Characterization of an Altered MoFe Protein of Nitrogenase from a ΔnifV strain of
Azotobacter vinelandii

by

Leonard Michael Comaratta

Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfillment of the requirements for the degree of

MASTERS OF SCIENCE

in

Biochemistry

APPROVED:

D.R. Dean, Chairman
J.S. Chen
E.M. Gregory
T.J. Larson
G.W. Claus

December, 1998
Blacksburg, VA
Characterization of an Altered MoFe Protein of Nitrogenase from a ΔnifV strain of

Azotobacter vinelandii

by

Leonard Michael Comaratta

ABSTRACT

The site of substrate binding and reduction for the nitrogenase complex is located on the iron molybdenum cofactor (FeMo-co) which is contained within the α-subunit of the molybdenum iron protein. FeMo co consists of a metal sulfur core composed of an FeS cluster bridged by three inorganic sulfides to a MoFeS cluster. An organic acid, homocitrate, is coordinated to the Mo atom through its 2-carboxy and 2-hydroxy groups. Homocitrate is formed by the condensation of acetyl-CoA and α-ketoglutarate, which is catalyzed by a homocitrate synthase encoded by *nifV*. By deleting the *nifV* gene from *Azotobacter vinelandii* we were able to study the role of homocitrate in nitrogenase catalysis. A poly-histidine tail was incorporated into the C-termini of the α-subunit permitting isolation of the homocitrateless MoFe protein by using metal affinity chromatography. We have found that the addition of a poly-histidine tag does not alter the catalytic behavior of the native enzyme. In NifV strains of *Klebsiella pneumoniae*, citrate has been found to replace homocitrate as the organic constituent of FeMo-co. We have found no evidence this is so in *A. vinelandii*. Gas chromatography mass spectrophotometry studies indicate little or no organic acids are associated with FeMo-co. We examined the catalytic properties of the NifV MoFe protein. In the mutant, H₂ evolution is inhibited by the addition of CO, unlike in the wild type. We have found that the NifV MoFe protein from *A. vinelandii* is able to catalyze the reduction of acetylene to both ethylene and ethane.
ACKNOWLEDGEMENTS

First and foremost, I want and need to thank Dr. Dennis R. Dean, the Great Camel. Thank you for your patience and guidance over the course of my graduate work and for allowing me to be one of the desertarians to walk in your shadow. I would like to thank the members of my committee: Dr. Eugene Gregory, Dr. Jiann-Shin Chen, Dr. Timothy Larson and Dr. William Claus, for their time, help and patience. I would like to thank Dr. Tracy Wilkins for his candor and advice. I would also like to thank Dr. Thomas Keenan.

I want to thank everyone in the lab. Valerie Cash, whose kindness and tolerance helped me through many nightmares and her culinary skills as a master cake baker made us all want a birthday everyday. Thanks for everything, especially for being my dance partner. Dr. Limin Zheng, I can’t think of anyone else I would have had for a cubicle mate. Thank you for all your help and advice. I’ll be first in line at the next buffet. Paul Goodwin. P.J. The list of reasons for me to thank you is long. You are a great friend and true inspiration. Guess where I’m calling from? Dr. Jason Christiansen, mi amigo de la California. Thank you for your generosity, time, advice, for knowing what artist sang what song when I couldn’t think of it and for bringing a bit of California back to me. Pramvadee (Dee) Yuvaniyama; bringing in those Thai meals at night made late nights more enjoyable. I’ll be knocking on your door when I come to Bangkok. I also want to thank former students Dr. Richard Jack for being Richard and Dr. John Peters for helping me get started.

I want to thank Wilkins’ lab veterans Lisa Barroso, Rhonda Wright, Scott Moncrief, and Rik Obiso for all your help and advice. Also thanks for great comic relief. To my family for being there when I needed them; Samantha, who has been with me technically longer than anyone (except said family) and who knows me better than anyone; Tammie, who feels my pain; Marc, one crazy cat; John Shaft, who gave a whole new meaning to being bad; and finally Jerry, George, Kramer, and Elaine.
TABLE OF CONTENTS

ABSTRACT .. i

ACKNOWLEDGEMENTS ... ii

TABLE OF CONTENTS .. iii

LIST OF ILLUSTRATIONS .. v

LIST OF TABLES .. vi

LITERATURE REVIEW .. 1

Introduction .. 1

Enzymology of Nitrogenase ... 2

FeMo-cofactor ... 5

NifH ... 6

NifE and NifN .. 6

NifB ... 7

NifQ ... 7

NifV ... 8

Homocitrate ... 11

EXPERIMENTAL PROCEDURES .. 1

Construction of *Azotobacter vinelandii* strains .. 13

Cell Growth ... 13

Crude Extract Preparation ... 14

Purification of Poly-Histidine Tagged MoFe Protein ... 14

Protein Quantitation ... 15

Gel Electrophoresis .. 15

Nitrogenase Assays .. 15

Preparation of Gas Mixtures ... 16

ATP Hydrolysis ... 16

Ammonia Assay .. 17

Organic Acid Analysis ... 17

Metal Analysis .. 18

Chemical Modification of Cysteines ... 18

RESULTS .. 19

Growth, Purification and Initial Characterization of DJ1009 19

Determination of Organic Acid Content ... 20

Electron Paramagnetic Resonance (EPR) ... 21

Nitrogenase Catalytic Activities .. 21

Determination of Kinetic Parameters ... 23

MgATP Hydrolysis Under Various Atmospheres ... 27

DISCUSSION .. 35
LIST OF ILLUSTRATIONS

1. SDS-PAGE and alkylation of wild-type and NifV⁻ MoFe proteins……………..22

2. Electron Paramagnetic Resonance spectra of purified wild-type and NifV⁻ MoFe proteins…………………………………………………………………26

3. CO inhibition of acetylene reduction catalyzed by purified wild-type MoFe proteins……………………………………………………………………31

4. CO inhibition of acetylene reduction catalyzed by purified NifV⁻ MoFe proteins………………………………………………………………………32

5. N₂ inhibition of acetylene reduction catalyzed by purified wild-type MoFe proteins…………………………………………………………………33

6. N₂ inhibition of acetylene reduction catalyzed by purified NifV⁻ MoFe proteins……………………………………………………………………….34
LIST OF TABLES

1. CO and N₂ inhibition of H₂ evolution ..24
2. Specific activity of acetylene reduction ...25
3. Kinetic parameters of wild-type MoFe protein (DJ995) and NifV⁻ MoFe protein (DJ1009) ...29
4. ATP/2e⁻ ratio of wild-type MoFe protein (DJ995) and NifV⁻ MoFe protein (DJ1009) ...30