information about the room might not be available. Handling such rooms

without prior knowledge of the ¯xtures will remain an area for further research.

Also, the real readings at the above checkpoint in Room 3 shows some inadequacies of the

propagation model. The range reading of sensor number nine is de¯nitely specular and is

not generated by simulation as expected. The propagation model, however, fails to justify

the reading from sensor number 10. The reading from sensor 10 is the actual distance to the

wall even though the sensor does not face perpendicular to it. This situation arises when the

user or the sensor is close to the wall and the angle of inclinationto the wall lies between 30

and 60 degrees. A more elaborate propagation model might be able to justify this reading.

Case III

During the room occupancy tests, an interesting problem was discovered that caused the

sensors to return false range readings even when they faced perpendicular to a wall. The

°uorescent lighting ¯xtures installed in Room 5 use electronicballasts, operating at a fre-

quency of 20kHz and higher to minimize humming and to consume less power. A sample of

the frequency spectrum of this environment indicated a strongcomponent of 47.1kHz when

the lights are turned ON that disappears once the lights are switched OFF. These electro-

magnetic waves are being picked up by the metal body of the ultrasonic sensors, resulting

in a false reading.
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Figure 6.25: Range scan with °uorescent lights ON
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Figure 6.25 shows the 360 degree range scan of Room 5 with the °uorescent lights ON. The

user is positioned 1.5 feet away from the right wall and facing it. The scan points 1, 14,

and 15 are from the re°ections o® of objects in Room 2 and thus can be ignored for our

discussion here. The scan points eight and nine shows range reading of approximately four

feet, whereas they should have been approximately 15 feet and17.5 feet respectively. This

happens due to the interference with the °uorescent lights. When the lights are turned OFF

and the range is taken at the same place, the scan looks like as shown in Figure 6.26. The

¯gure shows that except scan points 6, 7, 8, and 9, the scan matches the one with lights

ON. There is a di®erence in the readings for these sensors because there is no interference

from the lights and the sensors could measure the farther objects. Scan reading 9 still shows

about 15 feet instead of 17.5 feet because a television is kept inthe alcove.



Chapter 7

Conclusions

The design of a wearable autonomous location awareness system inan indoor environment

was described, including the choice of sensors, number of sensors, and the algorithm used

for calculating location and user orientation. Several choices of type of sensors, number

of sensors, and algorithms are available for a location awareness system, but their use in

a wearable system is restricted. The sensors were chosen considering their usage, cost,

power consumption and wearability. The need to understand thecomplex behavior of the

ultrasonic sensors motivated the use of a simulation model that can predict actual sensor

behavior. Also, a feature addition in the existing simulation model is proposed that can

enhance the prediction of the sensor readings in a cluttered environment. The two-part

location awareness algorithm computes the location and orientation within a room as well

as determines the user's movement between rooms. The use of the weighting system ensures

that the most prominent readings of the sensors are given more emphasis than the readings

generated due to ¯xtures or moving people. A simple prototypethat can collect the sensor

readings was constructed and used to conduct experiments for location awareness. The

choice of parameters within the system, such as the number of sensors and weight assigned

79
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to the sensor readings, was experimentally justi¯ed. The performance of the algorithm was

demonstrated in a series of experiments involving several rooms demonstrating its e±cacy.

The location awareness tests were successful even when the test environment consisted of

identical rooms.

In its current form the system has a number of limitations too. First, the current simulation

model allows for only straight walls that are perpendicular at their intersections. Secondly,

the current system does not postulate user movement between °oors of building using stairs

or an elevator. However, both of these limitations can be addressed within the con¯nes

of the current algorithmic structure. Perhaps a more profound limitation is the system's

inability to recover from a wrong match. Such errors arise if aroom contains a large number

of objects that are not included in the map. In such a case, the observed ranges from the

ultrasonic sensors cannot be matched to any location on the map because the map does

not have complete information. Also, the system is unable to distinguish similar repeating

features in the environment that can cause the system to computewrong matches. This

is evident from the case of three identical rooms where the system could not identify the

correct location because of the repeated features of the hallway. These limitations can be

addressed by an algorithm operating at a higher level with some built-in understanding of

how a person moves through a building. Some accelerometer sensors can also be added to

the system, which can give cues if the person is moving or stationary.

7.1 Future Work

The autonomous wearable location awareness system is still in a rudimentary stage and

further research needs to be done until it matures. The most immediate future work includes

integrating the software onto the prototype belt so that the location computation can be
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performed in real time. The limitations of the current system discussed in the previous

section needs to be addressed through further e®orts, especiallyto recover from incorrect

matches. The e®ect of the surroundings on the system needs further exploration, such as the

in°uence of the °uorescent light ¯xtures on ultrasonic sensor readings. It is also desirable to

design a version that does not require a blueprint ahead of time, but instead builds the map

as the user moves about without any a priori knowledge of the building.
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